1
|
Mou Y, Cao W, Wang R, Liu X, Yang X, Zhu J. The causality between C-reactive protein and asthma: a two-sample Mendelian randomization analysis. Postgrad Med J 2024; 100:555-561. [PMID: 38490259 DOI: 10.1093/postmj/qgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE This study sought to investigate the causal effects of circulating C-reactive protein (CRP) level on risk of asthma and its subtypes by two-sample Mendelian randomization (MR) analysis. METHODS We utilized single nucleotide polymorphisms (SNPs) associated with both CRP and outcomes of asthma, allergic asthma, and obesity-related asthma as genetic variables via a genome-wide summary association study (GWAS). MR analysis mainly based on the inverse variance weighted (IVW) method was performed to infer the causal relationship between exposure and outcomes. Cochran's Q test and MR-Egger regression analysis were performed to determine respectively the heterogeneity and pleiotropy among instrumental variables (IVs), and leave-one-out analysis was conducted to determine the stability of the MR results. RESULTS In our study, 42 SNPs were identified as IVs for MR analyses. According to the primary inference results by IVW methods, circulating CRP was demonstrated to be significantly associated with risk of asthma [odds ratio (OR): 1.046; 95% confidence interval (95% CI): 1.004-1.090; P = .030] and obesity-related asthma (OR: 1.072; 95% CI: 1.009-1.138; P = 0.025), whereas no distinct causality with allergic asthma was found (OR: 1.051; 95% CI: 0.994-1.112; P = .081). Sensitivity analyses indicated that there was no horizontal pleiotropy among IVs, and the MR results were proved to be robust by leave-one-out sensitivity analysis, despite the presence of heterogeneity. CONCLUSION The present study suggested that higher CRP might genetically predict an increased risk of developing asthma and obesity-related asthma, without causality with allergic asthma.
Collapse
Affiliation(s)
- Yong Mou
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Rujuan Wang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiaofan Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiuwen Yang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| |
Collapse
|
2
|
Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112551. [DOI: 10.1016/j.msec.2021.112551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
|
3
|
Li H, Li Y, Song C, Hu Y, Dai M, Liu B, Pan P. Neutrophil Extracellular Traps Augmented Alveolar Macrophage Pyroptosis via AIM2 Inflammasome Activation in LPS-Induced ALI/ARDS. J Inflamm Res 2021; 14:4839-4858. [PMID: 34588792 PMCID: PMC8473117 DOI: 10.2147/jir.s321513] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Uncontrollable inflammation is a critical feature of gram-negative bacterial pneumonia-induced acute respiratory distress syndrome (ARDS). Both neutrophils and alveolar macrophages participate in inflammation, but how their interaction augments inflammation and triggers ARDS is unclear. The authors hypothesize that neutrophil extracellular traps (NETs), which are formed during neutrophil NETosis, partly cause alveolar macrophage pyroptosis and worsen the severity of ARDS. Methods The authors first analysed whether NETs and caspase-1 are involved in clinical cases of ARDS. Then, the authors employed a lipopolysaccharide (LPS)-induced ARDS model to investigate whether targeting NETs or alveolar macrophages is protective. The AIM2 sensor can bind to DNA to promote AIM2 inflammasome activation, so the authors studied whether degradation of NET DNA or silencing of the AIM2 gene could protect alveolar macrophages from pyroptosis in vitro. Results Analysis of aspirate supernatants from ARDS patients showed that NET and caspase-1 levels were correlated with the severity of ARDS and that the levels of NETs and caspase-1 were higher in nonsurvivors than in survivors. In vivo, the NET level and proportion of pyroptotic alveolar macrophages in bronchoalveolar lavage fluid (BALF) were obviously higher in LPS-challenged mice than in control mice 24 h after injury. Administration of DNase I (a NET DNA-degrading agent) and BB-Cl-amidine (a NET formation inhibitor) alleviated alveolar macrophage pyroptosis, and Ac-YVAD-cmk (a pyroptosis inhibitor) attenuated NET levels in BALF and neutrophil infiltration in alveoli. All treatments markedly attenuated the severity of ARDS. Notably, LPS causes NETs to induce alveolar macrophage pyroptosis, and degradation of NET DNA or silencing of the AIM2 gene protected against alveolar macrophage pyroptosis. Conclusion These findings shed light on the proinflammatory role of NETs in mediating the neutrophil-alveolar macrophage interaction, which influences the progression of ARDS.
Collapse
Affiliation(s)
- Haitao Li
- First Department of Thoracic Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Ben Liu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha City, Hunan Province, People's Republic of China
| |
Collapse
|
4
|
Minutti CM, Jackson-Jones LH, García-Fojeda B, Knipper JA, Sutherland TE, Logan N, Ringqvist E, Guillamat-Prats R, Ferenbach DA, Artigas A, Stamme C, Chroneos ZC, Zaiss DM, Casals C, Allen JE. Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver. Science 2017; 356:1076-1080. [PMID: 28495878 DOI: 10.1126/science.aaj2067] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/11/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
Abstract
The type 2 immune response controls helminth infection and maintains tissue homeostasis but can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-specific amplifiers of type 2-mediated macrophage activation. In the lung, surfactant protein A (SP-A) enhanced interleukin-4 (IL-4)-dependent macrophage proliferation and activation, accelerating parasite clearance and reducing pulmonary injury after infection with a lung-migrating helminth. In the peritoneal cavity and liver, C1q enhancement of type 2 macrophage activation was required for liver repair after bacterial infection, but resulted in fibrosis after peritoneal dialysis. IL-4 drives production of these structurally related defense collagens, SP-A and C1q, and the expression of their receptor, myosin 18A. These findings reveal the existence within different tissues of an amplification system needed for local type 2 responses.
Collapse
Affiliation(s)
- Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy H Jackson-Jones
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Johanna A Knipper
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tara E Sutherland
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK
| | - Nicola Logan
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma Ringqvist
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raquel Guillamat-Prats
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - David A Ferenbach
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Antonio Artigas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain.,Critical Care Centre, Corporació Sanitària Universitària Parc Taulí, Universitat Autònoma de Barcelona Parc Taulí 1, 08208-Sabadell, Spain
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, and Department of Anesthesiology and Intensive Care, University of Lübeck, 23538 Lübeck, Germany
| | - Zissis C Chroneos
- Pulmonary Immunology and Physiology Laboratory, Department of Pediatrics, and Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey PA 17033, USA
| | - Dietmar M Zaiss
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029-Madrid, Spain
| | - Judith E Allen
- School of Biological Sciences and School of Clinical Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.,Faculty of Biology, Medicine and Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Minutti CM, García-Fojeda B, Sáenz A, de las Casas-Engel M, Guillamat-Prats R, de Lorenzo A, Serrano-Mollar A, Corbí ÁL, Casals C. Surfactant Protein A Prevents IFN-γ/IFN-γ Receptor Interaction and Attenuates Classical Activation of Human Alveolar Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 197:590-8. [DOI: 10.4049/jimmunol.1501032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/07/2016] [Indexed: 11/19/2022]
|
6
|
Wygrecka M, Wilhelm J, Jablonska E, Zakrzewicz D, Preissner KT, Seeger W, Guenther A, Markart P. Shedding of Low-Density Lipoprotein Receptor–related Protein-1 in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2011; 184:438-48. [DOI: 10.1164/rccm.201009-1422oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
López-Sánchez A, Sáenz A, Casals C. Surfactant protein A (SP-A)-tacrolimus complexes have a greater anti-inflammatory effect than either SP-A or tacrolimus alone on human macrophage-like U937 cells. Eur J Pharm Biopharm 2010; 77:384-91. [PMID: 21172435 DOI: 10.1016/j.ejpb.2010.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 12/08/2010] [Accepted: 12/13/2010] [Indexed: 01/24/2023]
Abstract
Intratracheal administration of immunosuppressive agents to the lung is a novel treatment after lung transplantation. Nanoparticles of tacrolimus (FK506) might interact with human SP-A, which is the most abundant lipoprotein in the alveolar fluid. This study was undertaken to determine whether the formation of FK506/SP-A complexes interferes with FK506 immunosuppressive actions on stimulated human macrophage-like U937 cells. We found that SP-A was avidly bound to FK506 (K(d) = 35 ± 4nM), as determined by solid phase-binding assays and dynamic light scattering. Free FK506, at concentrations ≤ 1 μM, had no effect on the inflammatory response of LPS-stimulated U937 macrophages. However, coincubation of FK506 and SP-A, at concentrations where each component alone did not affect LPS-stimulated macrophage response, significantly inhibited LPS-induced NF-κB activation and TNF-alpha secretion. Free FK506, but not FK506/SP-A, functioned as substrate for the efflux transporter P-glycoprotein. FK506 bound to SP-A was delivered to macrophages by endocytosis, since several endocytosis inhibitors blocked FK506/SP-A anti-inflammatory effects. This process depended partly on SP-A binding to its receptor, SP-R210. These results indicate that FK506/SP-A complexes have a greater anti-inflammatory effect than either FK506 or SP-A alone and suggest that SP-A strengthened FK506 anti-inflammatory activity by facilitating FK506 entrance into the cell, overcoming P-glycoprotein.
Collapse
Affiliation(s)
- Almudena López-Sánchez
- Departamento de Bioquímica & Biología Molecular & CIBER Enfermedades Respiratorias, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
8
|
Saenz A, López‐Sánchez A, Mojica‐Lázaro J, Martínez‐Caro L, Nin N, Bagatolli LA, Casals C. Fluidizing effects of C‐reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB J 2010; 24:3662-73. [DOI: 10.1096/fj.09-142646] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alejandra Saenz
- Departamento de Bioquímica y Biología MolecularCentro de Investigación Biomédica en Red (CIBER) Enfermedades RespiratoriasFacultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Almudena López‐Sánchez
- Departamento de Bioquímica y Biología MolecularCentro de Investigación Biomédica en Red (CIBER) Enfermedades RespiratoriasFacultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Jonás Mojica‐Lázaro
- Departamento de Bioquímica y Biología MolecularCentro de Investigación Biomédica en Red (CIBER) Enfermedades RespiratoriasFacultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Leticia Martínez‐Caro
- Servicio de Cuidados IntensivosCIBER de Enfermedades RespiratoriasHospital Universitario de Getafe Madrid Spain
| | - Nicolas Nin
- Servicio de Cuidados IntensivosCIBER de Enfermedades RespiratoriasHospital Universitario de Getafe Madrid Spain
| | - Luís A. Bagatolli
- Department of Biochemistry and Molecular BiologyMEMPHYS‐Center for Biomembrane PhysicsUniversity of Southern Denmark Odense Denmark
| | - Cristina Casals
- Departamento de Bioquímica y Biología MolecularCentro de Investigación Biomédica en Red (CIBER) Enfermedades RespiratoriasFacultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| |
Collapse
|
9
|
Saad SMI, Policova Z, Dang A, Acosta EJ, Hair ML, Neumann AW. A double injection ADSA-CSD methodology for lung surfactant inhibition and reversal studies. Colloids Surf B Biointerfaces 2009; 73:365-75. [PMID: 19586757 DOI: 10.1016/j.colsurfb.2009.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/25/2022]
Abstract
This paper presents a continuation of the development of a drop shape method for film studies, ADSA-CSD (Axisymmetric Drop Shape Analysis-Constrained Sessile Drop). ADSA-CSD has certain advantages over conventional methods. The development presented here allows complete exchange of the subphase of a spread or adsorbed film. This feature allows certain studies relevant to lung surfactant research that cannot be readily performed by other means. The key feature of the design is a second capillary into the bulk of the drop to facilitate addition or removal of a secondary liquid. The development will be illustrated through studies concerning lung surfactant inhibition. After forming a sessile drop of a basic lung surfactant preparation, the bulk phase can be removed and exchanged for one containing different inhibitors. Such studies mimic the leakage of plasma and blood proteins into the alveolar spaces altering the surface activity of lung surfactant in a phenomenon called surfactant inhibition. The resistance of the lung surfactant to specific inhibitors can be readily evaluated using the method. The new method is also useful for surfactant reversal studies, i.e. the ability to restore the normal surface activity of an inhibited lung surfactant film by using special additives. Results show a distinctive difference between the inhibition when an inhibitor is mixed with and when it is injected under a preformed surfactant film. None of the inhibitors studied (serum, albumin, fibrinogen, and cholesterol) were able to penetrate a preexisting film formed by the basic preparation (BLES and protasan), while all of them can alter the surface activity of such preparation when mixed with the preparation. Preliminary results show that reversal of serum inhibition can be easily achieved and evaluated using the modified methodology.
Collapse
Affiliation(s)
- Sameh M I Saad
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Local C-reactive protein expression in obliterative lesions and the bronchial wall in posttransplant obliterative bronchiolitis. Mediators Inflamm 2009; 2009:510254. [PMID: 19503785 PMCID: PMC2686807 DOI: 10.1155/2009/510254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 03/26/2009] [Indexed: 01/21/2023] Open
Abstract
The local immunoreactivity of C-reactive protein (CRP) was studied in a heterotopic porcine model of posttranplant obliterative bronchiolitis (OB). Bronchial allografts and control autografts were examined serially 2–28 days after subcutaneous transplantation. The autografts stayed patent. In the allografts, proliferation of inflammatory cells (P < .0001) and fibroblasts (P = .02) resulted in occlusion of the bronchial lumens (P < .01). Influx of CD4+ (P < .001) and CD8+ (P < .0001) cells demonstrated allograft immune response. CRP positivity simultaneously increased in the bronchial walls (P < .01), in macrophages, myofibroblasts, and endothelial cells. Local CRP was predictive of features characteristic of OB (R = 0.456–0.879, P < .05−P < .0001). Early obliterative lesions also showed CRP positivity, but not mature, collagen-rich obliterative plugs (P < .05). During OB development, CRP is localized in inflammatory cells, myofibroblasts and endothelial cells probably as a part of the local inflammatory response.
Collapse
|
11
|
Chang SW, Chou SF, Chuang JL. Mechanical corneal epithelium scraping and ethanol treatment up-regulate cytokine gene expression differently in rabbit cornea. J Refract Surg 2008; 24:150-9. [PMID: 18297939 DOI: 10.3928/1081597x-20080201-05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To explore inflammation and wound healing in the rabbit eye following topical ethanol treatment or mechanical debridement. METHODS Seventy-six pigmented rabbit corneas were divided into four groups: mechanical group (n = 33), which received mechanical epithelial debridement; ethanol-30 (n = 18) and ethanol-60 groups (n = 18), which were treated with 20% ethanol for 30 and 60 seconds, respectively; and control group (n = 7), which remained untreated. Corneal epithelial and stromal keratocyte changes were examined with hematoxylin-eosin and terminal deoxynucleotidyltransferase-mediated dUPT nick end labeling (TUNEL) staining at 3 hours (day 0) and days 1, 2, 3, 5, and 7. Interleukin (IL)-1alpha, IL-8, monocyte chemotactic protein (MCP-1), and transforming growth factor (TGF)-beta1 expression were examined using real-time polymerase chain reaction. RESULTS Stromal keratocyte cell death was higher in the mechanical group on day 0 (P = .002) and in the ethanol-60 group on days 3, 5, and 7 (P < .05). Keratocyte cell death was more pronounced in the ethanol-60 group than in the ethanol-30 group. In the mechanical group, IL-1alpha, IL-8, and MCP-1 expression was up-regulated starting on day 0 (P < .05) and returned to baseline on day 5 to 7. TGF-beta1 expression was up-regulated in the mechanical group throughout the experiment (P < .05). In the ethanol-30 and ethanol-60 groups, IL-1alpha expression was up-regulated on day 0, IL-8 expression was slightly up-regulated on day 0, and MCP-1 and TGF-beta1 expression were not up-regulated. CONCLUSIONS Mechanical epithelial removal initially induces more keratocyte cell death, but deep stromal keratocyte death persists longer with ethanol treatment. In this rabbit model, mechanical epithelial removal upregulated inflammatory cytokines and TGF-beta1 gene expression more than ethanol treatment.
Collapse
Affiliation(s)
- Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, Ban-Chiao, Taipei, Taiwan.
| | | | | |
Collapse
|
12
|
Evasion of innate immune responses: evidence for mannose binding lectin inhibition of tumor necrosis factor alpha production by macrophages in response to Blastomyces dermatitidis. Infect Immun 2007; 76:994-1002. [PMID: 18070904 DOI: 10.1128/iai.01185-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum factors, including mannose binding lectins (MBL), influence innate responses to microbes. Little is known about the effects of serum factors or MBL on the interaction of Blastomyces dermatitidis, a pulmonary fungal pathogen, with macrophages or on tumor necrosis factor alpha (TNF-alpha) production. Since macrophage production of TNF-alpha is an important innate immune response, we examined a mouse peritoneal macrophage (PM) cell line (RAW) and resident PM from CD-1 mice to study TNF-alpha production by PM stimulated with heat-killed (HK) or live B. dermatitidis yeast cells. Mouse serum and heat-inactivated mouse serum inhibited TNF-alpha production 94% when macrophages were stimulated by B. dermatitidis, whereas mouse immunoglobulin G (IgG) did not have this effect. HK B. dermatitidis incubated with serum and then washed also failed to stimulate significant TNF-alpha production by PM. By the sandwich immunofluorescent antibody (IFA) method with anti-mouse MBL (MBL-A or -C), we showed that serum MBL bound to B. dermatitidis. When serum was absorbed with HK B. dermatitidis or live B. dermatitidis, absorbed serum failed to significantly inhibit TNF-alpha production by RAW cells plus B. dermatitidis, and immunoblotting showed that absorbed serum was depleted of MBL-C. If serum was absorbed with live B. dermatitidis, unbound serum was eluted, and bound serum factor(s) (BS) was released with guanidine buffer, BS inhibited TNF-alpha production by PM plus B. dermatitidis in a concentration-dependent manner. BS contained MBL-C, which bound B. dermatitidis, as shown by IFA assay. 1,3-beta-Glucan stimulated TNF-alpha production by PM, and this was inhibited by mouse serum. Treatment of B. dermatitidis with anti-1,3-beta-glucan antibody inhibited TNF-alpha production by PM. With anti-1,3-beta-glucan antibody, we showed by IFA assay that B. dermatitidis contained 1,3-beta-glucan. In an IFA study with B. dermatitidis, serum with an anti-mouse IgG conjugate did not result in fluorescence, yet serum blocked IFA staining of B. dermatitidis by anti-1,3-beta-glucan IgG antibody. This indicated that non-IgG serum factors binding to B. dermatitidis prevented access to 1,3-beta-glucan by anti-1,3-beta-glucan antibody. These results suggest that the mechanism of inhibition of the innate proinflammatory immune response of PM to B. dermatitidis is mediated by serum MBL binding to B. dermatitidis at 1,3-beta-glucan sites or sterically masking 1,3-beta-glucan sites, thus preventing 1,3-beta-glucan stimulation of PM for TNF-alpha production.
Collapse
|
13
|
Walter RE, Wilk JB, Larson MG, Vasan RS, Keaney JF, Lipinska I, O'Connor GT, Benjamin EJ. Systemic inflammation and COPD: the Framingham Heart Study. Chest 2007; 133:19-25. [PMID: 17908709 DOI: 10.1378/chest.07-0058] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The current paradigm for the pathogenesis of COPD includes an ultimately maladaptive local inflammatory response to environmental stimuli. We examined the hypothesis that systemic inflammatory biomarkers are associated with impaired lung function, particularly among those with extensive cigarette smoking. METHODS Using data from the Framingham Heart Study, we examined cross-sectional associations of systemic inflammatory biomarkers (CD40 ligand [CD40L], intercellular adhesion molecule [ICAM]-1, interleukin [IL]-6, monocyte chemoattractant protein-1, P-selectin, and myeloperoxidase, in addition to C-reactive protein) to impaired lung function. RESULTS IL-6 was consistently associated with impaired lung function; a 1-SD higher concentration of IL-6 was associated with a 41-mL lower FEV(1) (95% confidence interval [CI], - 61 to - 20) and a borderline 15% higher odds of COPD (odds ratio, 1.15; 95% CI, 0.99 to 1.34). Additionally, P-selectin was associated with lower FEV(1) levels; after adjusting for the other biomarkers, a 1-SD higher concentration of P-selectin predicted an FEV(1) that was on average 19 mL lower (95% CI, - 37 to 0). Including the biomarkers individually as sole exposures in the models generally strengthened the impaired lung function/biomarker association; the relations of ICAM-1 to FEV(1), and ICAM and CD40L to COPD became significant. The observed associations did not vary significantly with smoking history, except that the association between CD40L and COPD appeared greater in individuals with more extensive smoking histories. CONCLUSIONS Among participants in the Framingham Heart Study, systemic inflammation was associated with lower levels of pulmonary function. Further research into the role of systemic inflammation in the development of pulmonary dysfunction is merited.
Collapse
Affiliation(s)
- Robert E Walter
- Section of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Keating E, Rahman L, Francis J, Petersen A, Possmayer F, Veldhuizen R, Petersen NO. Effect of cholesterol on the biophysical and physiological properties of a clinical pulmonary surfactant. Biophys J 2007; 93:1391-401. [PMID: 17526587 PMCID: PMC1929052 DOI: 10.1529/biophysj.106.099762] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins that forms a surface-active film at the air-water interface of alveoli capable of reducing surface tension to near 0 mN/m. The role of cholesterol, the major neutral lipid component of pulmonary surfactant, remains uncertain. We studied the physiological effect of cholesterol by monitoring blood oxygenation levels of surfactant-deficient rats treated or not treated with bovine lipid extract surfactant (BLES) containing zero or physiological amounts of cholesterol. Our results indicate no significant difference between BLES and BLES containing cholesterol immediately after treatment; however, during ventilation, BLES-treated animals maintained higher PaO2 values compared to BLES+cholesterol-treated animals. We used a captive bubble tensiometer to show that physiological amounts of cholesterol do not have a detrimental effect on the surface activity of BLES at 37 degrees C. The effect of cholesterol on topography and lateral organization of BLES Langmuir-Blodgett films was also investigated using atomic force microscopy. Our data indicate that cholesterol induces the formation of domains within liquid-ordered domains (Lo). We used time-of-flight-secondary ion mass spectrometry and principal component analysis to show that cholesterol is concentrated in the Lo phase, where it induces structural changes.
Collapse
Affiliation(s)
- Eleonora Keating
- Department of Chemistry, Surface Science Western, Western Science Center, Lawson Health Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Wygrecka M, Markart P, Fink L, Guenther A, Preissner KT. Raised protein levels and altered cellular expression of factor VII activating protease (FSAP) in the lungs of patients with acute respiratory distress syndrome (ARDS). Thorax 2007; 62:880-8. [PMID: 17483138 PMCID: PMC2094251 DOI: 10.1136/thx.2006.069658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is characterised by inflammation of the lung parenchyma and changes in alveolar haemostasis with extravascular fibrin deposition. Factor VII activating protease (FSAP) is a recently described serine protease in plasma and tissues known to be involved in haemostasis, cell proliferation and migration. METHODS The level of FSAP protein expression was examined by western blotting/ELISA/immunohistochemistry and its activity was investigated by coagulation/fibrinolysis assays in plasma, bronchoalveolar lavage (BAL) fluid and lung tissue of mechanically ventilated patients with early ARDS and compared with patients with cardiogenic pulmonary oedema and healthy controls. Cell culture experiments were performed to assess the influence of different inflammatory stimuli on FSAP expression by various cell populations of the lung. RESULTS FSAP protein level and activity were markedly increased in the plasma and BAL fluid of patients with ARDS with a significant contribution to the increased alveolar procoagulant activity. Immunoreactivity for FSAP was observed in alveolar macrophages, bronchial epithelial and endothelial cells of lungs of patients with ARDS, while in controls the immunoreactivity for FSAP was restricted to alveolar macrophages. Only a low basal level of FSAP expression was detected in these cell populations. However, FSAP-specific mRNA expression was induced by lipopolysaccharide and interleukin-8 in human lung microvascular endothelial cells and in bronchial epithelial cells. FSAP was also found to be taken up by alveolar macrophages and degraded within the lysosomal compartment. CONCLUSIONS Increased levels of FSAP and an altered cellular expression pattern are found in the lungs of patients with ARDS. This may represent a novel pathological mechanism which contributes to pulmonary extravascular fibrin deposition and may also modulate inflammation in the acutely injured lung via haemostasis-independent cellular activities of FSAP.
Collapse
Affiliation(s)
- Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, University of Giessen Lung Center, Friedrichstrasse 24, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Lobo SM, Lobo FRM, Lopes-Ferreira F, Bota DP, Melot C, Vincent JL. Initial and delayed onset of acute respiratory failure: factors associated with development and outcome. Anesth Analg 2006; 103:1219-23. [PMID: 17056958 DOI: 10.1213/01.ane.0000237433.00877.5a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In a prospective observational study of 1038 adult admissions to a 31-bed medical/surgical intensive care unit (ICU), acute respiratory failure (ARF, defined as a Pao(2)/Fio(2) ratio <or=200 mm Hg and the need for respiratory support) occurred in 182 (58%) of the 313 admissions with an ICU stay of more than 48 h. Initial ARF (onset within 48 h of ICU admission) occurred in 133 (42%) patients, and delayed onset ARF (onset >48 h after ICU admission) in 49 (16%). On admission, the cardiovascular sequential organ failure assessment (SOFA) score was higher in initial than in delayed onset ARF (1.1 +/- 1.5 vs 0.6 +/- 1.2, P < 0.05). High admission serum C-reactive protein concentrations (OR 1.08, 95% CI 1.04-1.12, P = 0.0001) and SOFA scores (OR 1.20, 95% CI 1.08-1.33, P = 0.0007) were the factors independently associated with initial ARF, and a low Glasgow coma scale (GCS) score (OR 1.13, 95% CI 1.04-1.21, P = 0.0018) was associated with delayed onset ARF. In initial ARF, a high SOFA score (OR 1.24, 95% CI 1.12-1.38, P = 0.0001) and a low GCS score (OR 0.89, 95% CI 0.83-0.96, P = 0.0013) on admission, and in delayed onset ARF, a low GCS score at 48 h (OR 0.67, 95% CI 0.54-0.84, P = 0.0011) were independently associated with death. The mortality rate was similar for initial and delayed onset ARF.
Collapse
Affiliation(s)
- Suzana M Lobo
- Department of Intensive Care Medicine, Erasme University Hospital, Route de Lennik 808, 1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Sáenz A, Cañadas O, Bagatolli LA, Johnson ME, Casals C. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4. FEBS J 2006; 273:2515-27. [PMID: 16704424 DOI: 10.1111/j.1742-4658.2006.05258.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4-containing membranes. We used bilayers of three-component systems [1,2-dipalmitoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phosphatidylglycerol/palmitic acid (DPPC/POPG/PA) and DPPC/1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/PA] and binary lipid mixtures of DPPC/POPG and DPPC/PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly alpha-helical secondary structure in POPG- or POPC-containing membranes, and a beta-sheet structure in DPPC/PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a beta-sheet structure in DPPC/POPG/PA or DPPC/POPC/PA vesicles. Ca2+ favored alpha<-->beta interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4-containing vesicles. KL4 showed a concentration-dependent ordering effect on POPG- and POPC-containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well-defined solid/fluid phase co-existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC/POPG/PA and DPPC/POPC/PA. In contrast, more fluid (DPPC/POPG) or excessively rigid (DPPC/PA) KL4-containing membranes fail in their ability to adsorb rapidly onto and spread at the air-water interface.
Collapse
Affiliation(s)
- Alejandra Sáenz
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Wüstneck R, Perez-Gil J, Wüstneck N, Cruz A, Fainerman VB, Pison U. Interfacial properties of pulmonary surfactant layers. Adv Colloid Interface Sci 2005; 117:33-58. [PMID: 16120435 DOI: 10.1016/j.cis.2005.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/16/2005] [Accepted: 05/20/2005] [Indexed: 11/25/2022]
Abstract
The composition of the pulmonary surfactant and the border conditions of normal human breathing are relevant to characterize the interfacial behavior of pulmonary layers. Based on experimental data methods are reviewed to investigate interfacial properties of artificial pulmonary layers and to explain the behavior and interfacial structures of the main components during compression and expansion of the layers observed by epifluorescence and scanning force microscopy. Terms like over-compression, collapse, and formation of the surfactant reservoir are discussed. Consequences for the viscoelastic surface rheological behavior of such layers are elucidated by surface pressure relaxation and harmonic oscillation experiments. Based on a generalized Volmer isotherm the interfacial phase transition is discussed for the hydrophobic surfactant proteins, SP-B and SP-C, as well as for the mixtures of dipalmitoylphosphatidylcholine (DPPC) with these proteins. The behavior of the layers depends on both the oligomerisation state and the secondary structure of the hydrophobic surfactant proteins, which are controlled by the preparation of the proteins. An example for the surface properties of bronchoalveolar porcine lung washings of uninjured, injured, and Curosurf treated lavage is discussed in the light of surface behavior. An outlook summarizes the present knowledge and the main future development in this field of surface science.
Collapse
Affiliation(s)
- R Wüstneck
- Charité, Campus Virchow-Klinikum, Universitätsmedizin Berlin, Klinik für Anästhesiologie und operative Intensivmedizin, Spandauer Damm 130, 14050 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Valiño F, Casals C, Guerrero R, Alvarez L, Santos M, Sáenz A, Varela A, Claro MA, Tendillo F, Castillo-Olivares JL. Inhaled nitric oxide affects endogenous surfactant in experimental lung transplantation. Transplantation 2004; 77:812-8. [PMID: 15077019 DOI: 10.1097/01.tp.0000116421.57232.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inhalation of nitric oxide (NO) has been proposed as a therapy to improve lung transplantation outcome. We investigated the effect that inhaled NO has on the surfactant system in the context of ischemia-reperfusion injury. METHODS Single left-lung transplantation was performed in weight-matched pairs of Landrace pigs. A double-lung block from the donor animal was flushed with University of Wisconsin solution at 4 degrees C followed by immersion in cold University of Wisconsin solution for 22 hr. The left donor lung was transplanted into the recipient. Recipients were divided into two groups: (1) treated with inhaled NO (40 ppm) (n=6) immediately after initiating lung reperfusion and (2) without treatment (n=6). Lung function was measured during 2 hr of reperfusion. Surfactant components in small and large aggregates, isolated from cell-free bronchoalveolar lavages, and surfactant function were measured. RESULTS NO inhalation significantly decreased arterial oxygenation. With respect to the surfactant system, NO inhalation worsened the surfactant adsorption rate to an air-liquid interface and affected levels of hydrophobic surfactant proteins (SPs), SP-B and SP-C, and phospholipids, which decreased in large surfactant aggregates but not in small surfactant aggregates. SP-A was reduced in large surfactant aggregates of transplanted lungs from both untreated and NO-treated groups. CONCLUSION A decreased level of SP-A, SP-B, and SP-C in large surfactant aggregates of transplanted lungs treated with NO is a marker of lung injury. We conclude that treatment with inhaled NO after lung transplantation is deleterious for the surfactant system and causes a parallel worsening of arterial oxygenation.
Collapse
Affiliation(s)
- Fernando Valiño
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
García-Verdugo I, Sánchez-Barbero F, Bosch FU, Steinhilber W, Casals C. Effect of hydroxylation and N187-linked glycosylation on molecular and functional properties of recombinant human surfactant protein A. Biochemistry 2003; 42:9532-42. [PMID: 12911295 DOI: 10.1021/bi0347196] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the effects of proline hydroxylation in the collagen-like domain and Asn(187)-linked glycosylation in the globular domain on the molecular and functional properties of human surfactant protein A1 (SP-A1). To address this issue, SP-A1 was in vitro expressed in insect and mammalian cells. Insect cells lack prolyl 4-hydroxylase activity. A glycosylation-deficient mutant SP-A1 was expressed in insect cells. In this report we present evidence that hydroxylation increased the T(m) of the collagen-like domain by 9 degrees C. Proline hydroxylation affected both the arrangement of disulfide bonding and the extent of oligomerization but did not affect conformational changes in the globular domain identified by intrinsic fluorescence. Both self-association and lipid-related functions of SP-A were clearly correlated with the thermal stability of the collagen domain and the degree of oligomerization. Structural properties and lipid-related characteristics of SP-A1 expressed in mammalian cells but not in insect cells were close to that of natural human SP-A. On the other hand, the lack of glycosylation did not affect either collagen domain stability or conformational changes induced by calcium in the globular domain. However, the lack of glycosylation favored nonspecific thermally induced aggregation of the protein.
Collapse
Affiliation(s)
- I García-Verdugo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|