1
|
Behnke J, Goetz MJ, Holzfurtner L, Korte P, Weiss A, Shahzad T, Wilhelm J, Schermuly RT, Rivetti S, Bellusci S, Ehrhardt H. Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. Am J Physiol Lung Cell Mol Physiol 2024; 327:L694-L711. [PMID: 39316679 DOI: 10.1152/ajplung.00355.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Maurizio J Goetz
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Pauline Korte
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
2
|
Yang Y, Li L, Fei J, Li Z. C2C12 myoblasts differentiate into myofibroblasts via the TGF-β1 signaling pathway mediated by Fibulin2. Gene 2024:149048. [PMID: 39490650 DOI: 10.1016/j.gene.2024.149048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Myoblast cells play a critical role in the regeneration of skeletal muscle following injury. It has been reported that local elevation of transforming growth factor-β1(TGF-β1) after skeletal muscle injury induces differentiation of myoblast cells into myofibroblasts.However, the mechanisms underlying this differentiation process remain incompletely understood. In this study, we found that Fibulin2 expression significantly increases in myoblast cells in response to TGF-β1 stimulation.Elevated Fibulin2 levels enhance the expression of fibrotic markers, mediated through phosphorylation of Smad2.Conversely, downregulation of Fibulin2 in myoblast cells inhibits the upregulation of fibrotic markers induced by TGF-β1 stimulation.Extracellular secretion of Fibulin2 activates the TGF-β1-Smad2 pathway, thereby promoting the upregulation of fibrotic markers.Hence, Fibulin2 and TGF-β1 form a positive feedback loop that facilitates differentiation of myoblast cells into myofibroblasts.
Collapse
Affiliation(s)
- Yongqiang Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Lei Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Fei
- Department of Emergency, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing , PR China.
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, PR China.
| |
Collapse
|
3
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Rodriguez-Alvarez L, Castro FO. Short preconditioning with TGFβ of equine adipose tissue-derived mesenchymal stem cells predisposes towards an anti-fibrotic secretory phenotype: A possible tool for treatment of endometrosis in mares. Theriogenology 2024; 225:119-129. [PMID: 38805994 DOI: 10.1016/j.theriogenology.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Endometrosis in mares is a disease resulting from chronic inflammation characterized by peri glandular fibrosis. There is no effective treatment so far, which opens the door for exploring the use of stem cells as a candidate. Transforming growth factor beta (TGFβ) is crucial for the establishment and progression of fibrosis in mare's endometrosis. We aimed to develop regenerative approaches to treat endometrosis by using mesenchymal stem cells (MSC), for which understanding the effect of TGFβ on exogenous MSC is crucial. We isolated and characterized equine adipose MSC from six donors. Cells were pooled and exposed to 10 ng/ml of TGFβ for 0, 4, and 24 h, after which cells were analyzed for proliferation, migration, mesodermal differentiation, expression of fibrosis-related mRNAs, and prostaglandin E2 secretion. At 24 h of exposition to TGFβ, there was a progressive increase in the contraction of the monolayer, leading to nodular structures, while cell viability did not change. Exposure to TGFβ impaired adipogenic and osteogenic differentiation after 4 h of treatment, which was more marked at 24 h, represented by a decrease in Oil red and Alizarin red staining, as well as a significant drop (p < 0.05) in the expression of key gene regulators of differentiation processes (PPARG for adipose and RUNX2 for osteogenic differentiation). TGFβ increased chondrogenic differentiation as shown by the upsurge in size of the resulting 3D cell pellet and intensity of Alcian Blue staining, as well as the significant up-regulation of SOX9 expression (p < 0.05) at 4 h, which reached a maximum peak at 24 h (p < 0.01), indicative of up-regulation of glycosaminoglycan synthesis. Preconditioning MSC with TGFβ led to a significant increase (p < 0.05) in the expression of myofibroblast gene markers aSMA, COL1A1, and TGFβ at 24 h exposition time. In contrast, the expression of COL3A1 did not change with respect to the control but registered a significant downregulation compared to 4 h (p < 0.05). TGFβ also affected the expression of genes involved in PGE2 synthesis and function; COX2, PTGES, and the PGE2 receptor EP4 were all significantly upregulated early at 4 h (p < 0.05). Cells exposed to TGFβ showed a significant upregulation of PGE2 secretion at 4 h compared to untreated cells (p < 0.05); conversely, at 24 h, the PGE2 values decreased significantly compared to control cells (p < 0.05). Preconditioning MSC for 4 h led to an anti-fibrotic secretory phenotype, while a longer period (24 h) led to a pro-fibrotic one. It is tempting to propose a 4-h preconditioning of exogenous MSC with TGFβ to drive them towards an anti-fibrotic phenotype for cellular and cell-free therapies in fibrotic diseases such as endometrosis of mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lidice Mendez-Pérez
- Ph.D Program in Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| |
Collapse
|
4
|
Liu J, Bao T, Zhou Y, Ma M, Tian Z. Deficiency of Secreted Phosphoprotein 1 Alleviates Hyperoxia-induced Bronchopulmonary Dysplasia in Neonatal Mice. Inflammation 2024:10.1007/s10753-024-02088-1. [PMID: 38951356 DOI: 10.1007/s10753-024-02088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disorder characterized by impaired proximal airway and bronchoalveolar development in premature births. Secreted phosphoprotein 1 (SPP1) is involved in lung development and lung injury events, while its role was not explored in BPD. For establishing the in vivo models of BPD, a mouse model of hyperoxia-induced lung injury was generated by exposing neonatal mice to hyperoxia for 7 days after birth. Alveolar myofibroblasts (AMYFs) were treated with hyperoxia to establish the in vitro models of BPD. Based on the scRNA-seq analysis of lungs of mice housed under normoxia or hyperoxia conditions, mouse macrophages and fibroblasts were main different cell clusters between the two groups, and differentially expressed genes in fibroblasts were screened. Further GO and KEGG enrichment analysis revealed that these differentially expressed genes were mainly enriched in the pathways related to cell proliferation, apoptosis as well as the PI3K-AKT and ERK/MAPK pathways. SPP1 was found up-regulated in the lung tissues of hyperoxia mice. We also demonstrated the up-regulation of SPP1 in the BPD patients, the mouse model of hyperoxia-induced lung injury, and hyperoxia-induced cells. SPP1 deficiency was revealed to reduce the hyperoxia-induced apoptosis, oxidative stress and inflammation and increase the viability of AMYFs. In the mouse model of hyperoxia induced lung injury, SPP1 deficiency was demonstrated to reverse the hyperoxia-induced alveolar growth disruption, oxidative stress and inflammation. Overall, SPP1 exacerbates BPD progression in vitro and in vivo by regulating oxidative stress and inflammatory response via the PI3K-AKT and ERK/MAPK pathways, which might provide novel therapeutic target for BPD therapy.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Yajuan Zhou
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Huanghe West Road, Huaiyin District Huaian, Jiangsu, 223300, China.
| |
Collapse
|
5
|
Vanbeckum DR, Kaciroti N, Cui TX, Popova AP. Neonatal Lung Mesenchymal Stromal Cells as Early Predictors of Post-prematurity Respiratory Disease. Am J Respir Cell Mol Biol 2024; 70:522-524. [PMID: 38819124 PMCID: PMC11160411 DOI: 10.1165/rcmb.2022-0487le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
|
6
|
McGowan SE, Gilfanov N, Chandurkar MK, Stiber JA, Han SJ. Drebrin is Required for Myosin-facilitated Actin Cytoskeletal Remodeling during Pulmonary Alveolar Development. Am J Respir Cell Mol Biol 2024; 70:308-321. [PMID: 38271699 DOI: 10.1165/rcmb.2023-0229oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Alveolar septation increases gas-exchange surface area and requires coordinated cytoskeletal rearrangement in lung fibroblasts (LFs) to balance the demands of contraction and cell migration. We hypothesized that DBN (drebrin), a modulator of the actin cytoskeleton in neuronal dendrites, regulates the remodeling of the LF cytoskeleton. Using mice bearing a transgelin-Cre-targeted deletion of Dbn in pulmonary fibroblasts and pericytes, we examined alterations in alveolar septal outgrowth, LF spreading and migration, and actomyosin function. The alveolar surface area and number of alveoli were reduced, whereas alveolar ducts were enlarged, in mice bearing the dbn deletion (DBNΔ) compared with their littermates bearing only one dbn-Flox allele (control). Cultured DBNΔ LFs were deficient in their responses to substrate rigidity and migrated more slowly. Drebrin was abundant in the actin cortex and lamella, and the actin fiber orientation was less uniform in lamella of DBNΔ LFs, which limited the development of traction forces and altered focal adhesion dynamics. Actin fiber orientation is regulated by contractile NM2 (nonmuscle myosin-2) motors, which help arrange actin stress fibers into thick ventral actin stress fibers. Using fluorescence anisotropy, we observed regional intracellular differences in myosin regulatory light chain phosphorylation in control LFs that were altered by dbn deletion. Using perturbations to induce and then release stalling of NM2 on actin in LFs from both genotypes, we made predictions explaining how DBN interacts with actin and NM2. These studies provide new insight for diseases such as emphysema and pulmonary fibrosis, in which fibroblasts inappropriately respond to mechanical cues in their environment.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Medical Center, Iowa City, Iowa
- Department of Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Mohanish K Chandurkar
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan
| | - Jonathan A Stiber
- Department of Medicine, Duke University, Durham, North Carolina; and
| | - Sangyoon J Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
7
|
Okuno K, Ikemura K, Okamoto R, Oki K, Watanabe A, Kuroda Y, Kidachi M, Fujino S, Nie Y, Higuchi T, Chuman M, Washio M, Sakuraya M, Niihara M, Kumagai K, Sangai T, Kumamoto Y, Naitoh T, Hiki N, Yamashita K. CAF-associated genes putatively representing distinct prognosis by in silico landscape of stromal components of colon cancer. PLoS One 2024; 19:e0299827. [PMID: 38557819 PMCID: PMC10984474 DOI: 10.1371/journal.pone.0299827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Comprehensive understanding prognostic relevance of distinct tumor microenvironment (TME) remained elusive in colon cancer. In this study, we performed in silico analysis of the stromal components of primary colon cancer, with a focus on the markers of cancer-associated fibroblasts (CAF) and tumor-associated endothelia (TAE), as well as immunological infiltrates like tumor-associated myeloid cells (TAMC) and cytotoxic T lymphocytes (CTL). The relevant CAF-associated genes (CAFG)(representing R index = 0.9 or beyond with SPARC) were selected based on stroma specificity (cancer stroma/epithelia, cS/E = 10 or beyond) and expression amounts, which were largely exhibited negative prognostic impacts. CAFG were partially shared with TAE-associated genes (TAEG)(PLAT, ANXA1, and PTRF) and TAMC-associated genes (TAMCG)(NNMT), but not with CTL-associated genes (CTLG). Intriguingly, CAFG were prognostically subclassified in order of fibrosis (representing COL5A2, COL5A1, and COL12A1) followed by exclusive TAEG and TAMCG. Prognosis was independently stratified by CD8A, a CTL marker, in the context of low expression of the strongest negative prognostic CAFG, COL8A1. CTLG were comprehensively identified as IFNG, B2M, and TLR4, in the group of low S/E, representing good prognosis. Our current in silico analysis of the micro-dissected stromal gene signatures with prognostic relevance clarified comprehensive understanding of clinical features of the TME and provides deep insights of the landscape.
Collapse
Affiliation(s)
- Kota Okuno
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kyonosuke Ikemura
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Riku Okamoto
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keiko Oki
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Watanabe
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yu Kuroda
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mikiko Kidachi
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shiori Fujino
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Nie
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tadashi Higuchi
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Motohiro Chuman
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Marie Washio
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mikiko Sakuraya
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiro Niihara
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koshi Kumagai
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
8
|
Moore CM, O'Reilly D, McCallion N, Curley AE. Changes in inflammatory proteins following platelet transfusion in a neonatal population. Pediatr Res 2023; 94:1973-1977. [PMID: 37443343 PMCID: PMC10665178 DOI: 10.1038/s41390-023-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Studies have demonstrated increased morbidity and mortality with platelet transfusions in the neonatal period. Platelets are as important for host immunity and inflammation as for hemostasis. Increased inflammation may explain the dose-associated increase in mortality, bleeding, and lung disease. OBJECTIVE This study aims to assess if there are any changes in inflammatory cytokines post-platelet transfusion in babies in NICU. METHODS This prospective observational study recruited babies due to receive a non-emergency platelet transfusion. Dried whole blood samples were collected prior to and 2 h post-transfusion. Samples were processed using multiplex immunoassay to enable analysis of tiny blood volumes. Statistical analysis was performed using R. RESULTS Seventeen babies underwent 26 platelet transfusions across two centers. Median birthweight was 1545 g (535-3960 g) and median birth gestation was 31 weeks and 1 day (23 + 1 to 40 + 5). Median pre-transfusion platelet count was 19.5 × 109/l. There was a significant increase in levels of CXCL5 (p < 0.001), CD40 (p = 0.001), and TGF-β (p = 0.001) in neonatal blood samples post-platelet transfusion in the study group. CONCLUSION The increase in the cytokines CXCL5, CD40 and TGF-β after platelet transfusion in babies in NICU could potentiate existing inflammation, NEC, lung, or white matter injury. This could potentially explain long-term harm from platelet transfusion in babies. IMPACT There is a change in levels of immunomodulatory proteins CXCL5, CD40, and TGF-β after platelet transfusion in babies in NICU. Murine neonatal models have demonstrated an increase in cytokine levels after platelet transfusions. This is the first time that this has been demonstrated in human neonates. The increase in proinflammatory cytokines could potentially explain the long-term harm from platelet transfusion in babies, as they could potentiate existing inflammation, NEC, lung injury, or white matter injury.
Collapse
Affiliation(s)
- Carmel Maria Moore
- University College Dublin, Belfield, Dublin 4, Ireland.
- National Maternity Hospital, Holles Street, Dublin 2, Ireland.
| | - Daniel O'Reilly
- University College Dublin, Belfield, Dublin 4, Ireland
- Rotunda Hospital, Parnell Square, Dublin 1, Ireland
| | - Naomi McCallion
- Rotunda Hospital, Parnell Square, Dublin 1, Ireland
- Royal College of Surgeons in Ireland, St Stephen's Green, Dublin 2, Ireland
| | - Anna E Curley
- University College Dublin, Belfield, Dublin 4, Ireland
- National Maternity Hospital, Holles Street, Dublin 2, Ireland
| |
Collapse
|
9
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
10
|
Vorstandlechner V, Copic D, Klas K, Direder M, Golabi B, Radtke C, Ankersmit HJ, Mildner M. The Secretome of Irradiated Peripheral Mononuclear Cells Attenuates Hypertrophic Skin Scarring. Pharmaceutics 2023; 15:pharmaceutics15041065. [PMID: 37111549 PMCID: PMC10143262 DOI: 10.3390/pharmaceutics15041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypertrophic scars can cause pain, movement restrictions, and reduction in the quality of life. Despite numerous options to treat hypertrophic scarring, efficient therapies are still scarce, and cellular mechanisms are not well understood. Factors secreted by peripheral blood mononuclear cells (PBMCsec) have been previously described for their beneficial effects on tissue regeneration. In this study, we investigated the effects of PBMCsec on skin scarring in mouse models and human scar explant cultures at single-cell resolution (scRNAseq). Mouse wounds and scars, and human mature scars were treated with PBMCsec intradermally and topically. The topical and intradermal application of PBMCsec regulated the expression of various genes involved in pro-fibrotic processes and tissue remodeling. We identified elastin as a common linchpin of anti-fibrotic action in both mouse and human scars. In vitro, we found that PBMCsec prevents TGFβ-mediated myofibroblast differentiation and attenuates abundant elastin expression with non-canonical signaling inhibition. Furthermore, the TGFβ-induced breakdown of elastic fibers was strongly inhibited by the addition of PBMCsec. In conclusion, we conducted an extensive study with multiple experimental approaches and ample scRNAseq data demonstrating the anti-fibrotic effect of PBMCsec on cutaneous scars in mouse and human experimental settings. These findings point at PBMCsec as a novel therapeutic option to treat skin scarring.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
11
|
Perrone S, Manti S, Buttarelli L, Petrolini C, Boscarino G, Filonzi L, Gitto E, Esposito SMR, Nonnis Marzano F. Vascular Endothelial Growth Factor as Molecular Target for Bronchopulmonary Dysplasia Prevention in Very Low Birth Weight Infants. Int J Mol Sci 2023; 24:ijms24032729. [PMID: 36769049 PMCID: PMC9916882 DOI: 10.3390/ijms24032729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) still represents an important burden of neonatal care. The definition of the disease is currently undergoing several revisions, and, to date, BPD is actually defined by its treatment rather than diagnostic or clinic criteria. BPD is associated with many prenatal and postnatal risk factors, such as maternal smoking, chorioamnionitis, intrauterine growth restriction (IUGR), patent ductus arteriosus (PDA), parenteral nutrition, sepsis, and mechanical ventilation. Various experimental models have shown how these factors cause distorted alveolar and vascular growth, as well as alterations in the composition and differentiation of the mesenchymal cells of a newborn's lungs, demonstrating a multifactorial pathogenesis of the disease. In addition, inflammation and oxidative stress are the common denominators of the mechanisms that contribute to BPD development. Vascular endothelial growth factor-A (VEGFA) constitutes the most prominent and best studied candidate for vascular development. Animal models have confirmed the important regulatory roles of epithelial-expressed VEGF in lung development and function. This educational review aims to discuss the inflammatory pathways in BPD onset for preterm newborns, focusing on the role of VEGFA and providing a summary of current and emerging evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- Correspondence:
| | - Sara Manti
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Unirsity of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Luca Buttarelli
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Laura Filonzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Unirsity of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Susanna Maria Roberta Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Francesco Nonnis Marzano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy
| |
Collapse
|
12
|
Noguchi Y, Taki A, Honda I, Sugie M, Shidei T, Ito K, Iwata H, Koyama A, Okazaki K, Kondo M, Morioka C, Kashimada K, Morio T. Transcriptome analysis of umbilical cord mesenchymal stem cells revealed fetal programming due to chorioamnionitis. Sci Rep 2022; 12:6537. [PMID: 35444246 PMCID: PMC9021264 DOI: 10.1038/s41598-022-10258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Although chorioamnionitis (CAM) has been demonstrated to be associated with numerous short- and long-term morbidities, the precise mechanisms remain unclear. One of the reasons for this is the lack of appropriate models for analyzing the relationship between the fetal environment and chorioamnionitis and fetal programming in humans. In this study, we aimed to clarify the fetal programming caused by CAM using the gene expression profiles of UCMSCs. From nine preterm neonates with CAM (n = 4) or without CAM (n = 5), we established UCMSCs. The gene expression profiles obtained by RNA-seq analysis revealed distinctive changes in the CAM group USMSCs. The UCMSCs in the CAM group had a myofibroblast-like phenotype with significantly increased expression levels of myofibroblast-related genes, including α-smooth muscle actin (p < 0.05). In the pathway analysis, the genes involved in DNA replication and G1 to S cell cycle control were remarkably decreased, suggesting that cellular proliferation was impaired, as confirmed by the cellular proliferation assay (p < 0.01–0.05). Pathway analysis revealed that genes related to white fat cell differentiation were significantly increased. Our results could explain the long-term outcomes of patients who were exposed to CAM and revealed that UCMSCs could be an in vitro model of fetal programming affected by CAM.
Collapse
Affiliation(s)
- Yusuke Noguchi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Atsuko Taki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Izumi Honda
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu-shi, Tokyo, 183-8524, Japan
| | - Manabu Sugie
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tsunanori Shidei
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuyuki Ito
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Haruka Iwata
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Akira Koyama
- Department of Obstetrics and Gynecology, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashidai, Fuchu-shi, Tokyo, 183-8524, Japan
| | - Kaoru Okazaki
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu-shi, Tokyo, 183-8561, Japan
| | - Masatoshi Kondo
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu-shi, Tokyo, 183-8561, Japan
| | - Chikako Morioka
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
13
|
Holzfurtner L, Shahzad T, Dong Y, Rekers L, Selting A, Staude B, Lauer T, Schmidt A, Rivetti S, Zimmer KP, Behnke J, Bellusci S, Ehrhardt H. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol Cell Pediatr 2022; 9:7. [PMID: 35445327 PMCID: PMC9021337 DOI: 10.1186/s40348-022-00137-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Even more than 50 years after its initial description, bronchopulmonary dysplasia (BPD) remains one of the most important and lifelong sequelae following premature birth. Tremendous efforts have been undertaken since then to reduce this ever-increasing disease burden but a therapeutic breakthrough preventing BPD is still not in sight. The inflammatory response provoked in the immature lung is a key driver of distorted lung development and impacts the formation of alveolar, mesenchymal, and vascular structures during a particularly vulnerable time-period. During the last 5 years, new scientific insights have led to an improved pathomechanistic understanding of BPD origins and disease drivers. Within the framework of current scientific progress, concepts involving disruption of the balance of key inflammatory and lung growth promoting pathways by various stimuli, take center stage. Still today, the number of efficient therapeutics available to prevent BPD is limited to a few, well-established pharmacological interventions including postnatal corticosteroids, early caffeine administration, and vitamin A. Recent advances in the clinical care of infants in the neonatal intensive care unit (NICU) have led to improvements in survival without a consistent reduction in the incidence of BPD. Our update provides latest insights from both preclinical models and clinical cohort studies and describes novel approaches to prevent BPD.
Collapse
Affiliation(s)
- Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Lisa Rekers
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Ariane Selting
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Birte Staude
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Tina Lauer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Annesuse Schmidt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Stefano Rivetti
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Judith Behnke
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392, Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Justus-Liebig-University, Feulgenstrasse 12, 35392, Giessen, Germany.
| |
Collapse
|
14
|
Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Exp Mol Med 2022; 54:273-284. [PMID: 35288649 PMCID: PMC8980093 DOI: 10.1038/s12276-022-00742-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been identified as a major cellular source of fibrosis, the exact molecular mechanism and signaling pathways involved have not been identified thus far. Here, we show that BM-MSCs contribute to fibrosis in myeloproliferative neoplasms (MPNs) by differentiating into αSMA-positive myofibroblasts. These cells display a dysregulated extracellular matrix with increased FN1 production and secretion of profibrotic MMP9 compared to healthy donor cells. Fibrogenic TGFβ and inflammatory JAK2/STAT3 and NFκB signaling pathway activity is increased in BM-MSCs of MPN patients. Moreover, coculture with mononuclear cells from MPN patients was sufficient to induce fibrosis in healthy BM-MSCs. Inhibition of JAK1/2, SMAD3 or NFκB significantly reduced the fibrotic phenotype of MPN BM-MSCs and was able to prevent the development of fibrosis induced by coculture of healthy BM-MSCs and MPN mononuclear cells with overly active JAK/STAT signaling, underlining their involvement in fibrosis. Combined treatment with JAK1/2 and SMAD3 inhibitors showed synergistic and the most favorable effects on αSMA and FN1 expression in BM-MSCs. These results support the combined inhibition of TGFβ and inflammatory signaling to extenuate fibrosis in MPN. The treatment of fibrosis in patients with rare bone marrow disorders could be improved with a combined therapy that targets inflammatory pathways. Myeloproliferative neoplasms (MPN) are a group of bone marrow disorders characterized by the over-production of blood cells, which can lead to fibrosis in the bone marrow. Vladan Čokić at the University of Belgrade, Serbia, and co-workers examined how stem cells known as mesenchymal stromal cells from the bone marrow contribute to MPN fibrosis. They found an increase in three pro-inflammatory signaling pathways in MPN patients, resulting in the stromal cells differentiating into cells with dysregulated extracellular matrices. The differentiated cells did not behave correctly nor degrade properly, triggering fibrosis. The team combined two drugs that target the inflammatory signaling pathways, and successfully inhibited the development of fibrosis in MPN cell cultures.
Collapse
|
15
|
Suezawa T, Kanagaki S, Moriguchi K, Masui A, Nakao K, Toyomoto M, Tamai K, Mikawa R, Hirai T, Murakami K, Hagiwara M, Gotoh S. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids. Stem Cell Reports 2021; 16:2973-2987. [PMID: 34798066 PMCID: PMC8693665 DOI: 10.1016/j.stemcr.2021.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Although alveolar epithelial cells play a critical role in the pathogenesis of pulmonary fibrosis, few practical in vitro models exist to study them. Here, we established a novel in vitro pulmonary fibrosis model using alveolar organoids consisting of human pluripotent stem cell-derived alveolar epithelial cells and primary human lung fibroblasts. In this human model, bleomycin treatment induced phenotypes such as epithelial cell-mediated fibroblast activation, cellular senescence, and presence of alveolar epithelial cells in abnormal differentiation states. Chemical screening performed to target these abnormalities showed that inhibition of ALK5 or blocking of integrin αVβ6 ameliorated the fibrogenic changes in the alveolar organoids. Furthermore, organoid contraction and extracellular matrix accumulation in the model recapitulated the pathological changes observed in pulmonary fibrosis. This human model may therefore accelerate the development of highly effective therapeutic agents for otherwise incurable pulmonary fibrosis by targeting alveolar epithelial cells and epithelial-mesenchymal interactions. Human pluripotent stem cell-based in vitro pulmonary fibrosis model was established Bleomycin-treated alveolar organoids showed epithelium-dependent contraction Abnormal differentiation state and cellular senescence in AT2 cells were mimicked Inhibition of TGFβ signaling ameliorated the fibrogenic changes of the disease model
Collapse
Affiliation(s)
- Takahiro Suezawa
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Shuhei Kanagaki
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Keita Moriguchi
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Kazuhisa Nakao
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masayasu Toyomoto
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Tamai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuta Mikawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Murakami
- Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Shimotsuga-gun, Tochigi, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
16
|
Sakurai R, Singh H, Wang Y, Harb A, Gornes C, Liu J, Rehan VK. Effect of Perinatal Vitamin D Deficiency on Lung Mesenchymal Stem Cell Differentiation and Injury Repair Potential. Am J Respir Cell Mol Biol 2021; 65:521-531. [PMID: 34126864 PMCID: PMC8641851 DOI: 10.1165/rcmb.2020-0183oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Stem cells, including the resident lung mesenchymal stem cells (LMSCs), are critically important for injury repair. Compelling evidence links perinatal vitamin D (VD) deficiency to reactive airway disease; however, the effects of perinatal VD deficiency on LMSC function is unknown. We tested the hypothesis that perinatal VD deficiency alters LMSC proliferation, differentiation, and function, leading to an enhanced myogenic phenotype. We also determined whether LMSCs' effects on alveolar type II (ATII) cell function are paracrine. Using an established rat model of perinatal VD deficiency, we studied the effects of four dietary regimens (0, 250, 500, or 1,000 IU/kg cholecalciferol-supplemented groups). At Postnatal Day 21, LMSCs were isolated, and cell proliferation and differentiation (under basal and adipogenic induction conditions) were determined. LMSC paracrine effects on ATII cell proliferation and differentiation were determined by culturing ATII cells in LMSC-conditioned media from different experimental groups. Using flow cytometry, >95% of cells were CD45-ve, >90% were CD90 + ve, >58% were CD105 + ve, and >64% were Stro-1 + ve, indicating their stem cell phenotype. Compared with the VD-supplemented groups, LMSCs from the VD-deficient group demonstrated suppressed PPARγ, but enhanced Wnt signaling, under basal and adipogenic induction conditions. LMSCs from 250 VD- and 500 VD-supplemented groups effectively blocked the effects of perinatal VD deficiency. LMSC-conditioned media from the VD-deficient group inhibited ATII cell proliferation and differentiation compared with those from the 250 VD- and 500 VD-supplemented groups. These data support the concept that perinatal VD deficiency alters LMSC proliferation and differentiation, potentially contributing to increased respiratory morbidity seen in children born to mothers with VD deficiency.
Collapse
Affiliation(s)
- Reiko Sakurai
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Himanshu Singh
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Ying Wang
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Amir Harb
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Christine Gornes
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Jie Liu
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles Medical Center, David Geffen School of Medicine at University of California Los Angeles, Torrance, California
| |
Collapse
|
17
|
Riedl J, Popp C, Eide C, Ebens C, Tolar J. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment. Cytotherapy 2021; 23:961-973. [PMID: 34376336 PMCID: PMC8569889 DOI: 10.1016/j.jcyt.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent stromal-derived cells capable of self-renewal that possess several advantageous properties for wound healing, making them of interest to the field of dermatology. Research has focused on characterizing the unique properties of MSCs, which broadly revolve around their regenerative and more recently discovered immunomodulatory capacities. Because of ease of harvesting and expansion, differentiation potential and low immunogenicity, MSCs have been leading candidates for tissue engineering and regenerative medicine applications for wound healing, yet results from clinical studies have been variable, and promising pre-clinical work has been difficult to reproduce. Therefore, the specific mechanisms of how MSCs influence the local microenvironment in distinct wound etiologies warrant further research. Of specific interest in MSC-mediated healing is harnessing the secretome, which is composed of components known to positively influence wound healing. Molecules released by the MSC secretome can promote re-epithelialization and angiogenesis while inhibiting fibrosis and microbial invasion. This review focuses on the therapeutic interest in MSCs with regard to wound healing applications, including burns and diabetic ulcers, with specific attention to the genetic skin disease recessive dystrophic epidermolysis bullosa. This review also compares various delivery methods to support skin regeneration in the hopes of combating the poor engraftment of MSCs after delivery, which is one of the major pitfalls in clinical studies utilizing MSCs.
Collapse
Affiliation(s)
- Julia Riedl
- Medical Scientist Training Program (MD/PhD), University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Courtney Popp
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christen Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
18
|
Tam A, Leclair P, Li LV, Yang CX, Li X, Witzigmann D, Kulkarni JA, Hackett TL, Dorscheid DR, Singhera GK, Hogg JC, Cullis PR, Sin DD, Lim CJ. FAM13A as potential therapeutic target in modulating TGF-β-induced airway tissue remodeling in COPD. Am J Physiol Lung Cell Mol Physiol 2021; 321:L377-L391. [PMID: 34105356 DOI: 10.1152/ajplung.00477.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-β1 (TGF-β1). To determine the role of FAM13A in TGF-β1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-β1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-β1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in β-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-β1 treatment. FAM13A overexpression was partially protective from TGF-β1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, β-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-β1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ling Vicky Li
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen X Yang
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Xuan Li
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gurpreet K Singhera
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James C Hogg
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Zhou S, Ma Y, Yao J, Zhao A, Xie C, Mi Y, Zhang C. TGF-β1-induced collagen promotes chicken ovarian follicle development via an intercellular cooperative pattern. Cell Biol Int 2021; 45:1336-1348. [PMID: 33675281 DOI: 10.1002/cbin.11580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 02/01/2023]
Abstract
Follicle development is a complex process under strict regulation of diverse hormones and cytokines including transforming growth factor β (TGF-β) superfamily members. TGF-β is pivotal for the regulation of ovarian functions under physiological and pathological conditions. In this study, effect of TGF-β1 on chicken follicle development was examined through investigating the accumulation and action of collagen, an indispensable member of the extracellular matrix (ECM) involved in this process. The granulosa cells (GCs) and theca cells (TCs) were separated from growing follicles of the laying chicken for treatment of TGF-β1 and analysis of expression of ECM components and key proteins in intracellular signaling pathways. Results showed that collagen was mainly distributed in the follicular theca layer and was produced with the formation of the granulosa layer during ovarian development. Collagen accumulation increased with follicle growth and treatment of GCs with TGF-β1 elicited an increased expression of collagen. After production from GCs, collagen was transferred to the neighboring TCs to promote cell proliferation and inhibit apoptosis. Treatment of collagen remarkably increased expression of p-ERK, mitogen-activated protein kinase (MAPK), and p-MAPK, but treatment with hydroxylase inhibitor (to break collagen structure) reversed these alterations. In conclusion, during follicle growth collagen was secreted by GCs under TGF-β1 stimulation and was subsequently collaboratively transferred to neighboring TCs to increase cell proliferation and thus to promote follicle development via an intercellular cooperative pattern during development of chicken growing follicles.
Collapse
Affiliation(s)
- Shuo Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanfen Ma
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinwei Yao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - An Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chukang Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Cui TX, Brady AE, Fulton CT, Zhang YJ, Rosenbloom LM, Goldsmith AM, Moore BB, Popova AP. CCR2 Mediates Chronic LPS-Induced Pulmonary Inflammation and Hypoalveolarization in a Murine Model of Bronchopulmonary Dysplasia. Front Immunol 2020; 11:579628. [PMID: 33117383 PMCID: PMC7573800 DOI: 10.3389/fimmu.2020.579628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
The histopathology of bronchopulmonary dysplasia (BPD) includes hypoalveolarization and interstitial thickening due to abnormal myofibroblast accumulation. Chorioamnionitis and sepsis are major risk factors for BPD development. The cellular mechanisms leading to these lung structural abnormalities are poorly understood. We used an animal model with repeated lipopolysaccharide (LPS) administration into the airways of immature mice to simulate prolonged airway exposure to gram-negative bacteria, focusing on the role of C-C chemokine receptor type 2-positive (CCR2+) exudative macrophages (ExMf). Repetitive LPS exposure of immature mice induced persistent hypoalveolarization observed at 4 and 18 days after the last LPS administration. LPS upregulated the expression of lung pro-inflammatory cytokines (TNF-α, IL-17a, IL-6, IL-1β) and chemokines (CCL2, CCL7, CXCL1, and CXCL2), while the expression of genes involved in lung alveolar and mesenchymal cell development (PDGFR-α, FGF7, FGF10, and SPRY1) was decreased. LPS induced recruitment of ExMf, including CCR2+ ExMf, as well as other myeloid cells like DCs and neutrophils. Lungs of LPS-exposed CCR2−/− mice showed preserved alveolar structure and normal patterns of α-actin and PDGFRα expression at the tips of the secondary alveolar crests. Compared to wild type mice, a significantly lower number of ExMf, including TNF-α+ ExMf were recruited to the lungs of CCR2−/− mice following repetitive LPS exposure. Further, pharmacological inhibition of TLR4 with TAK-242 also blocked the effect of LPS on alveolarization, α-SMA and PDGFRα expression. TNF-α and IL-17a induced α-smooth muscle actin expression in the distal airspaces of E16 fetal mouse lung explants. In human preterm lung mesenchymal stromal cells, TNF-α reduced mRNA and protein expression of PDGFR-α and decreased mRNA expression of WNT2, FOXF2, and SPRY1. Collectively, our findings demonstrate that in immature mice repetitive LPS exposure, through TLR4 signaling increases lung inflammation and impairs lung alveolar growth in a CCR2-dependent manner.
Collapse
Affiliation(s)
- Tracy X Cui
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Brady
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Christina T Fulton
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ying-Jian Zhang
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Liza M Rosenbloom
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam M Goldsmith
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Antonia P Popova
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
21
|
FoxC1-Induced Vascular Niche Improves Survival and Myocardial Repair of Mesenchymal Stem Cells in Infarcted Hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7865395. [PMID: 32963702 PMCID: PMC7490631 DOI: 10.1155/2020/7865395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Aims Forkhead box C1 (FoxC1) is essential for maintaining the hair follicle stem cell niche. The role of FoxC1 in maintaining mesenchymal stem cell (MSC) niches after myocardial infarction (MI) has not been directly determined to date. In this study, we determined to explore the possible roles and mechanisms of FoxC1 on MSC survival and function in the ischemic niche. Methods and Results MI model was established in this study, and expression level of FoxC1 was overexpressed or knocked down through efficient delivery of FoxC1 transfection or siFoxC1. Fifteen days later, the animals were allocated randomly to receive phosphate-buffered saline (PBS) injection or MSC transplantation. We identified FoxC1 as a key regulator of maintaining the vascular niche in the infarcted hearts (IHs) by driving proangiogenic and anti-inflammatory cytokines while repressing inflammatory and fibrotic factor expression. This vascular niche improved MSC survival and capacity in the IHs. Importantly, FoxC1 interacted with MSCs and was required for vessel specification and differentiation of engrafted MSCs in the ischemic niches, promoting myocardial repair. Inhibiting FoxC1 abolished these effects. Conclusion These results definitively implicate FoxC1 signaling in maintaining ischemic vascular niche, which may be helpful in myocardial repair induced by MSC therapy.
Collapse
|
22
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
23
|
Hreha TN, Collins CA, Daugherty AL, Twentyman J, Paluri N, Hunstad DA. TGFβ1 orchestrates renal fibrosis following Escherichia coli pyelonephritis. Physiol Rep 2020; 8:e14401. [PMID: 32227630 PMCID: PMC7104652 DOI: 10.14814/phy2.14401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Renal scarring after pyelonephritis is linked to long-term health risks for hypertension and chronic kidney disease. Androgen exposure increases susceptibility to, and severity of, uropathogenic Escherichia coli (UPEC) pyelonephritis and resultant scarring in both male and female mice, while anti-androgen therapy is protective against severe urinary tract infection (UTI) in these models. This work employed androgenized female C57BL/6 mice to elucidate the molecular mechanisms of post-infectious renal fibrosis and to determine how these pathways are altered by the presence of androgens. We found that elevated circulating testosterone levels primed the kidney for fibrosis by increasing local production of TGFβ1 before the initiation of UTI, altering the ratio of transcription factors Smad2 and Smad3 and increasing the presence of mesenchymal stem cell (MSC)-like cells and Gli1 + activated myofibroblasts, the cells primarily responsible for deposition of scar components. Increased production of TGFβ1 and aberrations in Smad2:Smad3 were maintained throughout the course of infection in the presence of androgen, correlating with renal scarring that was not observed in non-androgenized female mice. Pharmacologic inhibition of TGFβ1 signaling blunted myofibroblast activation. We conclude that renal fibrosis after pyelonephritis is exacerbated by the presence of androgens and involves activation of the TGFβ1 signaling cascade, leading to increases in cortical populations of MSC-like cells and the Gli1 + activated myofibroblasts that are responsible for scarring.
Collapse
Affiliation(s)
- Teri N. Hreha
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | | | | | - Joy Twentyman
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Present address:
Department of Global HealthUniversity of WashingtonSeattleWAUSA
| | - Nitin Paluri
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - David A. Hunstad
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Molecular MicrobiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
24
|
Möbius MA, Freund D, Vadivel A, Koss S, McConaghy S, Ohls RK, Rüdiger M, Thébaud B. Oxygen Disrupts Human Fetal Lung Mesenchymal Cells. Implications for Bronchopulmonary Dysplasia. Am J Respir Cell Mol Biol 2019; 60:592-600. [PMID: 30562051 DOI: 10.1165/rcmb.2018-0358oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exogenous mesenchymal stromal cells (MSCs) ameliorate experimental bronchopulmonary dysplasia. Moreover, data from term-born animal models and human tracheal aspirate-derived cells suggest altered mesenchymal signaling in the pathophysiology of neonatal lung disease. We hypothesized that hyperoxia, a factor contributing to the development of bronchopulmonary dysplasia, perturbs human lung-resident MSC function. Mesenchymal cells were isolated from human fetal lung tissue (16-18 wk of gestation), characterized and cultured in conditions resembling either intrauterine (5% O2) or extrauterine (21% and 60% O2) atmospheres. Secretome data were compared with MSCs obtained from term umbilical cord tissues. The human fetal lung mesenchyme almost exclusively contains CD146pos. MSCs expressing SOX-2 and OCT-4, which secrete elastin, fibroblast growth factors 7 and 10, vascular endothelial growth factor, angiogenin, and other lung cell-protecting/-maturing proteins. Exposure to extrauterine atmospheres in vitro leads to excessive proliferation, reduced colony-forming ability, alterations in the cell's surface marker profile, decreased elastin deposition, and impaired secretion of factors important for lung growth. Conversely, umbilical cord-derived MSCs abundantly secreted factors that impaired lung MSCs are unable to produce. Oxygen-impaired human fetal lung MSC function may contribute to disrupted repair capacity and arrested lung growth. Exogenous MSCs may act by triggering the signaling pathways lost by impaired endogenous lung mesenchymal cells.
Collapse
Affiliation(s)
- Marius A Möbius
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany.,3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Daniel Freund
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Arul Vadivel
- 3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Sarah Koss
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany
| | - Suzanne McConaghy
- 4 Division of Neonatology, Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico; and
| | - Robin K Ohls
- 4 Division of Neonatology, Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico; and
| | - Mario Rüdiger
- 1 Fachbereich Neonatologie und Pädiatrische Intensivmedizin, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden, Dresden, Saxony, Germany.,2 Deutsche Forschungsgemeinschaft Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Bernard Thébaud
- 3 Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,5 Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
26
|
Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and Phenotype Control of Human Dermal Fibroblasts by Electrospun Fibrous Substrates. Adv Healthc Mater 2019; 8:e1801378. [PMID: 30901162 DOI: 10.1002/adhm.201801378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Electrospun fibrous matrices, mimicking extracellular matrix (ECM) hierarchical structures, are potential scaffolds for wound healing. To design functional scaffolds, it is important to explore the interactions between scaffold topographic features and cellular responses, especially directional migration and phenotypic changes, which are critical functional aspects during wound healing. Here, accelerated and persistent migration of human dermal fibroblasts (HDFs) is observed on fibers with aligned orientation. Furthermore, aligned fibers can induce fibroblast-to-myofibroblast differentiation of HDFs. During wound healing, the presence of myofibroblasts advances wound repair by rendering contractile force and ECM deposition within the early and middle courses, but its continuous persistence in the later event may not be desired due to the contribution in pathological scarring. To tune the balance, it is noted in this work that the introduction of matricellular protein angiopoietin-like 4 (ANGPTL4) is capable of reversing the phenotypic alteration induced by aligned fibers, in a time-dependent manner. These results indicate fibrous matrices with oriented configuration are functional in mediating directional cell migration and phenotypic change. The discoveries further suggest that tissue-engineered fibrous grafts with precise alignment modulation and ANGPTL4 releasing properties may thus be promising to promote wound repair with minimizing scar formation.
Collapse
Affiliation(s)
- Huizhi Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
- Interdisciplinary Graduate SchoolNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yuan Siang Lui
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Zhen Wei Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Justin Yin Hao Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University 59 Nanyang Drive Singapore 636921 Singapore
| | - Lay Poh Tan
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
27
|
Kloth C, Gruben N, Ochs M, Knudsen L, Lopez-Rodriguez E. Flow cytometric analysis of the leukocyte landscape during bleomycin-induced lung injury and fibrosis in the rat. Am J Physiol Lung Cell Mol Physiol 2019; 317:L109-L126. [PMID: 31042078 DOI: 10.1152/ajplung.00176.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bleomycin-induced lung injury and fibrosis is a well-described model to investigate lung inflammatory and remodeling mechanisms. Rat models are clinically relevant and are also widely used, but rat bronchoalveolar lavage (BAL) cells are not fully characterized with flow cytometry due to the limited availability of antibodies for this species. We optimized a comprehensive time-dependent flow cytometric analysis of cells after bleomycin challenge, confirming previous studies in other species and correlating them to histological staining, cytokine profiling, and collagen accumulation analysis in rat lungs. For this purpose, we describe a novel panel of rat surface markers and a strategy to identify and follow BAL cells over time. By combining surface markers in rat alveolar cells (CD45+), granulocytes and other myeloid cells, monocytes and macrophages can be identified by the expression of CD11b/c. Moreover, different activation states of macrophages (CD163+) can be observed: steady state (CD86-MHC-IIlow), activation during inflammation (CD86+,MHC-IIhigh), activation during remodeling (CD86+MHC-IIlow), and a population of newly recruited monocytes (CD163-α-granulocyte-). Hydroxyproline measured as marker of collagen content in lung tissue showed positive correlation with the reparative phase (CD163- cells and tissue inhibitor of metalloproteinases (TIMP) and IL-10 increase). In conclusion, after a very early granulocytic recruitment, inflammation in rat lungs is observed by activated macrophages, and high release of IL-6 and fibrotic remodeling is characterized by recovery of the macrophage population together with TIMP, IL-10, and IL-18 production. Recruited monocytes and a second peak of granulocytes appear in the transitioning phase, correlating with immunostaining of arginase-1 in the tissue, revealing the importance of events leading the changes from injury to aberrant repair.
Collapse
Affiliation(s)
- Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Experimental Haematology, Hannover Medical School , Hannover , Germany
| | - Nele Gruben
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| |
Collapse
|
28
|
Macrin D, Alghadeer A, Zhao YT, Miklas JW, Hussein AM, Detraux D, Robitaille AM, Madan A, Moon RT, Wang Y, Devi A, Mathieu J, Ruohola-Baker H. Metabolism as an early predictor of DPSCs aging. Sci Rep 2019; 9:2195. [PMID: 30778087 PMCID: PMC6379364 DOI: 10.1038/s41598-018-37489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Tissue resident adult stem cells are known to participate in tissue regeneration and repair that follows cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs), a population of adult stem cells that is known to participate in the repair of an injured tooth, and its properties can be affected by aging. The dental pulp from third molars of a diverse patient group were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell markers CD29, CD44, CD146 and Stro1 and had the ability to differentiate into osteo/odontogenic and adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis we identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the transforming growth factor-beta (TGF-β) pathway and the cytoskeletal proteins are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature for DPSCs aging.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA.,Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam, 31441, Saudi Arabia
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA
| | - Jason W Miklas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Damien Detraux
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA
| | - Aaron M Robitaille
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA, 98052, USA
| | - Randall T Moon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Pharmacology, University of Washington, Seattle, WA, 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Arikketh Devi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA.,Department of Comparative Medicine, University of Washington, School of Medicine, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA, 98195, USA. .,Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, 98109, USA. .,Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
29
|
Glandular defects in the mouse uterus with sustained activation of TGF-beta signaling is associated with altered differentiation of endometrial stromal cells and formation of stromal compartment. PLoS One 2018; 13:e0209417. [PMID: 30550590 PMCID: PMC6294433 DOI: 10.1371/journal.pone.0209417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022] Open
Abstract
Uterine gland development, also known as adenogenesis, is a key uterine morphogenic process indispensable for normal uterine function and fertility. Our earlier studies have reported that overactivation of TGFB receptor 1 (TGFBR1) in the mouse uterus using progesterone receptor (Pgr)-Cre recombinase causes female infertility, defective decidualization, and reduced uterine gland formation, a developmental milestone of postnatal uterus. To understand mechanisms that underpin the disrupted uterine gland formation in mice with sustained activation of TGFBR1, we raised the question of whether early postnatal adenogenesis was compromised in these mice. Experiments were designed using mice with constitutive activation of TGFBR1 driven by Pgr-Cre to determine the timing of adenogenic defects and potential mechanisms associated with dysregulation of adenogenic genes, luminal epithelial cell proliferation and endometrial fibrotic changes. Uterine tissues from mice with constitutive activation of TGFBR1 were collected during the critical time window of adenogenesis and analyzed together with age-matched controls. Multiple approaches including immunohistochemistry, immunofluorescence, Trichrome staining, quantitative real-time PCR, western blot, conditional knockout and human endometrial cell culture were utilized. TGFBR1 activation in the mouse uterus suppressed adenogenesis during postnatal uterine development, concomitant with the aberrant differentiation of uterine stromal cells. Analysis of transcript expression of WNT pathway components revealed dysregulation of adenogenesis-associated genes. Notably, the adenogenic defects occurred in spite of the increased proliferation of uterine luminal epithelial cells, accompanied by increased expression of genes associated with fibrotic changes. Moreover, the adenogenic defects were alleviated in mice where TGFBR1 was activated in presumably half of the complement of uterine cells. Our results suggest that altered differentiation of endometrial stromal cells and formation of stromal compartment promote adenogenic defects.
Collapse
|
30
|
Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci Rep 2018; 8:17070. [PMID: 30459472 PMCID: PMC6244280 DOI: 10.1038/s41598-018-35256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Male sex is a risk factor for development of bronchopulmonary dysplasia (BPD), a common chronic lung disease following preterm birth. We previously found that tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants developing BPD show reduced expression of PDGFRα, which is required for normal lung development. We hypothesized that MSCs from male infants developing BPD exhibit a pathologic gene expression profile deficient in PDGFR and its downstream effectors, thereby favoring delayed lung development. In a discovery cohort of 6 male and 7 female premature infants, we analyzed the tracheal aspirate MSCs transcriptome. A unique gene signature distinguished MSCs from male infants developing BPD from all other MSCs. Genes involved in lung development, PDGF signaling and extracellular matrix remodeling were differentially expressed. We sought to confirm these findings in a second cohort of 13 male and 12 female premature infants. mRNA expression of PDGFRA, FGF7, WNT2, SPRY1, MMP3 and FOXF2 were significantly lower in MSCs from male infants developing BPD. In female infants developing BPD, tracheal aspirate levels of proinflammatory CCL2 and profibrotic Galectin-1 were higher compared to male infants developing BPD and female not developing BPD. Our findings support a notion for sex-specific differences in the mechanisms of BPD development.
Collapse
|
31
|
Thébaud B. Stem cell-based therapies in neonatology: a new hope. Arch Dis Child Fetal Neonatal Ed 2018; 103:F583-F588. [PMID: 29973349 DOI: 10.1136/archdischild-2017-314451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023]
Abstract
Despite progress made in neonatal intensive care, complications of extreme preterm birth still contribute as the main cause of death to children below 5 years of age. Stem cell-based therapies-mesenchymal stromal cells in particular-offer a new hope in preventing and/or restoring organ damage in extreme preterm infants. Early phase clinical trials, fueled by promising preclinical studies on lung and brain injury, have begun. While the enthusiasm in the neonatal community is palpable, much more needs to be learnt about cell-based therapies. Maintaining the balance between temptation and a cautious, evidence-based approach will be critical for cell therapies to fulfil their promise in substantially improving the outcome of extreme preterm infants.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Tang W, Zhang Y, Tang L, Zhang J, Xiong L, Wang B. Inhibitory effect of tranilast on the myofibroblast differentiation of rat mesenchymal stem cells induced by transforming growth factor‑β1 in vitro. Mol Med Rep 2018; 18:5693-5700. [PMID: 30365138 DOI: 10.3892/mmr.2018.9588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/12/2018] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is able to attenuate organ fibrosis; however, increasing evidence has indicated that MSCs may be an important cell source of myofibroblasts, which are vital pathogenic cells in fibrotic diseases. The results of the present study revealed that co‑culturing with exogenous transforming growth factor (TGF)‑β1 can induce the transdifferentiation of cultured rat MSCs into myofibroblasts in vitro. Treatment of the MSCs with tranilast [N‑(3',4'‑dimethoxycinnamoyl)‑anthranilic acid] attenuated this fibrotic process. Immunocytochemical staining, western blot analysis, reverse transcription‑quantitative polymerase chain reaction analysis and cell viability assays were performed in order to evaluate the molecular mechanisms underlying the effects of tranilast on TGF‑β1‑mediated MSC‑to‑myofibroblast activation. The results demonstrated that TGF‑β1 upregulated the expression of α‑smooth muscle actin (α‑SMA) and collagen type I, and increased the phosphorylation of mothers against decapentaplegic homolog 3 (Smad3) and extracellular signal‑regulated kinase 1/2 (ERK1/2) in the rat MSCs; by contrast, tranilast pretreatment downregulated their expression. Furthermore, the proliferation of MSCs induced by TGF‑β1 was decreased by pretreatment with tranilast. In conclusion, the results of the present study demonstrated that tranilast treatment markedly suppressed the TGF‑β1‑induced differentiation of cultured rat MSCs into myofibroblasts, potentially by inhibiting the Smad3 and ERK1/2 signaling pathways. Therefore, this may be a potential antifibrotic therapeutic strategy, serving as an adjuvant treatment following transplantation of MSCs.
Collapse
Affiliation(s)
- Wenxian Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yuejuan Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Lin Tang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jun Zhang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Lei Xiong
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Baohe Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
33
|
Cao H, Wang C, Chen X, Hou J, Xiang Z, Shen Y, Han X. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 2018. [PMID: 30206265 DOI: 10.1038/s41598-018-28968-9.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An emerging paradigm proposes a crucial role for lung resident mesenchymal stem cells (LR-MSCs) via a fibroblastic transdifferentiation event in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Aberrant activation of Wnt/β-catenin signaling occurs in virtually all fibrotic lung diseases and is relevant to the differentiation of mesenchymal stem cells (MSCs). In vitro, by measuring the protein levels of several key components involved in Wnt/β-catenin signaling, we confirmed that this signaling pathway was activated in the myofibroblast differentiation of LR-MSCs. Targeted inhibition of Wnt/β-catenin signaling by a small molecule, ICG-001, dose-dependently impeded the proliferation and transforming growth factor-β1 (TGF-β1)-mediated fibrogenic actions of LR-MSCs. In vivo, ICG-001 exerted its lung protective effects after bleomycin treatment through blocking mesenchymal-myofibroblast transition, repressing matrix gene expression, and reducing cell apoptosis. Moreover, delayed administration of ICG-001 attenuated bleomycin-induced lung fibrosis, which may present a promising therapeutic strategy for intervention of IPF. Interestingly, these antifibrotic actions of ICG-001 are operated by a mechanism independent of any disruption of Smad activation. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of myofibroblast differentiation of LR-MSCs and their further participation in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
34
|
Cao H, Wang C, Chen X, Hou J, Xiang Z, Shen Y, Han X. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 2018; 8:13644. [PMID: 30206265 PMCID: PMC6134002 DOI: 10.1038/s41598-018-28968-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/25/2018] [Indexed: 02/08/2023] Open
Abstract
An emerging paradigm proposes a crucial role for lung resident mesenchymal stem cells (LR-MSCs) via a fibroblastic transdifferentiation event in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Aberrant activation of Wnt/β-catenin signaling occurs in virtually all fibrotic lung diseases and is relevant to the differentiation of mesenchymal stem cells (MSCs). In vitro, by measuring the protein levels of several key components involved in Wnt/β-catenin signaling, we confirmed that this signaling pathway was activated in the myofibroblast differentiation of LR-MSCs. Targeted inhibition of Wnt/β-catenin signaling by a small molecule, ICG-001, dose-dependently impeded the proliferation and transforming growth factor-β1 (TGF-β1)-mediated fibrogenic actions of LR-MSCs. In vivo, ICG-001 exerted its lung protective effects after bleomycin treatment through blocking mesenchymal-myofibroblast transition, repressing matrix gene expression, and reducing cell apoptosis. Moreover, delayed administration of ICG-001 attenuated bleomycin-induced lung fibrosis, which may present a promising therapeutic strategy for intervention of IPF. Interestingly, these antifibrotic actions of ICG-001 are operated by a mechanism independent of any disruption of Smad activation. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of myofibroblast differentiation of LR-MSCs and their further participation in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Cong Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of New Drug Discovery, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
35
|
Lecarpentier Y, Schussler O, Sakic A, Rincon-Garriz JM, Soulie P, Bochaton-Piallat ML, Kindler V. Human Bone Marrow Contains Mesenchymal Stromal Stem Cells That Differentiate In Vitro into Contractile Myofibroblasts Controlling T Lymphocyte Proliferation. Stem Cells Int 2018; 2018:6134787. [PMID: 29853916 PMCID: PMC5949154 DOI: 10.1155/2018/6134787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stromal stem cells (MSC) that reside in the bone marrow (BM) can be amplified in vitro. In 2-dimension (D) cultures, MSC exhibit a morphology similar to fibroblasts, are able to inhibit T lymphocyte and natural killer cell proliferation, and can be differentiated into adipocytes, chondrocytes, or osteoblasts if exposed to specific media. Here we show that medullar MSC cultured in 2D formed an adherent stroma of cells expressing well-organized microfilaments containing α-smooth muscle actin and nonmuscle myosin heavy chain IIA. MSC could be grown in 3D in collagen membranes generating a structure which, upon exposition to 50 mM KCl or to an alternating electric current, developed a contractile strength that averaged 34 and 45 μN/mm2, respectively. Such mechanical tension was similar in intensity and in duration to that of human placenta and was annihilated by isosorbide dinitrate or 2,3-butanedione monoxime. Membranes devoid of MSC did not exhibit a significant contractility. Moreover, MSC nested in collagen membranes were able to control T lymphocyte proliferation, and differentiated into adipocytes, chondrocytes, or osteoblasts. Our observations show that BM-derived MSC cultured in collagen membranes spontaneously differentiate into contractile myofibroblasts exhibiting unexpected properties in terms of cell differentiation potential and of immunomodulatory function.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francillien, 77104 Meaux, France
| | - Olivier Schussler
- Department of Cardiovascular Surgery, Research Laboratory, University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Antonija Sakic
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - José Maria Rincon-Garriz
- Department of Specialties in Medicine, Hematology Service, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| | - Priscilla Soulie
- Department of Histology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Centre Médical Universitaire Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vincent Kindler
- Department of Specialties in Medicine, Hematology Service, Geneva University Hospitals, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
36
|
Reicherzer T, Häffner S, Shahzad T, Gronbach J, Mysliwietz J, Hübener C, Hasbargen U, Gertheiss J, Schulze A, Bellusci S, Morty RE, Hilgendorff A, Ehrhardt H. Activation of the NF-κB pathway alters the phenotype of MSCs in the tracheal aspirates of preterm infants with severe BPD. Am J Physiol Lung Cell Mol Physiol 2018; 315:L87-L101. [PMID: 29644893 DOI: 10.1152/ajplung.00505.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are released into the airways of preterm infants following lung injury. These cells display a proinflammatory phenotype and are associated with development of severe bronchopulmonary dysplasia (BPD). We aimed to characterize the functional properties of MSCs obtained from tracheal aspirates of 50 preterm infants who required invasive ventilation. Samples were separated by disease severity. The increased proliferative capacity of MSCs was associated with longer duration of mechanical ventilation and higher severity of BPD. Augmented growth depended on nuclear accumulation of NFκBp65 and was accompanied by reduced expression of cytosolic α-smooth muscle actin (α-SMA). The central role of NF-κB signaling was confirmed by inhibition of IκBα phosphorylation. The combined score of proliferative capacity, accumulation of NFκBp65, and expression of α-SMA was used to predict the development of severe BPD with an area under the curve (AUC) of 0.847. We mimicked the clinical situation in vitro, and stimulated MSCs with IL-1β and TNF-α. Both cytokines induced similar and persistent changes as was observed in MSCs obtained from preterm infants with severe BPD. RNA interference was employed to investigate the mechanistic link between NFκBp65 accumulation and alterations in phenotype. Our data indicate that determining the phenotype of resident pulmonary MSCs represents a promising biomarker-based approach. The persistent alterations in phenotype, observed in MSCs from preterm infants with severe BPD, were induced by the pulmonary inflammatory response. NFκBp65 accumulation was identified as a central regulatory mechanism. Future preclinical and clinical studies, aimed to prevent BPD, should focus on phenotype changes in pulmonary MSCs.
Collapse
Affiliation(s)
- Tobias Reicherzer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Susanne Häffner
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| | - Judith Gronbach
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| | - Josef Mysliwietz
- Institute of Molecular Immunology, Helmholtz Center Munich , Munich , Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, Perinatal Center, University Hospital, Ludwig-Maximilians-University, Munich , Germany
| | - Uwe Hasbargen
- Department of Obstetrics and Gynecology, Perinatal Center, University Hospital, Ludwig-Maximilians-University, Munich , Germany
| | - Jan Gertheiss
- Institute of Applied Stochastics and Operations Research, Research Group Applied Statistics, Clausthal University of Technology , Clausthal-Zellerfeld , Germany
| | - Andreas Schulze
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research (DZL), Department of Internal Medicine II , Giessen , Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL) , Bad Nauheim , Germany
| | - Anne Hilgendorff
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Harald Ehrhardt
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| |
Collapse
|
37
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
38
|
LaGrandeur RG, Singhal M, Bany-Mohammed F, Uy C, Koeppel R, Zaldivar F, Haddad F, Nalbandian A, Donovan P, Cooper DM, Aslam M. Pilot feasibility study to detect mesenchymal stem cell biomarkers of bronchopulmonary dysplasia in the tracheal aspirate fluid of preterm infants. J Neonatal Perinatal Med 2018; 11:1-10. [PMID: 29689740 DOI: 10.3233/npm-181722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE This study aimed to detect novel mesenchymal stem cell peptides/biomarkers of bronchopulmonary dysplasia (BPD) in the tracheal aspirate fluid (TAF) of preterm infants. STUDY DESIGN Participants included infants less than 32 weeks' gestational age or birth weight under 1500 grams who required endotracheal intubation and mechanical ventilation within first 24 hours of life. TAF sample collection was performed at the time of the first clinically indicated routine suctioning. Standardization curves for human levels of osteopontin (Opn), macrophage colony stimulating factor 1 (Csf1), transforming growth factor beta 1 (TGF-β1), and secretory immunoglobulin A (sIgA) were generated for 15 enrolled participants. RESULTS We demonstrated that stem cell biomarkers are secreted into the TAF of preterm infants and their concentrations can be easily measured during the first week of life. CONCLUSIONS Further studies are warranted to determine a causal relationship between these biomarkers and BPD development and severity.
Collapse
Affiliation(s)
- R G LaGrandeur
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - M Singhal
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - F Bany-Mohammed
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - C Uy
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - R Koeppel
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - F Zaldivar
- Institute for Clinical and Translational Science, University of California Irvine, Irvine, CA, USA
| | - F Haddad
- Institute for Clinical and Translational Science, University of California Irvine, Irvine, CA, USA
| | - A Nalbandian
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| | - P Donovan
- Department of Developmental and Cellular Biology and of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - D M Cooper
- Department of Pediatrics, Division of Pulmonology, University of California Irvine, Irvine, CA, USA
| | - M Aslam
- Department of Pediatrics, Division of Neonatology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
39
|
"Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 2018; 83:298-307. [PMID: 28985201 PMCID: PMC5876073 DOI: 10.1038/pr.2017.256] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Infants born at very low gestational age contribute disproportionately to neonatal morbidity and mortality. Advancements in antenatal steroid therapies and surfactant replacement have favored the survival of infants with ever-more immature lungs. Despite such advances in medical care, cardiopulmonary and neurological impairment prevail in constituting the major adverse outcomes for neonatal intensive care unit survivors. With no single effective therapy for either the prevention or treatment of such neonatal disorders, the need for new tools to treat and reduce risk of further complications associated with extreme preterm birth is urgent. Mesenchymal stem/stromal cell (MSC)-based approaches have shown promise in numerous experimental models of lung injury relevant to neonatology. Recent studies have highlighted that the therapeutic potential of MSCs is harnessed in their secretome, and that the therapeutic vector therein is represented by the exosomes released by MSCs. In this review, we summarize the development and significance of stem cell-based therapies for neonatal diseases, focusing on preclinical models of neonatal lung injury. We emphasize the development of MSC exosome-based therapeutics and comment on the challenges in bringing these promising interventions to clinic.
Collapse
|
40
|
Simones AA, Beisang DJ, Panoskaltsis-Mortari A, Roberts KD. Mesenchymal stem cells in the pathogenesis and treatment of bronchopulmonary dysplasia: a clinical review. Pediatr Res 2018; 83:308-317. [PMID: 28945702 PMCID: PMC5895100 DOI: 10.1038/pr.2017.237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
Abstract
Advances in neonatal medicine have led to increased survival of infants born at the limits of viability, resulting in an increased incidence of bronchopulmonary dysplasia (BPD). BPD is a chronic lung disease of premature infants characterized by the arrest of alveolarization, fibroblast activation, and inflammation. BPD leads to significant morbidity and mortality in the neonatal period and is one of the leading causes of chronic lung disease in children. The past decade has brought a surge of trials investigating cellular therapies for the treatment of pulmonary diseases. Mesenchymal stem cells (MSCs) are of particular interest because of their ease of isolation, low immunogenicity, and anti-inflammatory and reparative properties. Clinical trials of MSCs have demonstrated short-term safety and tolerability; however, studies have also shown populations of MSCs with adverse pro-inflammatory and myofibroblastic characteristics. Cell-based therapies may represent the next breakthrough therapy for the treatment of BPD, however, there remain barriers to implementation as well as gaps in knowledge of the role of endogenous MSCs in the pathogenesis of BPD. Concurrent high-quality basic science, translational, and clinical studies investigating the fundamental pathophysiology underlying BPD, therapeutic mechanisms of exogenous MSCs, and logistics of translating cellular therapies will be important areas of future research.
Collapse
Affiliation(s)
- Ann A. Simones
- University of Minnesota Masonic Children’s Hospital, Department of Pediatrics, Minneapolis, Minnesota
| | - Daniel J. Beisang
- University of Minnesota Masonic Children’s Hospital, Department of Pediatrics, Minneapolis, Minnesota
| | | | - Kari D. Roberts
- University of Minnesota Masonic Children’s Hospital, Department of Pediatrics, Minneapolis, Minnesota
| |
Collapse
|
41
|
Ascher K, Elliot SJ, Rubio GA, Glassberg MK. Lung Diseases of the Elderly: Cellular Mechanisms. Clin Geriatr Med 2017; 33:473-490. [PMID: 28991645 DOI: 10.1016/j.cger.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural lung aging is characterized by molecular and cellular changes in multiple lung cell populations. These changes include shorter telomeres, increased expression of cellular senescence markers, increased DNA damage, oxidative stress, apoptosis, and stem cell exhaustion. Aging, combined with the loss of protective repair processes, correlates with the development and incidence of chronic respiratory diseases, including idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. Ultimately, it is the interplay of age-related changes in biology and the subsequent responses to environmental exposures that largely define the physiology and clinical course of the aging lung.
Collapse
Affiliation(s)
- Kori Ascher
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA
| | - Sharon J Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Gustavo A Rubio
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Marilyn K Glassberg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, 1600 Northwest 10th Avenue RMSB 7056 (D-60), Miami, FL 33136, USA; DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA; Division of Pediatric Pulmonology, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
42
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
43
|
Lerrer S, Liubomirski Y, Bott A, Abnaof K, Oren N, Yousaf A, Körner C, Meshel T, Wiemann S, Ben-Baruch A. Co-Inflammatory Roles of TGFβ1 in the Presence of TNFα Drive a Pro-inflammatory Fate in Mesenchymal Stem Cells. Front Immunol 2017; 8:479. [PMID: 28553282 PMCID: PMC5425596 DOI: 10.3389/fimmu.2017.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
High plasticity is a hallmark of mesenchymal stem cells (MSCs), and as such, their differentiation and activities may be shaped by factors of their microenvironment. Bones, tumors, and cardiomyopathy are examples of niches and conditions that contain MSCs and are enriched with tumor necrosis factor α (TNFα) and transforming growth factor β1 (TGFβ1). These two cytokines are generally considered as having opposing roles in regulating immunity and inflammation (pro- and anti-inflammatory, respectively). Here, we performed global gene expression analysis of human bone marrow-derived MSCs and identified overlap in half of the transcriptional programs that were modified by TNFα and TGFβ1. The two cytokines elevated the mRNA expression of soluble factors, including mRNAs of pro-inflammatory mediators. Accordingly, the typical pro-inflammatory factor TNFα prominently induced the protein expression levels of the pro-inflammatory mediators CCL2, CXCL8 (IL-8), and cyclooxygenase-2 (Cox-2) in MSCs, through the NF-κB/p65 pathway. In parallel, TGFβ1 did not elevate CXCL8 protein levels and induced the protein expression of CCL2 at much lower levels than TNFα; yet, TGFβ1 readily induced Cox-2 and acted predominantly via the Smad3 pathway. Interestingly, combined stimulation of MSCs by TNFα + TGFβ1 led to a cooperative induction of all three inflammatory mediators, indicating that TGFβ1 functioned as a co-inflammatory cytokine in the presence of TNFα. The cooperative activities of TNFα + TGFβ1 that have led to CCL2 and CXCL8 induction were almost exclusively dependent on p65 activation and were not regulated by Smad3 or by the upstream regulator TGFβ-activated kinase 1 (TAK1). In contrast, the TNFα + TGFβ1-induced cooperative elevation in Cox-2 was mostly dependent on Smad3 (demonstrating cooperativity with activated NF-κB) and was partly regulated by TAK1. Studies with MSCs activated by TNFα + TGFβ1 revealed that they release factors that can affect other cells in their microenvironment and induce breast tumor cell elongation, migration, and scattering out of spheroid tumor masses. Thus, our findings demonstrate a TNFα + TGFβ1-driven pro-inflammatory fate in MSCs, identify specific molecular mechanisms involved, and propose that TNFα + TGFβ1-stimulated MSCs influence the tumor niche. These observations suggest key roles for the microenvironment in regulating MSC functions, which in turn may affect different health-related conditions.
Collapse
Affiliation(s)
- Shalom Lerrer
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nino Oren
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Afsheen Yousaf
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tsipi Meshel
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adit Ben-Baruch
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
44
|
Massafra V, Milona A, Vos HR, Burgering BMT, van Mil SWC. Quantitative liver proteomics identifies FGF19 targets that couple metabolism and proliferation. PLoS One 2017; 12:e0171185. [PMID: 28178326 PMCID: PMC5298232 DOI: 10.1371/journal.pone.0171185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) is a gut-derived peptide hormone that is produced following activation of Farnesoid X Receptor (FXR). FGF19 is secreted and signals to the liver, where it contributes to the homeostasis of bile acid (BA), lipid and carbohydrate metabolism. FGF19 is a promising therapeutic target for the metabolic syndrome and cholestatic diseases, but enthusiasm for its use has been tempered by FGF19-mediated induction of proliferation and hepatocellular carcinoma. To inform future rational design of FGF19-variants, we have conducted temporal quantitative proteomic and gene expression analyses to identify FGF19-targets related to metabolism and proliferation. Mice were fasted for 16 hours, and injected with human FGF19 (1 mg/kg body weight) or vehicle. Liver protein extracts (containing “light” lysine) were mixed 1:1 with a spike-in protein extract from 13C6-lysine metabolically labelled mouse liver (containing “heavy” lysine) and analysed by LC-MS/MS. Our analyses provide a resource of FGF19 target proteins in the liver. 189 proteins were upregulated (≥ 1.5 folds) and 73 proteins were downregulated (≤ -1.5 folds) by FGF19. FGF19 treatment decreased the expression of proteins involved in fatty acid (FA) synthesis, i.e., Fabp5, Scd1, and Acsl3 and increased the expression of Acox1, involved in FA oxidation. As expected, FGF19 increased the expression of proteins known to drive proliferation (i.e., Tgfbi, Vcam1, Anxa2 and Hdlbp). Importantly, many of the FGF19 targets (i.e., Pdk4, Apoa4, Fas and Stat3) have a dual function in both metabolism and cell proliferation. Therefore, our findings challenge the development of FGF19-variants that fully uncouple metabolic benefit from mitogenic potential.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | - Harmjan R. Vos
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
46
|
Mahood TH, Johar DR, Iwasiow BM, Xu W, Keijzer R. The transcriptome of nitrofen-induced pulmonary hypoplasia in the rat model of congenital diaphragmatic hernia. Pediatr Res 2016; 79:766-75. [PMID: 26720608 DOI: 10.1038/pr.2015.277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND We currently do not know how the herbicide nitrofen induces lung hypoplasia and congenital diaphragmatic hernia in rats. Our aim was to compare the differentially expressed transcriptome of nitrofen-induced hypoplastic lungs to control lungs in embryonic day 13 rat embryos before the development of embryonic diaphragmatic defects. METHODS Using next-generation sequencing technology, we identified the expression profile of microRNA (miRNA) and mRNA genes. Once the dataset was validated by both RT-qPCR and digital-PCR, we conducted gene ontology, miRNA target analysis, and orthologous miRNA sequence matching for the deregulated miRNAs in silico. RESULTS Our study identified 186 known mRNA and 100 miRNAs which were differentially expressed in nitrofen-induced hypoplastic lungs. Sixty-four rat miRNAs homologous to known human miRNAs were identified. A subset of these genes may promote lung hypoplasia in rat and/or human, and we discuss their associations. Potential miRNA pathways relevant to nitrofen-induced lung hypoplasia include PI3K, TGF-β, and cell cycle kinases. CONCLUSION Nitrofen-induced hypoplastic lungs have an abnormal transcriptome that may lead to impaired development.
Collapse
Affiliation(s)
- Thomas H Mahood
- Department of Physiology and Pathophysiology, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dina R Johar
- Department of Physiology and Pathophysiology, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Ain Shams University Faculty of Women for Arts, Sciences and Education, Cairo, Egypt
| | - Barbara M Iwasiow
- Department of Physiology and Pathophysiology, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Surgery, Paediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Wayne Xu
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Next Generation Sequencing Platform, Children's Hospital Research Institute of Manitoba and Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Department of Physiology and Pathophysiology, University of Manitoba and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,Department of Surgery, Paediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
47
|
Tracheal Aspirate Levels of the Matricellular Protein SPARC Predict Development of Bronchopulmonary Dysplasia. PLoS One 2015; 10:e0144122. [PMID: 26656750 PMCID: PMC4676701 DOI: 10.1371/journal.pone.0144122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
Background Isolation of tracheal aspirate mesenchymal stromal cells (MSCs) from premature infants has been associated with increased risk of bronchopulmonary dysplasia (BPD). MSCs show high levels of mRNAs encoding matricellular proteins, non-structural extracellular proteins that regulate cell-matrix interactions and participate in tissue remodeling. We hypothesized that lung matricellular protein expression predicts BPD development. Methods We collected tracheal aspirates and MSCs from mechanically-ventilated premature infants during the first week of life. Tracheal aspirate and MSC-conditioned media were analyzed for seven matricellular proteins including SPARC (for Secreted Protein, Acidic, Rich in Cysteine, also called osteonectin) and normalized to secretory component of IgA. A multiple logistic regression model was used to determine whether tracheal aspirate matricellular protein levels were independent predictors of BPD or death, controlling for gestational age (GA) and birth weight (BW). Results We collected aspirates from 89 babies (38 developed BPD, 16 died before 36 wks post-conceptual age). MSC-conditioned media showed no differences in matricellular protein abundance between cells from patients developing BPD and cells from patients who did not. However, SPARC levels were higher in tracheal aspirates from babies with an outcome of BPD or death (p<0.01). Further, our logistic model showed that tracheal aspirate SPARC (p<0.02) was an independent predictor of BPD/death. SPARC deposition was increased in the lungs of patients with BPD. Conclusions In mechanically-ventilated premature infants, tracheal aspirate SPARC levels predicted development of BPD or death. Further study is needed to determine the value of SPARC as a biomarker or therapeutic target in BPD.
Collapse
|
48
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Ruehl IM, Votino C, Segers V, Benachi A, Martinovic J, Nowakowska D, Dzieniecka M, Jani JC. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? Am J Physiol Lung Cell Mol Physiol 2015; 310:L311-27. [PMID: 26637634 DOI: 10.1152/ajplung.00122.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ina M Ruehl
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carmela Votino
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Segers
- Unit of Pediatric Pathology, Pathology Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology and Centre de Maladie Rare: Hernie de Coupole Diaphragmatique, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland; and
| | - Monika Dzieniecka
- Department of Clinical Pathology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
Pierro M, Ciarmoli E, Thébaud B. Bronchopulmonary Dysplasia and Chronic Lung Disease: Stem Cell Therapy. Clin Perinatol 2015; 42:889-910. [PMID: 26593085 DOI: 10.1016/j.clp.2015.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bronchopulmonary dysplasia (BPD), a major complication of premature birth, still lacks safe and effective treatment. Mesenchymal stem cells (MSCs) have been proven to ameliorate critical aspects of the BPD pathogenesis. MSCs seem to exert therapeutic effects through the paracrine secretion of anti-inflammatory, antioxidant, antiapoptotic, trophic, and proangiogenic factors. Although these findings are promising, understanding the mechanism of action of MSCs and MSC manufacturing is still evolving. Several aspects can affect the efficacy of MSC therapy. Further research is required to optimize this potentially game-changing treatment but the translation of regenerative cell therapies for patients has begun.
Collapse
Affiliation(s)
- Maria Pierro
- Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Via della Commenda 12, Milan 20122, Italy; Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 5, Genova 16148, Italy.
| | - Elena Ciarmoli
- Neonatal Intensive Care Unit, MBBM Foundation, San Gerardo Hospital, Via Pergolesi 33, Monza 20900, Italy
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada; Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario K1H8L6, Canada; Department of Cellular and Molecular Medicine, Sinclair Institute of Regenerative Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
50
|
Akershoek JJ, Vlig M, Talhout W, Boekema BKHL, Richters CD, Beelen RHJ, Brouwer KM, Middelkoop E, Ulrich MMW. Cell therapy for full-thickness wounds: are fetal dermal cells a potential source? Cell Tissue Res 2015; 364:83-94. [PMID: 26453400 PMCID: PMC4819738 DOI: 10.1007/s00441-015-2293-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022]
Abstract
The application of autologous dermal fibroblasts has been shown to improve burn wound healing. However, a major hurdle is the availability of sufficient healthy skin as a cell source. We investigated fetal dermal cells as an alternative source for cell-based therapy for skin regeneration. Human (hFF), porcine fetal (pFF) or autologous dermal fibroblasts (AF) were seeded in a collagen–elastin substitute (Novomaix, NVM), which was applied in combination with an autologous split thickness skin graft (STSG) to evaluate the effects of these cells on wound healing in a porcine excisional wound model. Transplantation of wounds with NVM+hFF showed an increased influx of inflammatory cells (e.g., neutrophils, macrophages, CD4+ and CD8+ lymphocytes) compared to STSG, acellular NVM (Acell-NVM) and NVM+AF at post-surgery days 7 and/or 14. Wounds treated with NVM+pFF presented only an increase in CD8+ lymphocyte influx. Furthermore, reduced alpha-smooth muscle actin (αSMA) expression in wound areas and reduced contraction of the wounds was observed with NVM+AF compared to Acell-NVM. Xenogeneic transplantation of NVM+hFF increased αSMA expression in wounds compared to NVM+AF. An improved scar quality was observed for wounds treated with NVM+AF compared to Acell-NVM, NVM+hFF and NVM+pFF at day 56. In conclusion, application of autologous fibroblasts improved the overall outcome of wound healing in comparison to fetal dermal cells and Acell-NVM, whereas application of fetal dermal fibroblasts in NVM did not improve wound healing of full-thickness wounds in a porcine model. Although human fetal dermal cells demonstrated an increased immune response, this did not seem to affect scar quality.
Collapse
Affiliation(s)
- J J Akershoek
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - M Vlig
- Association of Dutch Burn Centres, Zeestraat 27-29, 1941 AJ, Beverwijk, The Netherlands
| | - W Talhout
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - B K H L Boekema
- Association of Dutch Burn Centres, Zeestraat 27-29, 1941 AJ, Beverwijk, The Netherlands
| | | | - R H J Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - K M Brouwer
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - E Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands.,Association of Dutch Burn Centres, Zeestraat 27-29, 1941 AJ, Beverwijk, The Netherlands
| | - M M W Ulrich
- Association of Dutch Burn Centres, Zeestraat 27-29, 1941 AJ, Beverwijk, The Netherlands. .,Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|