1
|
Pathinayake PS, Hsu ACY, Nichol KS, Horvat JC, Hansbro PM, Wark PAB. Endoplasmic reticulum stress enhances the expression of TLR3-induced TSLP by airway epithelium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L618-L626. [PMID: 38469627 PMCID: PMC11381004 DOI: 10.1152/ajplung.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.
Collapse
Affiliation(s)
- Prabuddha S Pathinayake
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C-Y Hsu
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Signature Research Program in Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
| | - Kristy S Nichol
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
- School of Medicine, Monash University, Melbourne, Victoria, Australia
- AIRMED Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Jang JH, Zhou M, Makita K, Sun R, El-Hajjar M, Fonseca G, Lauzon AM, Martin JG. Induction of a memory-like CD4 + T-cell phenotype by airway smooth muscle cells. Eur J Immunol 2024; 54:e2249800. [PMID: 38334162 DOI: 10.1002/eji.202249800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
In asthma, CD4+ T-cell interaction with airway smooth muscle (ASM) may enhance its contractile properties and promote its proliferation. However, less is known about the effects of this interaction on T cells. To explore the consequences of interaction of CD4+ T cells with ASM we placed the cells in co-culture and analyzed the phenotypic and functional changes in the T cells. Effector status as well as cytokine expression was assessed by flow cytometry. An increase in CD45RA-CD45RO+ memory T cells was observed after co-culture; however, these cells were not more responsive to CD3/28 restimulation. A reduction in mitochondrial coupling and an increase in the production of mitochondrial reactive oxygen species by CD4+ T cells post-restimulation suggested altered mitochondrial metabolism after co-culture. RNA sequencing analysis of the T cells revealed characteristic downregulation of effector T-cell-associated genes, but a lack of upregulation of memory T-cell-associated genes. The results of this study demonstrate that ASM cells can induce a phenotypic shift in CD4+ T cells into memory-like T cells but with reduced capacity for activation.
Collapse
Affiliation(s)
- Joyce H Jang
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Zhou
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kosuke Makita
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mikal El-Hajjar
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
4
|
Lim JH, Kim HY, Kang HG, Jeong HJ, Kim HM. RANKL down-regulates the mast cell proliferation through inducing senescence. Cytokine 2022; 159:156018. [DOI: 10.1016/j.cyto.2022.156018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
|
5
|
Saikosaponin A and Saikosaponin C Reduce TNF-α-Induced TSLP Expression through Inhibition of MAPK-Mediated EGR1 Expression in HaCaT Keratinocytes. Int J Mol Sci 2022; 23:ijms23094857. [PMID: 35563251 PMCID: PMC9105331 DOI: 10.3390/ijms23094857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases worldwide, characterized by intense pruritus and eczematous lesions. Aberrant expression of thymic stromal lymphopoietin (TSLP) in keratinocytes is associated with the pathogenesis of AD and is considered a therapeutic target for the treatment of this disease. Saikosaponin A (SSA) and saikosaponin C (SSC), identified from Radix Bupleuri, exert anti-inflammatory effects. However, the topical effects of SSA and SSC on chronic inflammatory skin diseases are unclear. In this study, we investigated the effects of SSA and SSC on TSLP suppression in an AD-like inflammatory environment. We observed that SSA and SSC suppressed tumor necrosis factor-α-induced TSLP expression by downregulating the expression of the transcription factor early growth response 1 (EGR1) via inhibition of the extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and p38 mitogen-activated protein kinase pathways. We also confirmed that topical application of SSA or SSC reduced AD-like skin lesions in BALB/c mice challenged with 2,4-dinitrochlorobenzene. Our findings suggest that suppression of EGR1-regulated TSLP expression in keratinocytes might be attributable to the anti-inflammatory effects of SSA and SSC in AD-like skin lesions.
Collapse
|
6
|
Segawa R. [Search for Compounds Regulating TSLP Production]. YAKUGAKU ZASSHI 2021; 141:1129-1135. [PMID: 34602509 DOI: 10.1248/yakushi.21-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived immunostimulatory factor, which activates several immune cells such as dendritic cells, T cells, and mast cells. Recently, epithelial cell-derived TSLP has gained immense attention as a cytokine that induces allergic immune responses. Therefore, understanding the regulation of TSLP production is an important step in uncovering the pathophysiology of allergic diseases. Moreover, the compounds that regulate TSLP production can be used as therapeutic drugs for the treatment of allergic diseases. We aim to elucidate the detailed regulation of TSLP production from epithelial cells, and in doing so discovered new regulating factors and an inhibitor of TSLP production. This review article explains the role of TSLP in allergic diseases, its regulation, and our research results.
Collapse
Affiliation(s)
- Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Chrysin Inhibits TNFα-Induced TSLP Expression through Downregulation of EGR1 Expression in Keratinocytes. Int J Mol Sci 2021; 22:ijms22094350. [PMID: 33919431 PMCID: PMC8122459 DOI: 10.3390/ijms22094350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/26/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that acts as a critical mediator in the pathogenesis of atopic dermatitis (AD). Various therapeutic agents that prevent TSLP function can efficiently relieve the clinical symptoms of AD. However, the downregulation of TSLP expression by therapeutic agents remains poorly understood. In this study, we investigated the mode of action of chrysin in TSLP suppression in an AD-like inflammatory environment. We observed that the transcription factor early growth response (EGR1) contributed to the tumor necrosis factor alpha (TNFα)-induced transcription of TSLP. Chrysin attenuated TNFα-induced TSLP expression by downregulating EGR1 expression in HaCaT keratinocytes. We also showed that the oral administration of chrysin improved AD-like skin lesions in the ear and neck of BALB/c mice challenged with 2,4-dinitrochlorobenzene. We also showed that chrysin suppressed the expression of EGR1 and TSLP by inhibiting the extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) 1/2 mitogen-activated protein kinase pathways. Collectively, the findings of this study suggest that chrysin improves AD-like skin lesions, at least in part, through the downregulation of the ERK1/2 or JNK1/2-EGR1-TSLP signaling axis in keratinocytes.
Collapse
|
8
|
Schneberger D, Pandher U, Thompson B, Kirychuk S. Effects of elevated CO 2 levels on lung immune response to organic dust and lipopolysaccharide. Respir Res 2021; 22:104. [PMID: 33836776 PMCID: PMC8033726 DOI: 10.1186/s12931-021-01700-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 on lung innate immune responses in mice co-exposed to the inflammatory agents lipopolysaccharide (LPS) and organic dust. We evaluated CO2 levels at the building recommended limit (1000 ppm) as well as the exposure limit (5000 ppm). Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (avg. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Results reveal that organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.
Collapse
Affiliation(s)
- David Schneberger
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Upkardeep Pandher
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brooke Thompson
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shelley Kirychuk
- College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Polymorphisms within the TNFSF4 and MAPKAPK2 Loci Influence the Risk of Developing Invasive Aspergillosis: A Two-Stage Case Control Study in the Context of the aspBIOmics Consortium. J Fungi (Basel) 2020; 7:jof7010004. [PMID: 33374839 PMCID: PMC7823601 DOI: 10.3390/jof7010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Here, we assessed whether 36 single nucleotide polymorphisms (SNPs) within the TNFSF4 and MAPKAPK2 loci influence the risk of developing invasive aspergillosis (IA). We conducted a two-stage case control study including 911 high-risk patients diagnosed with hematological malignancies that were ascertained through the aspBIOmics consortium. The meta-analysis of the discovery and replication populations revealed that carriers of the TNFSF4
rs7526628T/T genotype had a significantly increased risk of developing IA (p = 0.00022). We also found that carriers of the TNFSF4
rs7526628T allele showed decreased serum levels of TNFSF14 protein (p = 0.0027), and that their macrophages had a decreased fungicidal activity (p = 0.048). In addition, we observed that each copy of the MAPKAPK2
rs12137965G allele increased the risk of IA by 60% (p = 0.0017), whereas each copy of the MAPKAPK2
rs17013271T allele was estimated to decrease the risk of developing the disease (p = 0.0029). Mechanistically, we found that carriers of the risk MAPKAPK2
rs12137965G allele showed increased numbers of CD38+IgM-IgD- plasmablasts in blood (p = 0.00086), whereas those harboring two copies of the allele had decreased serum concentrations of thymic stromal lymphopoietin (p = 0.00097). Finally, we also found that carriers of the protective MAPKAPK2
rs17013271T allele had decreased numbers of CD27-IgM-IgD- B cells (p = 0.00087) and significantly lower numbers of CD14+ and CD14+CD16- cells (p = 0.00018 and 0.00023). Altogether, these results suggest a role of the TNFSF4 and MAPKAPK2 genes in determining IA risk.
Collapse
|
10
|
Jeong GW, Lee HH, Lee-Kwon W, Kwon HM. Microglial TonEBP mediates LPS-induced inflammation and memory loss as transcriptional cofactor for NF-κB and AP-1. J Neuroinflammation 2020; 17:372. [PMID: 33292328 PMCID: PMC7722447 DOI: 10.1186/s12974-020-02007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microglia are brain-resident myeloid cells involved in the innate immune response and a variety of neurodegenerative diseases. In macrophages, TonEBP is a transcriptional cofactor of NF-κB which stimulates the transcription of pro-inflammatory genes in response to LPS. Here, we examined the role of microglial TonEBP. METHODS We used microglial cell line, BV2 cells. TonEBP was knocked down using lentiviral transduction of shRNA. In animals, TonEBP was deleted from myeloid cells using a line of mouse with floxed TonEBP. Cerulenin was used to block the NF-κB cofactor function of TonEBP. RESULTS TonEBP deficiency blocked the LPS-induced expression of pro-inflammatory cytokines and enzymes in association with decreased activity of NF-κB in BV2 cells. We found that there was also a decreased activity of AP-1 and that TonEBP was a transcriptional cofactor of AP-1 as well as NF-κB. Interestingly, we found that myeloid-specific TonEBP deletion blocked the LPS-induced microglia activation and subsequent neuronal cell death and memory loss. Cerulenin disrupted the assembly of the TonEBP/NF-κB/AP-1/p300 complex and suppressed the LPS-induced microglial activation and the neuronal damages in animals. CONCLUSIONS TonEBP is a key mediator of microglial activation and neuroinflammation relevant to neuronal damage. Cerulenin is an effective blocker of the TonEBP actions.
Collapse
Affiliation(s)
- Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
11
|
Lin L, Hwang BJ, Li N, Googe P, Diaz LA, Miao E, Vilen B, Thomas NE, Ting J, Liu Z. Non-Cell-Autonomous Activity of the Hemidesmosomal Protein BP180/Collagen XVII in Granulopoiesis in Humanized NC16A Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2786-2794. [PMID: 32998984 PMCID: PMC7658030 DOI: 10.4049/jimmunol.2000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
BP180 (also termed type XVII collagen) is a hemidesmosomal protein and plays a critical role in cell-cell matrix adhesion in the skin; however, its other biological functions are largely unclear. In this study, we generated a BP180 functional-deficient mouse strain by deleting its extracellular domain of humanized NC16A (termed ΔNC16A mice). We found that BP180 is expressed by bone marrow mesenchymal stem cells (BM-MSC), and its functional deficiency leads to myeloid hyperplasia. Altered granulopoiesis in ΔNC16A mice is through bone marrow stromal cells evidenced by bone marrow transplantation. Furthermore, the level of G-CSF in bone marrow and circulation were significantly increased in ΔNC16A mice as compared with wild-type mice. The increased G-CSF was accompanied by an increased activation of the NF-κB signaling pathway in bone marrow and BM-MSC of ΔNC16A mice. Blockade of G-CSF restored normal granulopoiesis in ΔNC16A mice. Inhibition of NF-κB signaling pathway significantly reduces the release of G-CSF from ΔNC16A BM-MSC in vitro and the level of serum G-CSF in ΔNC16A mice. To our knowledge, these findings provide the first direct evidence that BP180 plays an important role in granulopoiesis through regulating NF-κB signaling pathway in BM-MSC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Oral Biology Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bin-Jin Hwang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul Googe
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ed Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Barbara Vilen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
12
|
Ma L, Zhen J, Sorisky A. Regulators of thymic stromal lymphopoietin production by human adipocytes. Cytokine 2020; 136:155284. [PMID: 32950025 DOI: 10.1016/j.cyto.2020.155284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine that is known to play a role in inflammatory conditions, especially asthma and atopic dermatitis. It is also recognized to be expressed in human adipose tissue. TSLP production from human adipocytes is stimulated by thyroid-stimulating hormone (TSH). This study aimed to identify TSH-dependent signaling routes that regulate TSLP, to determine if TSLP production is stimulated by other cytokines (IL-1β and TNF-α), and to examine if TSLP production depends on the adipose depot. Human abdominal differentiated adipocytes were stimulated with TSH, IL-1β, or TNF-α. Activation of cell signaling kinases was measured by phospho-immunoblot analysis, and TSLP in medium was assessed by ELISA. TSLP responses from abdominal subcutaneous and omental adipocytes were compared. TSH-stimulated TSLP secretion from subcutaneous adipocytes was enhanced by IBMX (raises cAMP levels) and was blocked by UO126 (inhibitor of MEK1/2-ERK1/2). TSLP secretion was stimulated by IL-1β and by TNF-α. SC-514 (inhibitor of IKKβ/NF-κB) only reduced the former. There was no effect of SB203580 (p38 MAPK inhibitor) or SP600125 (JNK inhibitor) on the stimulation by TSH, IL-1β or TNF-α. Interferon-γ inhibited TSLP responses to TSH, IL-1β, and TNF-α; IL-4 only blocked the response to TNFα. Intra-abdominal omental adipocytes also release TSLP in response to TSH, IL-1β, and TNF-α. We conclude TSLP is produced by human differentiated adipocytes derived from subcutaneous or omental depots in response to a variety of agonists. Further studies will be needed to understand what role it may play in adipose biology.
Collapse
Affiliation(s)
- Loretta Ma
- Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa, Ontario K1H 8L6, Canada
| | - Jamie Zhen
- Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa, Ontario K1H 8L6, Canada
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa, Ontario K1H 8L6, Canada; Department of Medicine and Biochemistry, Microbiology & Immunology, University of Ottawa, 501 Smyth Rd, Ottawa, Ontario K1H 8L6, Canada.
| |
Collapse
|
13
|
Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets 2020; 24:777-792. [PMID: 32567399 DOI: 10.1080/14728222.2020.1783242] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thymic stromal lymphopoietin (TSLP), an epithelial cytokine (alarmin), is a central regulator of the immune response to inhaled environmental insults such as allergens, viruses and pollutants, initiating a cascade of downstream inflammation. There is compelling evidence that TSLP plays a major role in the pathology of asthma, and therapies that aim to block its activity are in development. AREAS COVERED We review studies conducted in humans and human cells, largely published in PubMed January 2010-October 2019, that investigated the innate and adaptive immune mechanisms of TSLP in asthma relevant to type 2-driven (eosinophilic/allergic) inflammation and non-type 2-driven (non-eosinophilic/non-allergic) inflammation, and the role of TSLP as a mediator between immune cells and structural cells in the airway. Clinical data from studies evaluating TSLP blockade are also discussed. EXPERT OPINION The position of TSLP at the top of the inflammatory cascade makes it a promising therapeutic target in asthma. Systemic anti-TSLP monoclonal antibody therapy with tezepelumab has yielded positive results in clinical trials to date, reducing exacerbations and biomarkers of inflammation in patients across the spectrum of inflammatory endotypes. Inhaled anti-TSLP is an alternative route currently under evaluation. The long-term safety and efficacy of TSLP blockade need to be evaluated.
Collapse
Affiliation(s)
- Gail M Gauvreau
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | - Roma Sehmi
- Department of Medicine, McMaster University , Hamilton, Ontario, Canada
| | | | - Janet M Griffiths
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D , Gaithersburg, MD, USA
| |
Collapse
|
14
|
Hypoxia inhibits TNF-α-induced TSLP expression in keratinocytes. PLoS One 2019; 14:e0224705. [PMID: 31682627 PMCID: PMC6827910 DOI: 10.1371/journal.pone.0224705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
The expression of thymic stromal lymphopoietin (TSLP), a cytokine which greatly contributes to the induction of type I allergy, is upregulated in chronic inflammation such as atopic dermatitis and psoriasis. As hypoxia in the epidermis is important for maintaining skin homeostasis, we examined the regulation of TSLP expression by hypoxic conditions in normal skin epithelial tissues. TNF-α-induced expression of TSLP in human keratinocyte HaCaT and in mouse keratinocyte PAM212 cell lines were inhibited under hypoxic condition (1% O2), although the mRNA expressions of TNF-α, IL-6, IL-8, MCP-1, and VEGF-A were not inhibited. Hypoxia-mimicking conditions, which include NiCl2, CoCl2, and DMOG, an inhibitor of 2-oxoglutarate-dependent enzymes, also selectively inhibited TNF-α-induced TSLP expression. These results suggested that inactivation of prolyl hydroxylase by hypoxia and hypoxia-mimicking conditions is involved in the repression of TNF-α-induced TSLP expression. Interestingly, the inhibition of TSLP production by hypoxic treatment was significantly reversed by treatment with the HIF-2α antagonist but not with the HIF-1α inhibitor. DMOG-induced inhibition of TSLP promoter activity was dependent on the -71 to +185 bp promoter region, suggesting that the binding of HIF-2 to hypoxia response element (HRE) in this region repressed the TSLP expression. These results indicated that hypoxia and hypoxia-mimicking conditions inhibited TSLP expression via HIF-2 and HRE-dependent mechanisms. Therefore, PHD and HIF-2α could be a new strategy for treatment of atopic dermatitis and psoriasis.
Collapse
|
15
|
Aparicio-Soto M, Redhu D, Sánchez-Hidalgo M, Fernández-Bolaños JG, Alarcón-de-la-Lastra C, Worm M, Babina M. Olive-Oil-Derived Polyphenols Effectively Attenuate Inflammatory Responses of Human Keratinocytes by Interfering with the NF-κB Pathway. Mol Nutr Food Res 2019; 63:e1900019. [PMID: 31393642 DOI: 10.1002/mnfr.201900019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/28/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Extra virgin olive oil (EVOO) is rich in phenolic compounds, including hydroxytyrosol (HTy) and hydroxytyrosyl acetate (HTy-Ac), which have presented multiple beneficial properties. Their impact on inflammatory responses in human keratinocytes and modes of action have not been addressed yet. METHODS AND RESULTS Primary human keratinocytes are pretreated with HTy-Ac or HTy for 30 min and stimulated with IL-1β or Toll-like receptor 3 ligand (TLR3-l). Thymic stromal lymphopoietin (TSLP), measured by ELISA, is attenuated by both polyphenols in a dose-dependent manner. The expression of several inflammation-related genes, including distinct TSLP isoforms and IL-8, are assessed by quantitative RT-PCR and likewise inhibited by HTy-Ac/HTy. Mechanistically, EVOO phenols counteracts IκB degradation and translocation of NF-κB to the nucleus, a transcription factor of essential significance to TSLP and IL-8 transcriptional activity; this is evidenced by immunoblotting. Accordingly, NF-κB recruitment to critical binding sites in the TSLP and IL-8 promoter is impeded in the presence of HTy-Ac/HTy, as demonstrated by chromatin immunoprecipitation. Promoter reporter assays finally reveal that the neutralizing effect on NF-κB induction has functional consequences, resulting in reduced NF-κB-directed transcription. CONCLUSION EVOO phenols afford protection from inflammation in human keratinocytes by interference with the NF-κB pathway.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - Davender Redhu
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marina Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González Street 1, Seville, 41012, Spain
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Sevilla, Profesor García González Street 2, Seville, 41012, Spain
| | - Margitta Worm
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Magda Babina
- Division of Allergy and immunology, Department of Dermatology and Allergy, Charité-Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
16
|
Redhu D, Franke K, Kumari V, Francuzik W, Babina M, Worm M. Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of protease-activated receptor 2 and interleukin 1 pathways. Br J Dermatol 2019; 182:119-129. [PMID: 30924922 DOI: 10.1111/bjd.17940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) mediates proallergic T helper 2-type responses by acting on leucocytes. Endogenous pathways regulating TSLP production are poorly defined. OBJECTIVES To uncover the mechanisms by which skin barrier disruption elicits TSLP production and to delineate the level at which individual mechanistic components may converge. METHODS A combination of primary keratinocytes, skin explants and in vivo strategies was employed. Murine skin was tape stripped in the presence of neutralizing antibodies or antagonists. Cells and explants were stimulated with interleukin (IL)-1 and protease-activated receptor 2 agonist (PAR-2-Ag). TSLP levels were quantified by enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction. Chromatin immunoprecipitation and promoter reporter assays were used to examine recruitment and functional activity of nuclear factor kappa B (NF-κB) at the TSLP promoter. RESULTS TSLP induction in mouse skin occurred in a PAR-2- and IL-1-dependent manner. This scenario was duplicated by exogenous IL-1 plus PAR-2-Ag vs. each stimulus alone. Joint activity of PAR-2 and IL-1 was also observed in human keratinocytes. The TSLP promoter was identified as the target of PAR-2/IL-1, whereby PAR-2 activation augmented the recruitment of NF-κB and transcriptional activation over IL-1 alone. Combined treatment showed activity at concentrations of IL-1 unable to elicit NF-κB activity on their own. CONCLUSIONS Skin barrier disruption activates the IL-1 and the PAR-2 pathways, which act in concert to activate the TSLP promoter and possibly other inflammatory genes. Awareness of this combined activity may permit a more flexible clinical management by selective targeting of either pathway individually or collectively. What's already known about this topic? Thymic stromal lymphopoietin (TSLP) is rapidly induced upon skin perturbation and mediates proallergic T helper 2-type responses by acting on leucocytes. Endogenous control of TSLP expression is poorly understood, but interleukin (IL)-1 is one regulator in the cutaneous environment In addition to IL-1, protease-activated receptor 2 (PAR-2) organizes central inflammatory pathways in the skin. What does this study add? IL-1 and PAR-2 pathways cooperate in driving TSLP production in mice and humans. Pathway integration occurs at the level of the TSLP promoter through enhanced recruitment and transcriptional activation of nuclear factor kappa B. When PAR-2 is co-stimulated, very low IL-1 levels (inactive by themselves) can induce biologically meaningful responses in the skin environment. What is the translational message? Physical skin irritation results in robust TSLP production by simultaneous activation of PAR-2 and IL-1 pathways.
Collapse
Affiliation(s)
- D Redhu
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - K Franke
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - V Kumari
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - W Francuzik
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Babina
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - M Worm
- Department of Dermatology and Allergy, Allergy Center Charité, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Han NR, Kim HY, Kang S, Kim MH, Yoon KW, Moon PD, Kim HM, Jeong HJ. Chrysophanol, an anthraquinone from AST2017-01, possesses the anti-proliferative effect through increasing p53 protein levels in human mast cells. Inflamm Res 2019; 68:569-579. [DOI: 10.1007/s00011-019-01239-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/28/2022] Open
|
18
|
Segawa R, Shiraki M, Sudo S, Shigeeda K, Saito T, Mizuno N, Moriya T, Yonezawa T, Woo JT, Hiratsuka M, Hirasawa N. A chalcone derivative suppresses the induction of TSLP in mice and human keratinocytes and attenuates OVA-induced antibody production in mice. Eur J Pharmacol 2019; 851:52-62. [PMID: 30753864 DOI: 10.1016/j.ejphar.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key epithelial-derived factor that aggravates allergic diseases. Therefore, TSLP inhibitors are candidate compounds for the treatment of allergic diseases. Previously, we reported that KCMH-1, a mouse keratinocyte cell line, constitutively produces TSLP. In this study, we tried to identify inhibitors of TSLP by screening 2169 compounds in KCMH-1 cells and found one such chalcone derivative (code no. 16D10). 16D10 inhibited TSLP expression and TSLP promoter activation in HaCaT cells, a human keratinocyte cell line. Although nuclear factor kappa-B (NF-κB) is a key transcription factor for the induction of TSLP, 16D10 did not inhibit the activation pathway of NF-κB, such as degradation of inhibitor of κB (IκB) and p65 nuclear translocation. 16D10 activated the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) system, although this system was not involved in the inhibitory effect of 16D10. 16D10 also inhibited TSLP production in a lipopolysaccharide (LPS)- or ovalbumin (OVA)-induced air-pouch-type inflammation model. Further, repeated 16D10 administration diminished serum immunoglobulin G1 (IgG1) and IgE concentration in an OVA-induced air-pouch-type sensitization model. Taken together, these results indicate that 16D10 is an inhibitor of TSLP production and has an anti-allergic effect. This inhibitory effect is independent of the activation of NF-κB and the Keap1-Nrf2 system. Therefore, 16D10 could be a new type of candidate drug for allergic diseases.
Collapse
Affiliation(s)
- Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Mika Shiraki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Shiori Sudo
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Kenichi Shigeeda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Taiji Saito
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; Department of Pharmacology, School of Pharmaceutical Sciences, Ohu University, Koriyama 963-8611, Fukushima, Japan
| | - Takayuki Yonezawa
- Research Institute for Biological Functions, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Je-Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
19
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
20
|
Yan F, Gao H, Zhao H, Bhatia M, Zeng Y. Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease. J Transl Med 2018; 16:262. [PMID: 30257694 PMCID: PMC6158847 DOI: 10.1186/s12967-018-1635-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/16/2018] [Indexed: 12/24/2022] Open
Abstract
The airway smooth muscle (ASM) plays an indispensable role in airway structure and function. Dysfunction in ASM plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and contributes to alterations of contractility, inflammatory response, immunoreaction, phenotype, quantity, and size of airways. ASM makes a key contribution in COPD by various mechanisms including altered contractility and relaxation induce by [Ca2+]i, cell proliferation and hypertrophy, production and modulation of extracellular cytokines, and release of pro-and-anti-inflammatory mediators. Multiple dysfunctions of ASM contribute to modulating airway responses to stimuli, remodeling, and fibrosis, as well as influence the compliance of lungs. The present review highlights regulatory roles of multiple factors in the development of ASM dysfunction in COPD, aims to understand the regulatory mechanism by which ASM dysfunctions are initiated, and explores the clinical significance of ASM on alterations of airway structure and function in COPD and development of novel therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Furong Yan
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hong Zhao
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
21
|
Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:325-334. [PMID: 29047096 DOI: 10.1007/978-3-319-63245-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is recognized as a contributor to pulmonary vascular diseases such as pulmonary hypertension. Hypoxia-induced inflammatory changes can enhance structural and functional changes in pulmonary artery (PA) in the context of PH. Accordingly, understanding how hypoxia and inflammation are linked in the context of pulmonary artery structure and function could be relevant towards development of novel therapies for PH. In this regard, factors such as thymic stromal lymphopoietin (TSLP), an inflammatory cytokine, and brain-derived neurotrophic factor (BDNF), a neurotrophin, have been found critical for nonvascular systems such as airway and asthma. While TSLP canonically affects the immune system, in nonvascular systems, noncanonical effects such as altered [Ca2+]i and cell proliferation have been noted: aspects also relevant to the PA, where there is currently little to no data. Similarly, better known in the nervous system, there is increasing evidence that BDNF is locally produced by structural cells of the airway and can contribute to asthma pathophysiology. In this chapter, we summarize the potential relevance of factors such as TSLP and BDNF to the PA and in the context of hypoxia influences towards development of PH. We focus on cell sources and targets such as PA endothelial cells (PAECs) and smooth muscle cells (PASMCs), and the effects of TSLP or BDNF on intracellular Ca2+ responses to vasoconstrictor agonist, cell proliferation, and potential signaling cascades involved.
Collapse
|
22
|
Huang W, Li ML, Xia MY, Shao JY. Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-κB signaling pathway. Int J Mol Med 2018; 42:208-218. [PMID: 29568921 PMCID: PMC5979929 DOI: 10.3892/ijmm.2018.3582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/31/2018] [Indexed: 11/23/2022] Open
Abstract
Asthma is a common chronic airway inflammation disease and is considered as a major public health problem. Fisetin (3,3′,4′,7-tetrahydroxyflavone) is a naturally occurring flavonoid abundantly found in different vegetables and fruits. Fisetin has been reported to exhibit various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. We evaluated the effects of fisetin on allergic asthma regulation in mice. Mice were first sensi-tized, then airway-challenged with ovalbumin (OVA). Whether fisetin treatment attenuated OVA-induced airway inflammation was examined via inflammation inhibition through MyD88-related NF-κB (p65) signaling pathway. Mice were divided into the control (Con), OVA-induced asthma (Mod), 40 (FL) and 50 (FH) mg/kg fisetin-treated OVA-induced asthma groups. Our results found that OVA-induced airway inflammation in mice caused a significant inflammatory response via the activation of MyD88 and NF-κB signaling pathways, leading to release of pro-inflammatory cytokines. In contrast, fisetin-treated mice after OVA induction inhibited activation of MyD88 and NF-κB signaling pathways, resulting in downregulation of pro-inflammatory cytokine secretion. Further, fisetin significantly ameliorated the airway hyperresponsiveness (AHR) towards methacholine (Mch). In addition, fisetin reduced the number of eosinophil, monocyte, neutrophil and total white blood cell in the bronchoalveolar lavage fluid (BALF) of OVA-induced mice. The serum and BALF samples obtained from the OVA-induced mice with fisetin showed lower levels of pro-inflammatory cytokines. The results of our study illustrated that fisetin may be a new promising candidate to inhibit airway inflammation response induced by OVA.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Li Li
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Ming-Yue Xia
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jian-Ying Shao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| |
Collapse
|
23
|
Potentiation of skin TSLP production by a cosmetic colorant leads to aggravation of dermatitis symptoms. Chem Biol Interact 2018; 284:41-47. [PMID: 29462589 DOI: 10.1016/j.cbi.2018.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
Abstract
Certain cosmetic colorants are irritant to skin or aggravate dermatitis. Thymic stromal lymphopoietin (TSLP) plays an important role in the initiation and progress of skin inflammation and atopic dermatitis by triggering Th2 immune responses. However, the effects of cosmetic colorants on TSLP production are unknown yet. Therefore, we investigated whether cosmetic colorants regulated TSLP production and dermatitis. Lithol Rubine B (LR-B, Pigment Red 57) and its calcium salt (LR-BCA), commonly used cosmetic colorants, potentiated phorbol-12-myristate-13-acetate-induced TSLP production in keratinocytes. In addition, the topical exposure to LR-B or LR-BCA on mouse ear upregulated a TSLP inducer (MC903)-induced TSLP production and Th2 cytokine expression. Dermatitis symptoms and serum IgE and histamine levels were also aggravated by LR-B or LR-BCA, implicating the role of increased TSLP expression in acute dermatitis. LR-B or LR-BCA induced IκBα degradation and NF-κB activation in keratinocytes, leading to TSLP expression. Collectively, our results demonstrate that LR-B and LR-BCA increase TSLP expression and Th2 immune responses, thereby aggravating acute dermatitis in the compromised skin. The results further suggest that certain cosmetic colorants such as LR-B may aggravate dermatitis under pro-inflammatory conditions by upregulating TSLP production.
Collapse
|
24
|
von Moltke J, Pepper M. Sentinels of the Type 2 Immune Response. Trends Immunol 2018; 39:99-111. [PMID: 29122456 PMCID: PMC6181126 DOI: 10.1016/j.it.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Type 2 immune responses have evolved to sense and respond to large, non-replicating infections or non-microbial noxious compounds in tissues. The development of these responses therefore depends upon highly coordinated and tightly regulated tissue-residing cellular sensors and responders. Multiple exposure to type 2 helper T cell (Th2)-inducing stimuli further enhances both the diversity and potency of the response. This review discusses advances in our understanding of the interacting cellular subsets that comprise both primary and secondary type 2 responses. Current knowledge regarding type 2 immune responses in the lung are initially presented and are then contrasted with what is known about the small intestine. The studies described portray an immune response that depends upon well-organized tissue structures, and suggest their modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Characterization of signaling pathways regulating the expression of pro-inflammatory long form thymic stromal lymphopoietin upon human metapneumovirus infection. Sci Rep 2018; 8:883. [PMID: 29343779 PMCID: PMC5772477 DOI: 10.1038/s41598-018-19225-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is associated with several allergic diseases including asthma. Two isoforms of TSLP exist in humans, a long form (lfTSLP) and a short form (sfTSLP), displaying distinct immunological functions. Recently, TSLP was found to be upregulated in human airway cells upon human metapneumovirus (hMPV) infection, yet it remains unclear if the two isoforms are regulated differently during hMPV infection. Importantly, the molecular mechanisms underlying hMPV-mediated TSLP induction remain undescribed. In this study, we characterized the expression and regulation of TSLP in hMPV-infected human airway cells. We demonstrated that hMPV strongly induced the expression of pro-inflammatory lfTSLP in human airway epithelial cells and lung fibroblasts. Further, knockdown of pattern recognition receptors retinoic acid-inducible gene I (RIG-I) or Toll-like receptor 3 (TLR3), as well as downstream signal transducers, abrogated hMPV-mediated lfTSLP induction. Importantly, silencing of TANK-binding kinase 1 (TBK1) also impaired hMPV-mediated lfTSLP induction, which could be attributed to compromised NF-κB activation. Overall, these results suggest that TBK1 may be instrumental for hMPV-mediated activation of NF-κB downstream RIG-I and TLR3, leading to a specific induction of lfTSLP in hMPV-infected human airway cells.
Collapse
|
26
|
Segawa R, Shigeeda K, Hatayama T, Dong J, Mizuno N, Moriya T, Hiratsuka M, Hirasawa N. EGFR transactivation is involved in TNF-α-induced expression of thymic stromal lymphopoietin in human keratinocyte cell line. J Dermatol Sci 2017; 89:290-298. [PMID: 29279286 DOI: 10.1016/j.jdermsci.2017.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine involved in the pathology of inflammatory skin diseases, such as atopic dermatitis and psoriasis. Tumor necrosis factor (TNF)-α, a key cytokine in inflammatory skin diseases, is a known TSLP inducer. TNF-α activates NF-κB and induces transactivation of epidermal growth factor receptor (EGFR) in epithelial cells. However, the detailed mechanism of TSLP induction by TNF-α has remained unclear. OBJECTIVE We investigated the involvement of TNF-α-induced EGFR transactivation in TSLP expression. METHODS HaCaT cells were stimulated with TNF-α or EGF in the presence or absence of an EGFR kinase inhibitor or other signaling inhibitors. The expression of TSLP mRNA was analyzed by RT-PCR and the phosphorylation level of signal proteins was analyzed by western blot. TSLP promoter and NF-κB transcription activities were analyzed by luciferase assay. RESULTS TNF-α-induced TSLP expression was inhibited by the EGFR kinase inhibitor AG1478. While TSLP expression was induced by EGF, it was inhibited by the MEK inhibitor, U0126. Inhibitors of p38 and ADAM proteases suppressed the TNF-α-induced TSLP expression and EGFR phosphorylation, but not the EGF-induced expression. CONCLUSION TNF-α-induced EGFR transactivation results in TSLP induction through ERK activation. The activation of p38 and ADAM proteases mediates TNF-α-induced EGFR phosphorylation. These findings suggested that the TNF-α-induced EGFR transactivation pathway could be a target for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Kenichi Shigeeda
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takahiro Hatayama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiangxu Dong
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Natsumi Mizuno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takahiro Moriya
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
27
|
Abstract
BACKGROUND This study aims to investigate the role of thymic stromal lymphopoietin (TSLP) in the pathogenesis of lumbar disc degeneration (LDD). METHODS Nucleus pulposus tissues were collected from 77 LDD patients (the case group), in addition, normal tissues were extracted from 21 patients suffering from lumbar fractures (the control group). Immunohistochemistry was applied in order to detect TSLP positive expression. In accordance with varying transfection, the cells were divided into TSLP-siRNA, TSLP-siRNA + TSLPR-siRNA, control, blank, anti-TSLPR, and IgG groups. Western blotting was used in order to detect TSLP expression in tissues, and TSLP and type II collagen (COL2AL) in cell culture media were detected using enzyme linked immunosorbent assay (ELISA). Cell viability was measured using a MTT assay. Aggrecan levels were detected using antonopulos, and cell apoptosis was determined using flow cytometry. RESULTS TSLP-positive expression was found to be significantly higher in the case group compared with the control group. LDD patients' Pfirrmann grades and preoperative visual analogue scale (VAS) scores were associated with TSLP-positive rate. Cells transfected with TSLP-siRNA and TSLPR-siRNA plasmids exhibited lower TSLP and thymic stromal lymphopoietin receptor (TSLPR) protein expression compared with the control and blank groups. Compared with the control and blank groups, there was significantly higher cell viability, lower cell apoptosis, and higher COL2AL and Aggrecan levels in the TSLP-siRNA, anti-TSLPR, and TSLP-siRNA+TSLPR-siRNA groups; there were significant differences between the TSLP-siRNA, anti-TSLPR, and TSLP-siRNA+TSLPR-siRNA groups and IgG group (all P < .05) CONCLUSION:: Our study provides evidence for the hypothesis that TSLP could reflect the histological severity of LDD, and TSLP-siRNA and, TSLPR-siRNA could inhibit apoptosis of nucleus pulposus cells. The evident information obtained from the investigation could lead the way for new therapeutic approaches regarding LDD treatment.
Collapse
|
28
|
Segawa R, Mizuno N, Hatayama T, Jiangxu D, Hiratsuka M, Endo Y, Hirasawa N. Lipopolysaccharide-Activated Leukocytes Enhance Thymic Stromal Lymphopoietin Production in a Mouse Air-Pouch-Type Inflammation Model. Inflammation 2017; 39:1527-37. [PMID: 27271511 DOI: 10.1007/s10753-016-0388-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) is a key cytokine that exacerbates allergic and fibrotic reactions. Several microbes and virus components have been shown to induce TSLP production, mainly in epithelial cells. TLR4 activators, such as lipopolysaccharide (LPS), induce TSLP production in vivo, although the underlying mechanisms remain unclear. In this study, we investigated the contribution of LPS-activated leukocytes to the production of TSLP in a mouse air-pouch-type inflammation model. LPS induced the production of TSLP in this model but not in the mouse keratinocyte cell line PAM212. Transfer of the infiltrated leukocytes collected from an LPS-injected air pouch to the air pouch of another mouse enhanced TSLP production. Further, the LPS-activated leukocytes produced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β); a deficiency in these cytokines attenuated the LPS-induced production of TSLP. TSLP production was induced by TNF-α and enhanced by IL-1β and LPS in the PAM212 cells. These results demonstrated that TNF-α and IL-1β, which are partly produced by LPS-activated leukocytes, contribute to TSLP production via TLR4 activation in vivo.
Collapse
Affiliation(s)
- Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Natsumi Mizuno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takahiro Hatayama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Dong Jiangxu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yasuo Endo
- Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
29
|
Ni G, Chen Y, Wu F, Zhu P, Song L. NOD2 promotes cell proliferation and inflammatory response by mediating expression of TSLP in human airway smooth muscle cells. Cell Immunol 2016; 312:35-41. [PMID: 27889082 DOI: 10.1016/j.cellimm.2016.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Abstract
The newly discovered intracytosolic pattern recognition receptor nucleotide-binding oligomerization domain 2 (NOD2) has been studied as an important indicator of T helper 2 (Th2) inflammation, and its effect on regulatory T (Treg) cells is likely to modulate the immune response. In this study, we attempted to study the expression of NOD2 and its impact in human airway smooth muscle cells (HASMC). Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of NOD2 in HASMC and comparisons were made between those from asthmatic and non-asthmatic donors; we found that NOD2 was significantly upregulated in asthma patient tissues and cell lines. In addition, overexpression of NOD2 apparently promotes cell proliferation and migration in HASMC. Gain-of-function in vitro experiments further showed that NOD2 overexpression significantly promotes pro-inflammatory cytokine release in HASMC. Subsequent experimental analysis indicated that thymic stromal lymphopoietin (TSLP) is involved in NOD2-mediated cellular effects in HASMC. Therefore, our results indicate that NOD2 is an asthma-related factor that can promote cell proliferation and inflammatory response by mediated expression of TSLP in HASMC. Taken together, our results indicate that NOD2 could serve as a potential diagnostic biomarker and therapeutic option for human asthma in the near future.
Collapse
Affiliation(s)
- Gaoshun Ni
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Yang Chen
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Fengqin Wu
- Nursing Department, Shangluo Vocational and Technical College, Shangzhou District, Shangluo City 726000, China
| | - Pengxian Zhu
- Department of Respiration Medicine, Shangluo Center Hospital, Shangzhou District, Shangluo City 726000, China
| | - Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an City 710032, China.
| |
Collapse
|
30
|
Carlier FM, Sibille Y, Pilette C. The epithelial barrier and immunoglobulin A system in allergy. Clin Exp Allergy 2016; 46:1372-1388. [PMID: 27684559 DOI: 10.1111/cea.12830] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Airway and intestinal epithelial layers represent first-line physical barriers, playing a key role in mucosal immunity. Barrier dysfunction, characterized by alterations such as disruption of cell-cell apical junctions and aberrant epithelial responses, probably constitutes early and key events for chronic immune responses to environmental antigens in the skin and in the gut. For instance, barrier dysfunction drives Th2 responses in atopic disorders or eosinophilic esophagitis. Such epithelial impairment is also a salient feature of allergic asthma and growing evidence indicates that barrier alterations probably play a driving role in this disease. IgA has been identified as the most abundant immunoglobulin in mucosa, where it acts as an active barrier through immune exclusion of inhaled or ingested antigens or pathogens. Historically, it has been thought to represent the serum factor underlying reaginic activity before IgE was discovered. Despite several studies about regulation and major functions of IgA at mucosal surfaces, its role in allergy remains largely unclear. This review aims at summarizing findings about epithelial functions and IgA biology that are relevant to allergy, and to integrate the emerging concepts and the recent developments in mucosal immunology, and how these could translate to clinical observations in allergy.
Collapse
Affiliation(s)
- F M Carlier
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium. .,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium.
| | - Y Sibille
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Centre Hospitalier Universitaire Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - C Pilette
- Institut de Recherche Expérimentale et Clinique, Pôle Pneumologie, ORL et dermatologie, Brussels, Belgium.,Department of Internal Medicine, Division of Pneumology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology, Wavre, Belgium
| |
Collapse
|
31
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
32
|
Dileepan M, Sarver AE, Rao SP, Panettieri RA, Subramanian S, Kannan MS. MicroRNA Mediated Chemokine Responses in Human Airway Smooth Muscle Cells. PLoS One 2016; 11:e0150842. [PMID: 26998837 PMCID: PMC4801396 DOI: 10.1371/journal.pone.0150842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/19/2016] [Indexed: 01/25/2023] Open
Abstract
Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due to their hypercontractility and their ability to proliferate and secrete inflammatory mediators. microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus serve as potential therapeutic alternatives for many diseases. We have previously shown that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human ASM (HASM) cells following TNF-α exposure. In this study, we investigated the regulatory effect of these miRNAs on other asthma-related genes. Microarray analysis using the Illumina platform was performed with total RNA extracted from miR-708 (or control miR)-transfected HASM cells. Inhibition of candidate inflammation-associated gene expression was further validated by qPCR and ELISA. The most significant biologic functions for the differentially expressed gene set included decreased inflammatory response, cytokine expression and signaling. qPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and CXCL8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10, CCL5 and CXCL8 and of TNF-α-induced CXCL12 release. In addition, expression of RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene expression and biological function of ASM cells. Targeting these miRNA networks may provide a novel therapeutic mechanism to down-regulate airway inflammation and ASM proliferation in asthma.
Collapse
Affiliation(s)
- Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Anne E. Sarver
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Savita P. Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Reynold A. Panettieri
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Subbaya Subramanian
- Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mathur S. Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells. Arch Dermatol Res 2016; 308:103-13. [DOI: 10.1007/s00403-016-1619-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/14/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022]
|
34
|
TNF up-regulates Pentraxin3 expression in human airway smooth muscle cells via JNK and ERK1/2 MAPK pathways. Allergy Asthma Clin Immunol 2015; 11:37. [PMID: 26644796 PMCID: PMC4671218 DOI: 10.1186/s13223-015-0104-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long pentraxin 3 (PTX3) is a novel candidate marker for inflammation in many chronic diseases. As a soluble pattern recognition receptor, PTX3 is involved in amplification of inflammatory reactions and regulation of innate immunity. Previously, we demonstrate that human airway smooth muscle cells (HASMC) express constitutively PTX3 and upon TNF stimulation. However, very little is known about the mechanism governing its expression in HASMC. We sought to investigate the mechanism governing TNF induced PTX3 expression in primary HASMC. METHODS HASMC were stimulated with TNF in the presence of transcriptional inhibitor actinomycin D (ActD) or MAPKs pharmacological inhibitors. PTX3 mRNA and protein expression were analyzed by Real-time RT-PCR and ELISA, respectively. PTX3 promoter activity was determined using luciferase assay. RESULTS PTX3 mRNA and protein are expressed constitutively by HASMC and significantly up-regulated by TNF. TNF-induced PTX3 mRNA and protein release in HASMC were inhibited by transcriptional inhibitor actinomycin D. TNF induced significantly PTX3 promoter activation in HASMC. MAPK JNK and ERK1/2 specific inhibitors (SP600125 and UO126), but not p38, significantly down regulates TNF induced PTX3 promoter activity and protein release in HASMC. Finally, TNF mediated PTX3 promoter activity in HASMC was abolished upon mutation of NF-κβ and AP1 binding sites. CONCLUSIONS Our data suggest that TNF induced PTX3 in HASMC at least via a transcriptional mechanism that involved MAPK (JNK and ERK1/2), NF-κβ and AP1 pathways. These results rise the possibility that HASMC derived PTX3 may participate in immune regulation in the airways.
Collapse
|
35
|
Htwe SS, Harrington H, Knox A, Rose F, Aylott J, Haycock JW, Ghaemmaghami AM. Investigating NF-κB signaling in lung fibroblasts in 2D and 3D culture systems. Respir Res 2015; 16:144. [PMID: 26619903 PMCID: PMC4666055 DOI: 10.1186/s12931-015-0302-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Inflammatory respiratory diseases are amongst major global health challenges. Lung fibroblasts have been shown to play a key role in lung inflammatory responses. However, their exact role in initiation and maintenance of lung diseases has remained elusive partly due to the limited availability of physiologically relevant in vitro models. Therefore, developing new tools that enable investigating the molecular pathways (e.g. nuclear factor-kappa B (NF-κB) activation) that underpin inflammatory responses in fibroblasts could be a valuable resource for scientists working in this area of research. RESULTS In order to investigate NF-κB activation in response to pro-inflammatory stimuli in real-time, we first developed two detection systems based on nuclear localization of NF-κB by immunostaining and luciferase reporter assay system. Furthermore using electrospun porous scaffolds, with similar geometry to human lung extracellular matrix, we developed 3D cultures of lung fibroblasts allowing comparing NF-κB activation in response to pro-inflammatory stimuli (i.e. TNF-α) in 2D and 3D. Our data clearly show that the magnitude of NF-κB activation in 2D cultures is substantially higher than 3D cultures. However, unlike 2D cultures, cells in the 3D model remained responsive to TNF-α at higher concentrations. The more subdued and wider dynamic range of NF-κB responses in 3D culture system was associated with a different expression pattern for TNF receptor I in 3D versus 2D cultures collectively reflecting a more in vivo like TNF receptor I expression and NF-κB activation pattern in the 3D system. CONCLUSION Our data suggest that lung fibroblasts are actively involved in the pathogenesis of lung inflammation by activation of NF-κB signaling pathway. The 3D culture detection system provides a sensitive and biologically relevant tool for investigating different pro-inflammatory events involving lung fibroblasts.
Collapse
Affiliation(s)
- Su Su Htwe
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| | - Helen Harrington
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| | - Alan Knox
- Division of Respiratory Medicine, University of Nottingham, City Hospital, Nottingham, UK.
| | - Felicity Rose
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - Jonathan Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
| | - Amir M Ghaemmaghami
- Cellular Immunology and Allergy Research Group, Division of Immunology, School of Life Science, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
36
|
Faksh A, Britt RD, Vogel ER, Thompson MA, Pandya HC, Martin RJ, Pabelick CM, Prakash YS. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L202-11. [PMID: 26589477 DOI: 10.1152/ajplung.00151.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022] Open
Abstract
Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma.
Collapse
Affiliation(s)
- Arij Faksh
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth R Vogel
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Hitesh C Pandya
- Department of Pediatrics, University of Leicester, Leicester, United Kingdom; Department of Immunology, University of Leicester, Leicester, United Kingdom; and
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
37
|
Bisio A, Zámborszky J, Zaccara S, Lion M, Tebaldi T, Sharma V, Raimondi I, Alessandrini F, Ciribilli Y, Inga A. Cooperative interactions between p53 and NFκB enhance cell plasticity. Oncotarget 2015; 5:12111-25. [PMID: 25401416 PMCID: PMC4322992 DOI: 10.18632/oncotarget.2545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/01/2014] [Indexed: 12/31/2022] Open
Abstract
The p53 and NFκB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFκB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5μM) and the NFκB inducer TNF-alpha (TNF⍺, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNF⍺ treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNF⍺ selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFκB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNF⍺ and dependent both on p53 and NFκB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNF⍺. A signature of 29 Doxo+TNF⍺ highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFκB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Judit Zámborszky
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Sara Zaccara
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Mattia Lion
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy. Department of Genetics, Massachusetts General Hospital, Boston, MA, USA
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Vasundhara Sharma
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Ivan Raimondi
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Federica Alessandrini
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, 38123, Italy
| |
Collapse
|
38
|
Inhibition of Epithelial CC-Family Chemokine Synthesis by the Synthetic Chalcone DMPF-1 via Disruption of NF-κB Nuclear Translocation and Suppression of Experimental Asthma in Mice. Mediators Inflamm 2015; 2015:176926. [PMID: 26300589 PMCID: PMC4537758 DOI: 10.1155/2015/176926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/07/2014] [Accepted: 11/15/2014] [Indexed: 11/18/2022] Open
Abstract
Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma. In vitro studies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-α and IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2–100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.
Collapse
|
39
|
Qu F, Xiang Z, Wang F, Zhang Y, Tong Y, Li J, Zhang Y, Yu Z. A novel molluscan Fos gene with immune defense function identified in the Hong Kong oyster, Crassostrea hongkongensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:194-201. [PMID: 25841657 DOI: 10.1016/j.dci.2015.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
The transcription factor Fos is a member of one of the best-studied AP-1 sub-families and has been implicated in a wide variety of biological processes, including the regulation of apoptosis, immune responses and cytokine production. In this report, a novel mollusk Fos (referred to as ChFos) gene was cloned and characterized from the Hong Kong oyster, Crassostrea hongkongensis. The deduced ChFos protein sequence comprised 333 amino acids and shared significant homology with invertebrate homologs. Phylogenetic analysis revealed that ChFos clusters with Fos from Crassostrea gigas and Crassostrea ariakensis. Quantitative real-time PCR analysis revealed that ChFos mRNA was broadly expressed in all tested tissues and during different stages of the oyster's embryonic and larval development. In addition, the expression of ChFos mRNA was significantly up-regulated under challenge with microorganisms (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae) and pathogen-associated molecular patterns (PAMPs: LPS, PGN and polyI:C). Moreover, fluorescence microscopy showed that ChFos protein is localized in the nucleus in HEK293T cells. Reporter assays suggested that ChFos may act as an efficient transcription activator in the regulation of AP-1-responsive gene expression through interaction with ChJun. Overall, this study presents the first experimental evidence of the presence and functional characteristics of Fos in mollusks, which reveals its involvement in host protection against immune challenge in the oyster.
Collapse
Affiliation(s)
- Fufa Qu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Fuxuan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ying Tong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
40
|
Schuliga M. NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules 2015; 5:1266-83. [PMID: 26131974 PMCID: PMC4598751 DOI: 10.3390/biom5031266] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive airway disorders which differ in their underlying causes and phenotypes but overlap in patterns of pharmacological treatments. In both asthma and COPD, oxidative stress contributes to airway inflammation by inducing inflammatory gene expression. The redox-sensitive transcription factor, nuclear factor (NF)-kappaB (NF-κB), is an important participant in a broad spectrum of inflammatory networks that regulate cytokine activity in airway pathology. The anti-inflammatory actions of glucocorticoids (GCs), a mainstay treatment for asthma, involve inhibition of NF-κB induced gene transcription. Ligand bound GC receptors (GRs) bind NF-κB to suppress the transcription of NF-κB responsive genes (i.e., transrepression). However, in severe asthma and COPD, the transrepression of NF-κB by GCs is negated as a consequence of post-translational changes to GR and histones involved in chromatin remodeling. Therapeutics which target NF-κB activation, including inhibitors of IκB kinases (IKKs) are potential treatments for asthma and COPD. Furthermore, reversing GR/histone acetylation shows promise as a strategy to treat steroid refractory airway disease by augmenting NF-κB transrepression. This review examines NF-κB signaling in airway inflammation and its potential as target for treatment of asthma and COPD.
Collapse
Affiliation(s)
- Michael Schuliga
- Lung Health Research Centre (LHRC), Department Pharmacology and Therapeutics, University of Melbourne, Grattan St., Parkville 3010, Victoria, Australia.
| |
Collapse
|
41
|
Lippai D, Bala S, Catalano D, Kodys K, Szabo G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res 2015; 38:2217-24. [PMID: 25156614 DOI: 10.1111/acer.12483] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic alcohol impairs gut barrier function and induces inflammatory cytokines. The effects of acute alcohol binge on the gut are partially understood. Micro-RNA-155 (miR-155), a modulator of cytokine and T-cell immune response in the gut, stabilizes tumor necrosis factor-α (TNFα) mRNA. Here, we investigated the role of the inflammation modulator miR-155 as well as the effects of acute binge and chronic alcohol feeding in the small bowel (SB) in mice. METHODS For the acute alcohol binge, wild-type (WT) mice received 5 g/kg 50% alcohol/d or equal amount of water oral gavage for 3 days. WT and miR-155-deficient (miR-155-knockout [KO]) mice received ethanol containing Lieber-DeCarli or isocaloric control diet for 5 weeks. MiR-155, antimicrobial peptide, regenerating islet-derived 3-beta (Reg3b), inflammation markers, Src homology 2-containing inositol phosphatase-1 (SHIP1), TNFα, and nuclear factor-κB (NF-κB) were measured in proximal intestinal tissue. Endotoxin was measured in the serum. RESULTS Acute alcohol binge enhanced, whereas chronic alcohol feeding decreased, Reg3b mRNA and protein levels in the SB. Both acute binge and chronic alcohol feeding increased serum endotoxin levels, intestinal NF-κB activation and TNFα mRNA levels. However, TNFα protein and miR-155 were increased only after chronic alcohol feeding in the SB. Furthermore, miR-155-KO mice were protected from chronic alcohol-induced increase in serum endotoxin, intestinal TNFα, and NF-κB activation. Also, alcohol-fed miR-155-KO mice had no decrease of Reg3b and SHIP1 levels. CONCLUSIONS These results demonstrate that both acute binge and chronic ethanol administration result in increased serum-endotoxin levels. Our study identifies a novel role for miR-155 in chronic alcohol-induced intestinal inflammation and barrier dysfunction.
Collapse
Affiliation(s)
- Dora Lippai
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary; Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | |
Collapse
|
42
|
Kumari V, Babina M, Hazzan T, Worm M. Thymic stromal lymphopoietin induction by skin irritation is independent of tumour necrosis factor-α, but supported by interleukin-1. Br J Dermatol 2015; 172:951-60. [PMID: 25307606 DOI: 10.1111/bjd.13465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thymic stromal lymphopoietin (TSLP) is an extensively studied cytokine linked to the pathogenesis of allergic diseases, but the inherent activities behind TSLP expression are not well defined. OBJECTIVES To explore the conditions favourable to TSLP induction outside of a typically allergic set-up and determine the associated mechanisms, and to assess whether TSLP is similarly controlled in murine and human skin. METHODS A combination of primary keratinocytes, skin explants/epidermal sheets and in vivo strategies was employed. The skin of wild-type and tumour necrosis factor knockout (TNF-/-) mice was subjected to acute irritation. Cells and specimens were stimulated with a range of TSLP inducers in the presence or absence of neutralizing antibodies. TSLP was quantitated by quantitative reverse-transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay and immunohistochemistry. RESULTS In addition to cytokines, skin irritation brought about by various causes (e.g. shaving, scratching and chemical perturbation) elicited uniformly high-level production of TSLP, which entered the circulatory system. Despite the potency of TNF-α as an in vitro TSLP inducer, the use of TNF-/- mice revealed that this mechanism was completely independent of endogenous TNF-α. Conversely, irritation-elicited TSLP depended on interleukin (IL)-1, which had a more pronounced influence in human skin than in murine skin. Murine and human skin differed considerably regarding TSLP regulation. CONCLUSIONS Thymic stromal lymphopoietin is a general responder to disrupted skin homeostasis and may have a role in triggering the alarm system of the skin. TSLP induction is rapid, transient and driven by a mechanism that does not involve TNF-α, but partially relies on the evolutionarily ancient IL-1 system. The irritated skin secretes TSLP into the circulatory system. TSLP regulation varies between species.
Collapse
Affiliation(s)
- V Kumari
- Klinik für Dermatologie und Allergologie, Allergie-Centrum-Charité, CCM, Charité - Universitätsmedizin, 10117, Berlin, Germany
| | | | | | | |
Collapse
|
43
|
O’Halloran S, O’Leary A, Kuijper T, Downer EJ. MyD88 acts as an adaptor protein for inflammatory signalling induced by amyloid-β in macrophages. Immunol Lett 2014; 162:109-18. [DOI: 10.1016/j.imlet.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
44
|
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with specific genetic and immunological mechanisms. The rapid development of new techniques in molecular biology had ushered in new discoveries on the role of cytokines, chemokines, and immune cells in the pathogenesis of AD. New polymorphisms of AD are continually being reported in different populations. The physical and immunological barrier of normal intact skin is an important part of the innate immune system that protects the host against microbials and allergens that are associated with AD. Defects in the filaggrin gene FLG may play a role in facilitating exposure to allergens and microbial pathogens, which may induce Th2 polarization. Meanwhile, Th22 cells also play roles in skin barrier impairment through IL-22, and AD is often considered to be a Th2/Th22-dominant allergic disease. Mast cells and eosinophils are also involved in the inflammation via Th2 cytokines. Release of pruritogenic substances by mast cells induces scratching that further disrupts the skin barrier. Th1 and Th17 cells are mainly involved in chronic phase of AD. Keratinocytes also produce proinflammatory cytokines such as thymic stromal lymphopoietin (TSLP), which can further affect Th cells balance. The immunological characteristics of AD may differ for various endotypes and phenotypes. Due to the heterogeneity of the disease, and the redundancies of these mechanisms, our knowledge of the pathophysiology of the disease is still incomplete, which is reflected by the absence of a cure for the disease.
Collapse
Affiliation(s)
- Zhanglei Mu
- Department of Dermatology, Peking University People's Hospital, No11, Xizhimen South Street, Beijing, 100044, China
| | | | | | | | | |
Collapse
|
45
|
MAG-EPA and 17,18-EpETE target cytoplasmic signalling pathways to reduce short-term airway hyperresponsiveness. Pflugers Arch 2014; 467:1591-1605. [DOI: 10.1007/s00424-014-1584-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/30/2022]
|
46
|
Melnik BC. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency? Exp Dermatol 2014; 23:696-700. [DOI: 10.1111/exd.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
47
|
Segawa R, Hirasawa N. Exacerbation of allergic diseases by chemicals: role of TSLP. J Pharmacol Sci 2014; 124:301-6. [PMID: 24599138 DOI: 10.1254/jphs.13r16cp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Environmental chemicals, such as cigarette smoke and diesel exhaust, have been reported as risk factors that exacerbate allergic diseases. However, the exacerbation mechanisms induced by these chemicals are not yet fully understood. Thymic stromal lymphopoietin (TSLP) is produced mainly by epithelial cells and plays an important role as a master switch of allergic inflammation because it promotes Th2-type immune responses by inducing the activation of dendritic cells. Chemical compounds, such as formalin, have been shown to bind to proteins and form a new antigen that induces allergic responses. A second group of chemicals that enhance allergic responses to exogenous proteins have also been reported. We recently demonstrated that some of these chemicals induced TSLP production and may potentially augment Th2-type allergic responses. We proposed that TSLP-producing chemical compounds should be recognized as chemical allegro-accelerators.
Collapse
Affiliation(s)
- Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | |
Collapse
|
48
|
Thymic stromal lymphopoietin induces migration in human airway smooth muscle cells. Sci Rep 2014; 3:2301. [PMID: 23892442 PMCID: PMC3725475 DOI: 10.1038/srep02301] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023] Open
Abstract
Airway remodeling due to increased airway smooth muscle (ASM) mass, likely due to enhanced migration and proliferation, has been shown to be highly associated with decline in lung function in asthma. Thymic stromal lymphopoietin (TSLP) is an IL-7-like, pro-allergic cytokine that has been shown to be necessary and sufficient for the development of allergic asthma. Human ASM (HASM) cells express TSLP receptor (TSLPR), the activation of which leads to enhanced release of proinflammatory mediators such as IL-6, CCL11/eotaxin-1, and CXCL8/IL-8. We show here that TSLP induces HASM cell migration through STAT3 activation since lentiviral-shRNA inhibition of STAT3 abrogated the TSLP-induced cell migration. Moreover, TSLP induced multiple cytoskeleton changes in HASM cells such as actin polymerization, cell polarization, and activation of small GTPase Rac1. Collectively, our data suggest a pro-migratory function of TSLP in ASM remodeling and provides better rationale for targeting TSLP/TSLPR pathway for therapeutic approaches in allergic asthma.
Collapse
|
49
|
Xiang Z, Qu F, Li J, Qi L, Yang Z, Kong X, Yu Z. Activator protein-1 (AP-1) and response to pathogen infection in the Hong Kong oyster (Crassostrea hongkongensis). FISH & SHELLFISH IMMUNOLOGY 2014; 36:83-89. [PMID: 24161759 DOI: 10.1016/j.fsi.2013.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
Growing evidence suggests that the transcription factor activator protein-1 (AP-1), a downstream target of mitogen-activated protein kinase (MAPK) signaling, plays a major role in stimulating the synthesis of immune effector molecules during innate immune responses. We have characterized ChAP-1, an AP-1-like protein in Crassostrea hongkongensis that is a member of the AP-1 family of proteins. ChAP-1 is composed of 290 amino acid residues with a Jun and bZIP domain at the N- and C-termini, respectively, a structure similar to that of known Ap-1 proteins. ChAP-1 mRNA is expressed in several tissues analyzed, with highest expression in the mantle. Expression of ChAP-1 increases in response to Vibrio alginolyticus, Salmo haemolyticus or Salmo cerevisiae infection and, despite the location of GFP-tagged full-length ChAP-1 protein in the cytoplasm, ChAP-1 activates the transcription of an L8G5-luc reporter gene, and its over-expression can also activate the AP-1-Luc reporter gene in HEK293T cells.
Collapse
Affiliation(s)
- Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Fufa Qu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China; Graduate School of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Lin Qi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhang Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Xiaoyu Kong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China.
| |
Collapse
|
50
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|