1
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
2
|
Liu Y, Wang Y, Zhang R, Wang S, Li J, An Z, Song J, Wu W. Transcriptomics profile of human bronchial epithelial cells exposed to ambient fine particles and influenza virus (H3N2). Sci Rep 2023; 13:19259. [PMID: 37935887 PMCID: PMC10630401 DOI: 10.1038/s41598-023-46724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Fine particulate matter (PM2.5) pollution remains a major threat to public health. As the physical barrier against inhaled air pollutants, airway epithelium is a primary target for PM2.5 and influenza viruses, two major environmental insults. Recent studies have shown that PM2.5 and influenza viruses may interact to aggravate airway inflammation, an essential event in the pathogenesis of diverse pulmonary diseases. Airway epithelium plays a critical role in lung health and disorders. Thus far, the mechanisms for the interactive effect of PM2.5 and the influenza virus on gene transcription of airway epithelial cells have not been fully uncovered. In this present pilot study, the transcriptome sequencing approach was introduced to identify responsive genes following individual and co-exposure to PM2.5 and influenza A (H3N2) viruses in a human bronchial epithelial cell line (BEAS-2B). Enrichment analysis revealed the function of differentially expressed genes (DEGs). Specifically, the DEGs enriched in the xenobiotic metabolism by the cytochrome P450 pathway were linked to PM2.5 exposure. In contrast, the DEGs enriched in environmental information processing and human diseases, such as viral protein interaction with cytokines and cytokine receptors and epithelial cell signaling in bacterial infection, were significantly related to H3N2 exposure. Meanwhile, co-exposure to PM2.5 and H3N2 affected G protein-coupled receptors on the cell surface. Thus, the results from this study provides insights into PM2.5- and influenza virus-induced airway inflammation and potential mechanisms.
Collapse
Affiliation(s)
- Yuan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Rui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Shaolan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
3
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
4
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
5
|
Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, Van Winkle LS, Annesi-Maesano I, Burchard EG, Carlsten C, Harkema JR, Khreis H, Kleeberger SR, Kodavanti UP, London SJ, McConnell R, Peden DB, Pinkerton KE, Reibman J, White CW. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2020; 17:387-398. [PMID: 32233861 PMCID: PMC7175976 DOI: 10.1513/annalsats.202001-046st] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although it is well accepted that air pollution exposure exacerbates preexisting airway disease, it has not been firmly established that long-term pollution exposure increases the risk of new-onset asthma or chronic obstruction pulmonary disease (COPD). This Workshop brought together experts on mechanistic, epidemiological, and clinical aspects of airway disease to review current knowledge regarding whether air pollution is a causal factor in the development of asthma and/or COPD. Speakers presented recent evidence in their respective areas of expertise related to air pollution and new airway disease incidence, followed by interactive discussions. A writing committee summarized their collective findings. The Epidemiology Group found that long-term exposure to air pollution, especially metrics of traffic-related air pollution such as nitrogen dioxide and black carbon, is associated with onset of childhood asthma. However, the evidence for a causal role in adult-onset asthma or COPD remains insufficient. The Mechanistic Group concluded that air pollution exposure can cause airway remodeling, which can lead to asthma or COPD, as well as asthma-like phenotypes that worsen with long-term exposure to air pollution, especially fine particulate matter and ozone. The Clinical Group concluded that air pollution is a plausible contributor to the onset of both asthma and COPD. Available evidence indicates that long-term exposure to air pollution is a cause of childhood asthma, but the evidence for a similar determination for adult asthma or COPD remains insufficient. Further research is needed to elucidate the exact biological mechanism underlying incident childhood asthma, and the specific air pollutant that causes it.
Collapse
|
6
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
7
|
Wei H, Zhang Y, Song S, Pinkerton KE, Geng H, Ro CU. Alveolar macrophage reaction to PM 2.5 of hazy day in vitro: Evaluation methods and mitochondrial screening to determine mechanisms of biological effect. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:566-573. [PMID: 30870657 DOI: 10.1016/j.ecoenv.2019.02.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Hazy weather in China has recently become a major public health concern due to high levels of atmospheric fine particulate matter (PM2.5) with a large amount of polycyclic aromatic hydrocarbon (PAHs). In this study, the mass concentration of PAHs in hazy PM2.5 in urban Taiyuan city, China was determined and toxicities of different dosage of the hazy PM2.5 on rat alveolar macrophages (AMs) were examined. It was found that the hazy PM2.5, bounded with many species of PAHs (CHR, BbF, BaP, BaA, and etc.), significantly increased cellular malondialdehyde (MDA) content followed by the decreasing in superoxide (SOD) and glutathione peroxidase (GPx) in AMs. They induced mitochondrial changes in ultrastructure as evidenced by mitochondrial swelling and cristae disorganization, and a dose-dependent decrease in mitochondrial profile density. Also, the mRNA expression levels of mitochondrial fusion-related genes were modified. The Mfn1 and Mfn2 which are essential for mitochondrial fusion increased significantly in hazy PM2.5-treated group compared to the control in a dose-dependent manner, OPA1 was significantly increased at the highest PM2.5 dose delivered. These findings suggested that exposure to hazy PM2.5 could activate oxidative stress pathways in AMs, resulting in abnormal mitochondrial morphology and fusion/fission frequency. Possibly, the toxic effects were mostly attributed to the high burden of varied PAHs in hazy PM2.5.
Collapse
Affiliation(s)
- Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yunyun Zhang
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shanjuan Song
- Shanxi Academy of Environmental Research, Taiyuan 030027, Shanxi, China
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Chul-Un Ro
- Department of Chemistry, Inha University, Incheon 402751, Republic of Korea
| |
Collapse
|
8
|
Castañeda AR, Pinkerton KE, Bein KJ, Magaña-Méndez A, Yang HT, Ashwood P, Vogel CFA. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol Lett 2018; 292:85-96. [PMID: 29689377 PMCID: PMC5971007 DOI: 10.1016/j.toxlet.2018.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR-/-) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR-/- BMDCs with autologous naive T cells. PM2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner.
Collapse
Affiliation(s)
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Pediatrics, School of Medicine, University of California, Davis, 95817, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, 95616, USA; Air Quality Research Center, University of California, Davis, CA, 95616, USA
| | - Alfonso Magaña-Méndez
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, C.P. 22860, Mexico
| | - Houa T Yang
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Paul Ashwood
- M.I.N.D. Institute, University of California, Davis, 95817, USA
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, 95616, USA; Department of Environmental Toxicology, University of California, Davis, 95616, USA.
| |
Collapse
|
9
|
Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int J Mol Sci 2017; 18:ijms18020243. [PMID: 28125025 PMCID: PMC5343780 DOI: 10.3390/ijms18020243] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 01/10/2023] Open
Abstract
Air pollution of anthropogenic origin is largely from the combustion of biomass (e.g., wood), fossil fuels (e.g., cars and trucks), incinerators, landfills, agricultural activities and tobacco smoke. Air pollution is a complex mixture that varies in space and time, and contains hundreds of compounds including volatile organic compounds (e.g., benzene), metals, sulphur and nitrogen oxides, ozone and particulate matter (PM). PM0.1 (ultrafine particles (UFP)), those particles with a diameter less than 100 nm (includes nanoparticles (NP)) are considered especially dangerous to human health and may contribute significantly to the development of numerous respiratory and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) and atherosclerosis. Some of the pathogenic mechanisms through which PM0.1 may contribute to chronic disease is their ability to induce inflammation, oxidative stress and cell death by molecular mechanisms that include transcription factors such as nuclear factor κB (NF-κB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Epigenetic mechanisms including non-coding RNA (ncRNA) may also contribute towards the development of chronic disease associated with exposure to PM0.1. This paper highlights emerging molecular concepts associated with inhalational exposure to PM0.1 and their ability to contribute to chronic respiratory and systemic disease.
Collapse
|
10
|
Longhin E, Gualtieri M, Capasso L, Bengalli R, Mollerup S, Holme JA, Øvrevik J, Casadei S, Di Benedetto C, Parenti P, Camatini M. Physico-chemical properties and biological effects of diesel and biomass particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:366-375. [PMID: 27194366 DOI: 10.1016/j.envpol.2016.05.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/07/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement.
Collapse
Affiliation(s)
- Eleonora Longhin
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Maurizio Gualtieri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development - ENEA-SSPT-MET-INAT, Strada per Crescentino 41, 13040, Saluggia, Vercelli, Italy.
| | - Laura Capasso
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Steen Mollerup
- Dept. of Biological and Chemical Working Environment, National Institute of Occupational Health, N-0033, Oslo, Norway
| | - Jørn A Holme
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - Johan Øvrevik
- Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway
| | - Simone Casadei
- Innovhub-SSI Fuels Division, Via Galileo Galilei, 1, 20097, San Donato Milanese, Milan, Italy
| | - Cristiano Di Benedetto
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy.
| | - Paolo Parenti
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| | - Marina Camatini
- Polaris Research Centre, Dept. of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
| |
Collapse
|
11
|
Noël A, Xiao R, Perveen Z, Zaman HM, Rouse RL, Paulsen DB, Penn AL. Incomplete lung recovery following sub-acute inhalation of combustion-derived ultrafine particles in mice. Part Fibre Toxicol 2016; 13:10. [PMID: 26911867 PMCID: PMC4766714 DOI: 10.1186/s12989-016-0122-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022] Open
Abstract
Background Particulate matter (PM) is one of the six criteria pollutant classes for which National Ambient Air Quality Standards have been set by the United States Environmental Protection Agency. Exposures to PM have been correlated with increased cardio-pulmonary morbidity and mortality. Butadiene soot (BDS), generated from the incomplete combustion of 1,3-butadiene (BD), is both a model PM mixture and a real-life example of a petrochemical product of incomplete combustion. There are numerous events, including wildfires, accidents at refineries and tank car explosions that result in sub-acute exposure to high levels of airborne particles, with the people exposed facing serious health problems. These real-life events highlight the need to investigate the health effects induced by short-term exposure to elevated levels of PM, as well as to assess whether, and if so, how well these adverse effects are resolved over time. In the present study, we investigated the extent of recovery of mouse lungs 10 days after inhalation exposures to environmentally-relevant levels of BDS aerosols had ended. Methods Female BALB/c mice exposed to either HEPA-filtered air or to BDS (5 mg/m3 in HEPA filtered air, 4 h/day, 21 consecutive days) were sacrificed immediately, or 10 days after the final BDS exposure. Bronchoalveolar lavage fluid (BALF) was collected for cytology and cytokine analysis. Lung proteins and RNA were extracted for protein and gene expression analysis. Lung histopathology evaluation also was performed. Results Sub-acute exposures of mice to hydrocarbon-rich ultrafine particles induced: (1) BALF neutrophil elevation; (2) lung mucosal inflammation, and (3) increased BALF IL-1β concentration; with all three outcomes returning to baseline levels 10 days post-exposure. In contrast, (4) lung connective tissue inflammation persisted 10 days post-exposure; (5) we detected time-dependent up-regulation of biotransformation and oxidative stress genes, with incomplete return to baseline levels; and (6) we observed persistent particle alveolar load following 10 days of recovery. Conclusion These data show that 10 days after a 21-day exposure to 5 mg/m3 of BDS has ended, incomplete lung recovery promotes a pro-biotransformation, pro-oxidant, and pro-inflammatory milieu, which may be a starting point for potential long-term cardio-pulmonary effects.
Collapse
Affiliation(s)
- A Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R Xiao
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Z Perveen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - H M Zaman
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA
| | - R L Rouse
- United States Food and Drug Administration, Silver Spring, MD, USA
| | - D B Paulsen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - A L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., Baton Rouge, LA, 70803, USA.
| |
Collapse
|
12
|
Li R, Kou X, Xie L, Cheng F, Geng H. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20167-76. [PMID: 26304807 DOI: 10.1007/s11356-015-5222-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/11/2015] [Indexed: 05/25/2023]
Abstract
Fine particulate matter (PM2.5) exposure is associated with morbidity and mortality induced by respiratory diseases and increases the lung cancer risk. However, the mechanisms therein involved are not yet fully clarified. In this study, the PM2.5 suspensions at different dosages (0.375, 1.5, 6.0, and 24.0 mg/kg body weight) were respectively given to rats by the intratracheal instillation. The results showed that PM2.5 exposure induced inflammatory cell infiltration and hyperemia in the lung tissues and increased the inflammatory cell numbers in bronchoalveolar lavage fluid. Furthermore, PM2.5 significantly elevated the levels of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and intercellular adhesion molecule 1 (ICAM-1) and the expression of c-fos and c-jun in rat lungs exposed to higher dose of PM2.5. These changes were accompanied by decreases of activities of superoxide dismutase and increases of levels of malondialdehyde, inducible nitric oxide synthase, nitric oxide, cytochrome P450s, and glutathione S-transferase. The results implicated that acute exposure to PM2.5 induced pathologically pulmonary changes, unchained inflammatory and oxidative stress processes, activated metabolic enzyme activity, and enhanced proto-oncogene expression, which might be one of the possible mechanisms by which PM2.5 pollution induces lung injury and may be the important determinants for the susceptibility to respiratory diseases.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, People's Republic of China
| | - Xiaojing Kou
- Institute of Environmental Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, People's Republic of China
| | - Lizhi Xie
- Shanxi Qingyuan Environmental Consultation Co., Ltd, Taiyuan, People's Republic of China
| | - Fangqin Cheng
- State Environmental Protection Key Laboratory of Efficient Utilization of Coal Waste Resources, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, People's Republic of China.
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, People's Republic of China.
| |
Collapse
|
13
|
Mühlfeld C, Hegermann J, Wrede C, Ochs M. A review of recent developments and applications of morphometry/stereology in lung research. Am J Physiol Lung Cell Mol Physiol 2015; 309:L526-36. [DOI: 10.1152/ajplung.00047.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/09/2015] [Indexed: 11/22/2022] Open
Abstract
Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; and
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany
| |
Collapse
|
14
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
15
|
Van Winkle LS, Bein K, Anderson D, Pinkerton KE, Tablin F, Wilson D, Wexler AS. Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol Sci 2014; 143:349-59. [PMID: 25389146 DOI: 10.1093/toxsci/kfu230] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) exposure contributes to respiratory diseases and cardiopulmonary mortality. PM toxicity is related to sources and composition, such as abundance of polycyclic aromatic hydrocarbons (PAHs). We exposed adult male BALB/c mice, via oropharyngeal aspiration, to a range of doses of PM2.5 collected during the winter in downtown Sacramento near a major freeway interchange (SacPM). Two preparation methods (spin-down and multi-solvent extraction) were tested to remove particles from collection filters. Three doses were analyzed 24 h after treatment for (1) leukocytes and total protein in bronchoalveolar lavage fluid (BALF), (2) airway-specific and whole lobe expression of PAH-sensitive genes (CYP1B1 and CYP1A1) and IL-1 b, (3) lung histology, and (4) platelet function. Both extraction methods stimulated biological responses, but the spin-down method was more robust at producing IL-1 b and CYP1B1 gene responses and the multi-solvent extraction induced whole lung CYP1A1. Neutrophils in the BALF were increased 5- to 10-fold at the mid and high dose for both preparations. Histopathology scores indicated dose-dependent responses and increased pathology associated with spin-down-derived PM exposure. In microdissected airways, spin-down PM increased CYP1B1 gene expression significantly, but multi-solvent extracted PM did not. Platelet responses to the physiological agonist thrombin were approximately twice as potent in the spin-down preparation as in the multi-solvent extract. We conclude (1) the method of filter extraction can influence the degree of biological response, (2) for SacPM the minimal effective dose is 27.5-50 µg based on neutrophil recruitment, and (3) P450s are upregulated differently in airways and lung parenchyma in response to PAH-containing PM.
Collapse
Affiliation(s)
- Laura S Van Winkle
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Keith Bein
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Donald Anderson
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Kent E Pinkerton
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Fern Tablin
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Dennis Wilson
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| | - Anthony S Wexler
- *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732 *Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, Air Quality Research Center, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine and Departments of Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, California 95616-8732
| |
Collapse
|
16
|
Chan JKW, Charrier JG, Kodani SD, Vogel CF, Kado SY, Anderson DS, Anastasio C, Van Winkle LS. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs. Part Fibre Toxicol 2013; 10:34. [PMID: 23902943 PMCID: PMC3735485 DOI: 10.1186/1743-8977-10-34] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). OBJECTIVES Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. METHODS We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. RESULTS We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. CONCLUSIONS We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in young adult animals, that are unaffected in neonates. We conclude that the inability of neonatal animals to upregulate the antioxidant response may, in part, explain enhanced their susceptibility to ultrafine particles, such as PFP.
Collapse
Affiliation(s)
- Jackie K W Chan
- Center for Health and the Environment, University of California, One Shields Ave, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|