1
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Fu J, Hu X. Simvastatin alleviates epithelial‑mesenchymal transition and oxidative stress of high glucose‑induced lens epithelial cells in vitro by inhibiting RhoA/ROCK signaling. Exp Ther Med 2022; 23:420. [PMID: 35601076 PMCID: PMC9117960 DOI: 10.3892/etm.2022.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/18/2022] [Indexed: 11/06/2022] Open
Abstract
Diabetic cataracts (DC) is one of the main causes of blindness among patients with diabetes mellitus. The aim of the present study was to examine the effect of simvastatin on lens epithelial cells in DC and the underlying mechanism. The viability of SRA01/04 cells treated with different concentrations of simvastatin was detected using a Cell Counting Kit-8 assay before and after high glucose (HG) treatment. The expression levels of E-cadherin, N-cadherin, Vimentin and α-smooth muscle actin (α-SMA), proteins associated with epithelial-mesenchymal transition (EMT), in addition to RhoA, Rho-associated kinases (ROCK)1 and ROCK2, proteins related to RhoA/ROCK signaling, were also measured in SRA01/04 cells treated with HG and simvastatin, with or without U46619, using western blot analysis. DCFH-DA dyes, superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) kits were used to measure the levels of oxidative stress parameters in SRA01/04 cells treated with HG and simvastatin with or without U46619. The cell viability of SRA01/04 cells treated with simvastatin was found to be significantly elevated after HG treatment. The protein expression levels of E-cadherin were increased but those of N-cadherin, Vimentin and α-SMA decreased after HG and simvastatin treatment, and this was reversed by U46619. The levels of SOD and GSH-GSSG were found to be increased whereas reactive oxygen species levels were decreased, effects that were reversed by U46619. Additionally, the protein expression levels of RhoA, ROCK1 and ROCK2 were markedly decreased. These findings provided evidence that simvastatin increased HG-induced SRA01/04 cell viability and exerted inhibitory effects on EMT and oxidative stress that occurs during DC.
Collapse
Affiliation(s)
- Jianming Fu
- Department of Ophthalmology, The Second People's Hospital of Yueqing, Wenzhou, Zhejiang 325608, P.R. China
| | - Xiaojie Hu
- Department of Ophthalmology, Wenzhou People's Hospital, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
3
|
Hocq C, Vanhoutte L, Guilloteau A, Massolo AC, Van Grambezen B, Carkeek K, Piersigilli F, Danhaive O. Early diagnosis and targeted approaches to pulmonary vascular disease in bronchopulmonary dysplasia. Pediatr Res 2022; 91:804-815. [PMID: 33674739 DOI: 10.1038/s41390-021-01413-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Pulmonary hypertension has emerged as a life-threatening disease in preterm infants suffering from bronchopulmonary dysplasia (BPD). Its development is closely linked to respiratory disease, as vasculogenesis and alveologenesis are closely interconnected. Once clinically significant, BPD-associated pulmonary hypertension (BPD-PH) can be challenging to manage, due to poor reversibility and multiple comorbidities frequently associated. The pulmonary vascular disease process underlying BPD-PH is the result of multiple innate and acquired factors, and emerging evidence suggests that it progressively develops since birth and, in certain instances, may begin as early as fetal life. Therefore, early recognition and intervention are of great importance in order to improve long-term outcomes. Based on the most recent knowledge of BPD-PH pathophysiology, we review state-of-the-art screening and diagnostic imaging techniques currently available, their utility for clinicians, and their applicability and limitations in this specific population. We also discuss some biochemical markers studied in humans as a possible complement to imaging for the detection of pulmonary vascular disease at its early stages and the monitoring of its progression. In the second part, we review pharmacological agents currently available for BPD-PH treatment or under preclinical investigation, and discuss their applicability, as well as possible approaches for early-stage interventions in fetuses and neonates. IMPACT: BPD-associated PH is a complex disease involving genetic and epigenetic factors, as well as environmental exposures starting from fetal life. The value of combining multiple imaging and biochemical biomarkers is emerging, but requires larger, multicenter studies for validation and diffusion. Since "single-bullet" approaches have proven elusive so far, combined pharmacological regimen and cell-based therapies may represent important avenues for research leading to future cure and prevention.
Collapse
Affiliation(s)
- Catheline Hocq
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Laetitia Vanhoutte
- Division of Pediatric Cardiology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Axelle Guilloteau
- Division of Clinical Pharmacy, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Anna Claudia Massolo
- Department of Surgical and Medical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Bénédicte Van Grambezen
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Kate Carkeek
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Fiammetta Piersigilli
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Olivier Danhaive
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium. .,Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
4
|
Ruschkowski BA, Esmaeil Y, Daniel K, Gaudet C, Yeganeh B, Grynspan D, Jankov RP. Thrombospondin-1 Plays a Major Pathogenic Role in Experimental and Human Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2022; 205:685-699. [PMID: 35021035 DOI: 10.1164/rccm.202104-1021oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Extremely preterm infants develop bronchopulmonary dysplasia (BPD), a chronic lung injury that lacks effective treatment. Thrombospondin-1 is an anti-angiogenic protein that activates TGF-β1, a cytokine strongly linked to both experimental and human BPD. OBJECTIVES 1) To examine effects of inhibiting thrombospondin-1-mediated TGF-β1 activation (LSKL) in neonatal rats with bleomycin-induced lung injury, 2) To examine effects of a thrombospondin-1-mimic (ABT-510) on lung morphology, and 3) To determine whether thrombospondin-1 and related signaling peptides are increased in lungs of human preterm infants at risk for BPD. METHODS From postnatal days 1-14, rat pups received daily i.p. bleomycin (1 mg/kg) or vehicle combined with daily s.c. LSKL (20 mg/kg) or vehicle. Separate animals were treated with vehicle or ABT-510 (30 mg/kg/d). Paraffin-embedded lung tissues from 47 autopsies (controls; death <28 days, n=30 and BPD at risk; death ≥28 days, n=17) performed on infants born <29 completed weeks' gestation were semi-quantified for injury markers (collagen, macrophages, 3-nitrotyrosine), thrombospondin-1 and TGF-β1. MEASUREMENTS AND MAIN RESULTS Bleomycin or ABT-510 increased lung TGF-β1 activity and macrophage influx, caused pulmonary hypertension and led to alveolar and microvascular hypoplasia. Treatment with LSKL partially prevented abnormal lung morphology secondary to bleomycin. Lungs from human infants at-risk for BPD had increased contents of thrombospondin-1 and TGF-β1 when compared to controls. TGF-β1 content correlated with markers of lung injury. CONCLUSIONS Thrombospondin-1 inhibits alveologenesis in neonatal rats, in part via up-regulated activity of TGF-β1. Observations in human lung suggest a similar pathogenic role for thrombospondin-1 in infants at-risk for BPD.
Collapse
Affiliation(s)
- Brittany Ann Ruschkowski
- Children's Hospital of Eastern Ontario Research Institute, 274065, Molecular Biomedicine, Ottawa, Ontario, Canada
| | - Yousef Esmaeil
- University of Ottawa, Paediatrics, Ottawa, Ontario, Canada
| | - Kate Daniel
- Children's Hospital of Eastern Ontario Research Institute, 274065, Molecular Biomedicine, Ottawa, Ontario, Canada
| | - Chantal Gaudet
- Children's Hospital of Eastern Ontario Research Institute, 274065, Molecular Biomedicine, Ottawa, Ontario, Canada
| | - Behzad Yeganeh
- Children's Hospital of Eastern Ontario Research Institute, 274065, Molecular Biomedicine, Ottawa, Ontario, Canada
| | - David Grynspan
- University of Ottawa, Paediatrics, Ottawa, Ontario, Canada
| | | |
Collapse
|
5
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
6
|
Zhu L, Liu F, Hao Q, Feng T, Chen Z, Luo S, Xiao R, Sun M, Zhang T, Fan X, Zeng X, He J, Yuan P, Liu J, Ruiz M, Dupuis J, Hu Q. Dietary Geranylgeranyl Pyrophosphate Counteracts the Benefits of Statin Therapy in Experimental Pulmonary Hypertension. Circulation 2021; 143:1775-1792. [PMID: 33660517 DOI: 10.1161/circulationaha.120.046542] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The mevalonate pathway generates endogenous cholesterol and intermediates including geranylgeranyl pyrophosphate (GGPP). By reducing GGPP production, statins exert pleiotropic or cholesterol-independent effects. The potential regulation of GGPP homeostasis through dietary intake and the interaction with concomitant statin therapy is unknown. METHODS We developed a sensitive high-pressure liquid chromatography technique to quantify dietary GGPP and conducted proteomics, qualitative real-time polymerase chain reaction screening, and Western blot to determine signaling cascades, gene expression, protein-protein interaction, and protein membrane trafficking in wild-type and transgenic rats. RESULTS GGPP contents were highly variable depending on food source that differentially regulated blood GGPP levels in rats. Diets containing intermediate and high GGPP reduced or abolished the effects of statins in rats with hypoxia- and monocrotaline-induced pulmonary hypertension: this was rescuable by methyl-allylthiosulfinate and methyl-allylthiosulfinate-rich garlic extracts. In human pulmonary artery smooth muscle cells treated with statins, hypoxia activated RhoA in an extracellular GGPP-dependent manner. Hypoxia-induced ROCK2 (Rho associated coiled-coil containing protein kinase 2)/Rab10 (Ras-related protein rab-10) signaling was prevented by statin and recovered by exogenous GGPP. The hypoxia-activated RhoA/ROCK2 pathway in rat and human pulmonary artery smooth muscle cells upregulated the expression of Ca2+-sensing receptor (CaSR) and HIMF (hypoxia-induced mitogenic factor), a mechanism attenuated by statin treatment and regained with exogenous GGPP. Rab10 knockdown almost abrogated hypoxia-promoted CaSR membrane trafficking, a process diminished by statin and resumed by exogenous GGPP. Hypoxia-induced pulmonary hypertension was reduced in rats with CaSR mutated at the binding motif of HIMF and the interaction between dietary GGPP and statin efficiency was abolished. In humans fed a high GGPP diet, blood GGPP levels were increased. This abolished statin-lowering effects on plasma GGPP, and also on hypoxia-enhanced RhoA activity of blood monocytes that was rescued by garlic extracts. CONCLUSIONS There is important dietary regulation of GGPP levels that interferes with the effects of statin therapy in experimental pulmonary hypertension. These observations rely on a key and central role of RhoA-ROCK2 cascade activation and Rab10-faciliated CaSR membrane trafficking with subsequent overexpression and binding of HIMF to CaSR. These findings warrant clinical investigation for the treatment of pulmonary hypertension and perhaps other diseases by combining statin with garlic-derived methyl-allylthiosulfinate or garlic extracts and thus circumventing dietary GGPP variations.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Hao
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Feng
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeshuai Chen
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengquan Luo
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Fan
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianguo He
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (J.H.)
| | - Ping Yuan
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Jinming Liu
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, China (P.Y., J.L.)
| | - Matthieu Ruiz
- Departments of Nutrition (M.R.), Université de Montréal, Canada.,Montreal Heart Institute Research Center, Canada (M.R., J.D.)
| | - Jocelyn Dupuis
- Medicine (J.D.), Université de Montréal, Canada.,Montreal Heart Institute Research Center, Canada (M.R., J.D.)
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health (L.Z., F.L., Q. Hao, T.F., Z.C., S.L., R.X., M.S., T.Z., X.F., X.Z., Q. Hu), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Simvastatin attenuates lung functional and vascular effects of hyperoxia in preterm rabbits. Pediatr Res 2020; 87:1193-1200. [PMID: 31816623 DOI: 10.1038/s41390-019-0711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) remains a frequent complication following preterm birth, affecting respiratory health throughout life. Transcriptome analysis in a preterm rabbit model for BPD revealed dysregulation of key genes for inflammation, vascular growth and lung development in animals exposed to hyperoxia, which could be prevented by simvastatin. METHODS Preterm rabbits were randomized to either normoxia (21% O2) or hyperoxia (95% O2) and within each condition to treatment with 5 mg/kg simvastatin daily or control. Lung function, structure and mRNA-expression was assessed on day 7. RESULTS Simvastatin partially prevented the effect of hyperoxia on lung function, without altering alveolar structure or inflammation. A trend towards a less fibrotic phenotype was noted in simvastatin-treated pups, and airways were less muscularized. Most importantly, simvastatin completely prevented hyperoxia-induced arterial remodeling, in association with partial restoration of VEGFA and VEGF receptor 2 (VEGFR2) expression. Simvastatin however decreased survival in pups exposed to normoxia, but not to hyperoxia. CONCLUSION Repurposing of simvastatin could be an advantageous therapeutic strategy for bronchopulmonary dysplasia and other developmental lung diseases with pulmonary vascular disease. The increased mortality in the treated normoxia group however limits the translational value at this dose and administration route.
Collapse
|
8
|
Chao YM, Wu KLH, Tsai PC, Tain YL, Leu S, Lee WC, Chan JYH. Anomalous AMPK-regulated angiotensin AT 1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J Biomed Sci 2020; 27:68. [PMID: 32446297 PMCID: PMC7245869 DOI: 10.1186/s12929-020-00660-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue oxidative stress, sympathetic activation and nutrient sensing signals are closely related to adult hypertension of fetal origin, although their interactions in hypertension programming remain unclear. Based on a maternal high-fructose diet (HFD) model of programmed hypertension, we tested the hypothesis that dysfunction of AMP-activated protein kinase (AMPK)-regulated angiotensin type 1 receptor (AT1R) expression and sirtuin1 (SIRT1)-dependent mitochondrial biogenesis contribute to tissue oxidative stress and sympathoexcitation in programmed hypertension of young offspring. METHODS Pregnant female rats were randomly assigned to receive normal diet (ND) or HFD (60% fructose) chow during pregnancy and lactation. Both ND and HFD offspring returned to ND chow after weaning, and blood pressure (BP) was monitored from age 6 to 12 weeks. At age of 8 weeks, ND and HFD offspring received oral administration of simvastatin or metformin; or brain microinfusion of losartan. BP was monitored under conscious condition by the tail-cuff method. Nutrient sensing molecules, AT1R, subunits of NADPH oxidase, mitochondrial biogenesis markers in rostral ventrolateral medulla (RVLM) were measured by Western blot analyses. RVLM oxidative stress was measured by fluorescent probe dihydroethidium and lipid peroxidation by malondialdehyde assay. Mitochondrial DNA copy number was determined by quantitative real-time polymerase chain reaction. RESULTS Increased systolic BP, plasma norepinephrine level and sympathetic vasomotor activity were exhibited by young HFD offspring. Reactive oxygen species (ROS) level was also elevated in RVLM where sympathetic premotor neurons reside, alongside augmented protein expressions of AT1R and pg91phox subunit of NADPH oxidase, decrease in superoxide dismutase 2; and suppression of transcription factors for mitochondrial biogenesis, peroxisome proliferator-activated receptor γ co-activator α (PGC-1α) and mitochondrial transcription factor A (TFAM). Maternal HFD also attenuated AMPK phosphorylation and protein expression of SIRT1 in RVLM of young offspring. Oral administration of a HMG-CoA reductase inhibitor, simvastatin, or an AMPK activator, metformin, to young HFD offspring reversed maternal HFD-programmed increase in AT1R and decreases in SIRT1, PGC-1α and TFAM; alleviated ROS production in RVLM, and attenuated sympathoexcitation and hypertension. CONCLUSION Dysfunction of AMPK-regulated AT1R expression and SIRT1-mediated mitochondrial biogenesis may contribute to tissue oxidative stress in RVLM, which in turn primes increases of sympathetic vasomotor activity and BP in young offspring programmed by excessive maternal fructose consumption.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Pei-Chia Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung Univeristy College of Medicine, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
9
|
Martinho S, Adão R, Leite-Moreira AF, Brás-Silva C. Persistent Pulmonary Hypertension of the Newborn: Pathophysiological Mechanisms and Novel Therapeutic Approaches. Front Pediatr 2020; 8:342. [PMID: 32850518 PMCID: PMC7396717 DOI: 10.3389/fped.2020.00342] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is one of the main causes of neonatal morbidity and mortality. It is characterized by sustained elevation of pulmonary vascular resistance (PVR), preventing an increase in pulmonary blood flow after birth. The affected neonates fail to establish blood oxygenation, precipitating severe respiratory distress, hypoxemia, and eventually death. Inhaled nitric oxide (iNO), the only approved pulmonary vasodilator for PPHN, constitutes, alongside supportive therapy, the basis of its treatment. However, nearly 40% of infants are iNO resistant. The cornerstones of increased PVR in PPHN are pulmonary vasoconstriction and vascular remodeling. A better understanding of PPHN pathophysiology may enlighten targeted and more effective therapies. Sildenafil, prostaglandins, milrinone, and bosentan, acting as vasodilators, besides glucocorticoids, playing a role on reducing inflammation, have all shown potential beneficial effects on newborns with PPHN. Furthermore, experimental evidence in PPHN animal models supports prospective use of emergent therapies, such as soluble guanylyl cyclase (sGC) activators/stimulators, l-citrulline, Rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, recombinant superoxide dismutase (rhSOD), tetrahydrobiopterin (BH4) analogs, ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs), 5-HT2A receptor antagonists, and recombinant human vascular endothelial growth factor (rhVEGF). This review focuses on current knowledge on alternative and novel pathways involved in PPHN pathogenesis, as well as recent progress regarding experimental and clinical evidence on potential therapeutic approaches for PPHN.
Collapse
Affiliation(s)
- Sofia Martinho
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Adão
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Simvastatin-induced Changes in the Leukocytic System of Porcine Bone Marrow. J Vet Res 2018; 62:329-333. [PMID: 30584612 PMCID: PMC6296003 DOI: 10.2478/jvetres-2018-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/28/2018] [Indexed: 12/03/2022] Open
Abstract
Introduction Simvastatin is a substance which is commonly used as a medicine to reduce cholesterol level. Unfortunately, it shows numerous side effects. Simvastatin affects various internal organs, and among other detriments to health may cause persistent muscle weakness, osteolytic processes, headaches, and rashes. Until now knowledge of the influence of simvastatin on bone marrow cells has been rather scant and fragmentary. Material and Methods During this experiment the numbers of all types of cells in the leukocytic system of porcine bone marrow were evaluated after 28 and 56 days of oral administration of simvastatin at a dose of 40 mg/day/animal. Results Simvastatin caused an increase in the number of all types of cells in the leukocytic system, and the most visible fluctuations concerned promyelocytes. Conclusion Observations obtained during the present study indicated that the results of the action of simvastatin on porcine bone marrow differ from those observed in other mammal species, including human. This may be due to various metabolic pathways within the bone marrow in the particular species, but the exact mechanisms of these actions are unknown at the present time.
Collapse
|
11
|
Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Ben Fadel N, Jain A. Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 2018; 315:L742-L751. [DOI: 10.1152/ajplung.00184.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deficient nitric oxide (NO) signaling plays a critical role in the pathogenesis of chronic neonatal pulmonary hypertension (PHT). Physiological NO signaling is regulated by S-nitrosothiols (SNOs), which act both as a reservoir for NO and as a reversible modulator of protein function. We have previously reported that therapy with inhaled NO (iNO) increased peroxynitrite-mediated nitration in the juvenile rat lung, although having minimal reversing effects on vascular remodeling. We hypothesized that sodium nitrite (NaNO2) would be superior to iNO in enhancing lung SNOs, thereby contributing to reversal of chronic hypoxic PHT. Rat pups were exposed to air or hypoxia (13% O2) from postnatal days 1 to 21. Dose-response prevention studies were conducted from days 1–21 to determine the optimal dose of NaNO2. Animals then received rescue therapy with daily subcutaneous NaNO2 (20 mg/kg), vehicle, or were continuously exposed to iNO (20 ppm) from days 14–21. Chronic PHT secondary to hypoxia was both prevented and reversed by treatment with NaNO2. Rescue NaNO2 increased lung NO and SNO contents to a greater extent than iNO, without causing nitration. Seven lung SNO proteins upregulated by treatment with NaNO2 were identified by multiplex tandem mass tag spectrometry, one of which was leukotriene A4 hydrolase (LTA4H). Rescue therapy with a LTA4H inhibitor, SC57461A (10 mg·kg−1·day−1 sc), partially reversed chronic hypoxic PHT. We conclude that NaNO2 was superior to iNO in increasing tissue NO and SNO generation and reversing chronic PHT, in part via upregulated SNO-LTA4H.
Collapse
Affiliation(s)
- Robert P. Jankov
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Kathrine L. Daniel
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Shira Iny
- Molecular Biomedicine Program, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Crystal Kantores
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Nadya Ben Fadel
- Faculty of Medicine, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Amish Jain
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Nakano K, Matoba T, Koga JI, Kashihara Y, Fukae M, Ieiri I, Shiramoto M, Irie S, Kishimoto J, Todaka K, Egashira K. Safety, Tolerability, and Pharmacokinetics of NK-104-NP. Int Heart J 2018; 59:1015-1025. [DOI: 10.1536/ihj.17-555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Jun-ichiro Koga
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | - Yushi Kashihara
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Masato Fukae
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital
| | - Kensuke Egashira
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
13
|
Yang JM, Zhou R, Zhang M, Tan HR, Yu JQ. Betaine Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats via Inhibiting Inflammatory Response. Molecules 2018; 23:molecules23061274. [PMID: 29861433 PMCID: PMC6100216 DOI: 10.3390/molecules23061274] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance, leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. Several studies have demonstrated that betaine possesses outstanding anti-inflammatory effects. However, whether betaine exerts protective effects on PAH by inhibiting inflammatory responses in the lungs needs to be explored. To test our hypothesis, we aimed to investigate the effects of betaine on monocrotaline-induced PAH in rats and attempted to further clarify the possible mechanisms. Methods: PAH was induced by monocrotaline (50 mg/kg) and oral administration of betaine (100, 200, and 400 mg/kg/day). The mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricle hypertrophy index were used to evaluate the development of PAH. Hematoxylin and eosin staining and Masson staining were performed to measure the extents of vascular remodeling and proliferation in fibrous tissue. Monocyte chemoattractant protein-1 (MCP-1) and endothelin-1 (ET-1) were also detected by immunohistochemical staining. Nuclear factor-κB (NF-κB), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) were assessed by Western blot. Results: This study showed that betaine improved the abnormalities in right ventricular systolic pressure, mean pulmonary arterial pressure, right ventricle hypertrophy index, and pulmonary arterial remodeling induced by monocrotaline compared with the PAH group. The levels of MCP-1 and ET-1 also decreased. Western blot indicated that the protein expression levels of NF-κB, TNF-α, and IL-1β significantly decreased (p < 0.01). Conclusion: Our study demonstrated that betaine attenuated PAH through its anti-inflammatory effects. Hence, the present data may offer novel targets and promising pharmacological perspectives for treating monocrotaline-induced PAH.
Collapse
Affiliation(s)
- Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Min Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Huan-Ran Tan
- Department of Pharmacology, Peking University, Health Science Center, Beijing 100191, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
14
|
Zhang YS, Tang LJ, Tu H, Wang SJ, Liu B, Zhang XJ, Li NS, Luo XJ, Peng J. Fasudil ameliorates the ischemia/reperfusion oxidative injury in rat hearts through suppression of myosin regulatory light chain/NADPH oxidase 2 pathway. Eur J Pharmacol 2018; 822:1-12. [PMID: 29337194 DOI: 10.1016/j.ejphar.2018.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/17/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
Fasudil is a potent Rho-kinase (ROCK) inhibitor and can relax smooth muscle or cardiac muscle contraction through decreasing the phosphorylation level of myosin regulatory light chain (p-MLC20 or p-MLC2v), while p-MLC2v can function as a transcription factor to promote the NADPH oxidase 2 (NOX2) expression in rat hearts subjected to ischemia/reperfusion (I/R). This study aims to explore whether fasudil can protect the rat hearts against I/R oxidative injury through suppressing NOX2 expression via reduction of p-MLC2v level. The SD rat hearts were subjected to 1h-ischemia plus 3h-reperfusion, which showed myocardial injuries (myocardial fiber loss and disarray, increase of creatine kinase release and myocardial infarction/apoptosis), increase in ROCK activity and nuclear p-MLC2v level concomitant with up-regulation of NOX2 and H2O2 production; these phenomena were attenuated by fasudil in a dose-dependent manner. Next, we verified the cardioprotective effect of fasudil and the underlying mechanisms in hypoxia-reoxygenation (H/R) -treated H9c2 cells. Consistent with the results in vivo, the H/R-treated H9c2 cells showed cellular injury (increase in apoptotic ratio), elevation in ROCK activity and nuclear p-MLC2v level, accompanied by up-regulation of NOX2 and H2O2 production; these effects were blocked in the presence of fasudil in a dose-dependent way. Based on these observations, we conclude that beneficial effect of fasudil against myocardial I/R or H/R oxidative injury is related to the suppression of NOX2 expression through decrease of the p-MLC2v level. Our findings also highlight that intervention of MLC2v phosphorylation by drugs may provide a novel strategy to protect heart from I/R oxidative injury.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Li-Jing Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Hua Tu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Shi-Jing Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
15
|
Huetsch JC, Suresh K, Shimoda LA. When higher cholesterol is better: membrane cholesterol loss and endothelial Ca 2+ signaling. Am J Physiol Heart Circ Physiol 2017; 314:H780-H783. [PMID: 29351471 DOI: 10.1152/ajpheart.00655.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
16
|
Are statins beneficial for the treatment of pulmonary hypertension? Chronic Dis Transl Med 2017; 3:213-220. [PMID: 29354804 PMCID: PMC5747501 DOI: 10.1016/j.cdtm.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 12/27/2022] Open
Abstract
Pulmonary hypertension (PH) is a condition characterized by vasoconstriction and vascular remodeling with a poor prognosis. The current medical treatments available are supportive care therapy and pulmonary vascular-targeted therapy. Targeted treatments for PH include prostacyclin analogs, endothelin receptor antagonists, and phosphodiesterase type 5 inhibitors; however, these treatments cannot reverse pulmonary vascular remodeling. Recently, many novel treatment options involving drugs such as statins have been emerging. In this review, we attempt to summarize the current knowledge of the role of statins in PH treatment and their potential clinical effects. Many basic researches have proved that statins can be helpful for the treatment of PH both in vitro and in experimental models. The main mechanisms underlying the effects of statins are restoration of endothelial function, attenuation of pulmonary vascular remodeling, regulation of gene expression, regulation of intracellular signaling processes involved in PH, anti-inflammatory responses, and synergy with other targeted drugs. Nevertheless, clinical researches, especially randomized controlled trials for PH are rare. The current clinical researches show contrasting results on the clinical effects of statins in patients with PH. Carefully designed randomized, controlled trials are needed to test the safety and efficacy of statins for PH treatment.
Collapse
|
17
|
Ivanovska J, Shah S, Wong MJ, Kantores C, Jain A, Post M, Yeganeh B, Jankov RP. mTOR-Notch3 signaling mediates pulmonary hypertension in hypoxia-exposed neonatal rats independent of changes in autophagy. Pediatr Pulmonol 2017; 52:1443-1454. [PMID: 28759157 DOI: 10.1002/ppul.23777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM Mammalian target of rapamycin (mTOR) is a pivotal regulator of cell proliferation, survival, and autophagy. Autophagy is increased in adult experimental chronic pulmonary hypertension (PHT), but its contributory role to pulmonary vascular disease remains uncertain and has yet to be explored in the neonatal animal. Notch is a major pro-proliferative pathway activated by mTOR. A direct relationship between autophagy and Notch signaling has not been previously explored. Our aim was to examine changes in mTOR-, Notch-, and autophagy-related pathways and the therapeutic effects of autophagy modulators in experimental chronic neonatal PHT secondary to chronic hypoxia. METHODS Rat pups were exposed to normoxia or hypoxia (13% O2 ) from postnatal days 1-21, while receiving treatment with temsirolimus (mTOR inhibitor), DAPT (Notch inhibitor), or chloroquine (inhibitor of autophagic flux). RESULTS Exposure to hypoxia up-regulated autophagy and Notch3 signaling markers in lung, pulmonary artery (PA), and PA-derived smooth muscle cells (SMCs). Temsirolimus prevented chronic PHT and attenuated PA and SMC signaling secondary to hypoxia. These effects were replicated by DAPT. mTOR or Notch inhibition also down-regulated smooth muscle content of platelet-derived growth factor β-receptor, a known contributor to vascular remodeling. In contrast, chloroquine had no modifying effects on markers of chronic PHT. Knockdown of Beclin-1 in SMCs had no effect on hypoxia-stimulated Notch3 signaling. CONCLUSIONS mTOR-Notch3 signaling plays a critical role in experimental chronic neonatal PHT. Inhibition of autophagy did not suppress Notch signaling and had no effect on markers of chronic PHT.
Collapse
Affiliation(s)
- Julijana Ivanovska
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Sparsh Shah
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mathew J Wong
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Behzad Yeganeh
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Robert P Jankov
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Molecular Biomedicine Program, Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Paediatrics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Florentin J, Dutta P. Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine 2017; 100:11-15. [PMID: 28855075 DOI: 10.1016/j.cyto.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
Abstract
Myeloid cells, including monocytes and macrophages participate in steady state immune homeostasis and help mount the adaptive immune response during infection. The function and production of these cells in sterile inflammation, such as pulmonary hypertension (PH), is understudied. Emerging data indicate that pulmonary inflammation mediated by lung perivascular macrophages is a key pathogenic driver of pulmonary remodeling leading to increased right ventricular systolic pressure (RVSP). However, the origin of these macrophages in pulmonary inflammation is unknown. Inflammatory monocytes, the precursors of pathogenic macrophages, are derived from hematopoietic stem and progenitor cells (HSPC) in the bone marrow and spleen during acute and chronic inflammation. Understanding the role of these organs in monocytopoiesis, and the mechanisms of HSPC proliferation and differentiation in PH are important to discover therapeutic targets curbing inflammation. This review will summarize the current limited knowledge of the origin of lung macrophage subsets and over-production of inflammatory monocytes in PH.
Collapse
Affiliation(s)
- Jonathan Florentin
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Abstract
In congenital diaphragmatic hernia (CDH), herniation of the abdominal organs into the fetal chest causes pulmonary hypoplasia and pulmonary hypertension, the main causes of neonatal mortality. As antenatal ultrasound screening improves, the risk of postnatal death can now be better predicted, allowing for the identification of fetuses that might most benefit from a prenatal intervention. Fetoscopic tracheal occlusion is being evaluated in a large international randomized controlled trial. We present the antenatal imaging approaches that can help identify fetuses that might benefit from antenatal therapy, and review the evolution of fetal surgery for CDH to date.
Collapse
Affiliation(s)
- Titilayo Oluyomi-Obi
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, University of Calgary, 1403 29 Street NW, Calgary, Alberta.
| | - Tim Van Mieghem
- Fetal Medicine Unit, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Greg Ryan
- Fetal Medicine Unit, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Mankouski A, Kantores C, Wong MJ, Ivanovska J, Jain A, Benner EJ, Mason SN, Tanswell AK, Auten RL, Jankov RP. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD. Am J Physiol Lung Cell Mol Physiol 2016; 312:L208-L216. [PMID: 27913427 PMCID: PMC5336579 DOI: 10.1152/ajplung.00463.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O2 until day 14 were recovered in air with or without IH (FIO2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O2-exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD.
Collapse
Affiliation(s)
- Anastasiya Mankouski
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina.,Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mathew J Wong
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Stanley N Mason
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - A Keith Tanswell
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard L Auten
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; .,Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|