1
|
Olivieri PH, Assis IF, Lima AF, Hassan SA, Torquato RJS, Hayashi JY, Tashima AK, Nader HB, Salvati A, Justo GZ, Sousa AA. Glycocalyx Interactions Modulate the Cellular Uptake of Albumin-Coated Nanoparticles. ACS APPLIED BIO MATERIALS 2024. [PMID: 39470630 DOI: 10.1021/acsabm.4c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Albumin-based nanoparticles (ABNPs) represent promising drug carriers in nanomedicine due to their versatility and biocompatibility, but optimizing their effectiveness in drug delivery requires understanding their interactions with and uptake by cells. Notably, albumin interacts with the cellular glycocalyx, a phenomenon particularly studied in endothelial cells. This observation suggests that the glycocalyx could modulate ABNP uptake and therapeutic efficacy, although this possibility remains unrecognized. In this study, we elucidate the critical role of the glycocalyx in the cellular uptake of a model ABNP system consisting of silica nanoparticles (NPs) coated with native, cationic, and anionic albumin variants (BSA, BSA+, and BSA-). Using various methodologies-including fluorescence anisotropy, dynamic light scattering, microscale thermophoresis, surface plasmon resonance spectroscopy, and computer simulations─we found that both BSA and BSA+, but not BSA-, interact with heparin, a model glycosaminoglycan (GAG). To explore the influence of albumin-GAG interactions on NP uptake, we performed comparative uptake studies in wild-type and GAG-mutated Chinese hamster ovary cells (CHO), along with complementary approaches such as enzymatic GAG cleavage in wild-type cells, chemical inhibition, and competition assays with exogenous heparin. We found that the glycocalyx enhances the cell uptake of NPs coated with BSA and BSA+, while serving as a barrier to the uptake of NPs coated with BSA-. Furthermore, we showed that harnessing albumin-GAG interactions increases cancer cell death induced by paclitaxel-loaded albumin-coated NPs. These findings underscore the importance of albumin-glycocalyx interactions in the rational design and optimization of albumin-based drug delivery systems.
Collapse
Affiliation(s)
- Paulo H Olivieri
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Isabela F Assis
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Andre F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, OCICB, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ricardo J S Torquato
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Jackelinne Y Hayashi
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Helena B Nader
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, São Paulo 04044-020, Brazil
| |
Collapse
|
2
|
Koh SY, Jun JH, Kim JE, Chung MH, Hwang J, Lee HS, Jo Y, Chun EH. Sarcopenia, a Risk Predictor of Postoperative Acute Kidney Injury in Elderly Patients after Hip Fracture Surgery: A Retrospective Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:745. [PMID: 38792928 PMCID: PMC11122835 DOI: 10.3390/medicina60050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Hip fracture surgery, which affects quality of life, can be a major challenge in geriatric populations. Although sarcopenia is known to be associated with postoperative outcomes, there are few studies on the association between sarcopenia and postoperative acute kidney injury (AKI) in this population. We investigated the association between sarcopenia and postoperative AKI in elderly patients following hip fracture surgery. Materials and Methods: We retrospectively reviewed the records of patients who underwent hip fracture surgery at our institution from March 2019 to December 2021. Patients under the age of 65, patients with no preoperative computed tomography (CT) scans and patients with inappropriate cross-sectional images for measurement were excluded. The psoas-lumbar vertebral index (PLVI), which is the ratio of the average area of both psoas muscles to the area of the fourth lumbar vertebral body, was measured from preoperative CT scans. Sarcopenia was defined as a PLVI within the lowest 25% for each sex, and patients were categorized into sarcopenic and nonsarcopenic groups. The occurrence of AKI was determined based on the serum creatinine level within postoperative day 7 using the Kidney Disease Improving Global Outcomes (KDIGO) guidelines. Univariate and multivariate logistic regression analyses were performed to evaluate the associations between clinical variables and the occurrence of AKI. Results: Among the 348 enrolled patients, 92 patients were excluded, and 256 patients were analyzed. The PLVI cutoff values for defining sarcopenia lower than 25% for male and female patients were 0.57 and 0.43, respectively. The overall incidence of AKI was 18.4% (47 patients), and AKI occurred more frequently in sarcopenic patients than in nonsarcopenic patients (29.7% vs. 14.6%, p = 0.007). According to the multivariate logistic regression, which included all variables with a p value < 0.05 in the univariate analysis and adjusted for age, body mass index (BMI) and American Society of Anesthesiologists (ASA) physical status, sarcopenia was revealed to be an independent predictor of postoperative AKI (odds ratio = 5.10, 95% confidence interval = 1.77-14.77; p = 0.003). Conclusions: Preoperative sarcopenia, which corresponds to the lowest quartile of PLVI values, is associated with postoperative AKI among elderly patients who underwent hip fracture surgery.
Collapse
Affiliation(s)
- Seong Yoon Koh
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Joo Hyun Jun
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Jung Eun Kim
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Mi Hwa Chung
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Jihyo Hwang
- Department of Orthopedics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Youngbum Jo
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Eun Hee Chun
- Department of Anesthesiology and Pain Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Shingil-ro, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| |
Collapse
|
3
|
Twamley SG, Gimber N, Sánchez-Ibarra HE, Christaller T, Isakzai V, Kratz H, Mitra R, Kampen L, Stach A, Heilmann H, Söhl-Kielczynski B, Ebong EE, Schmoranzer J, Münster-Wandowski A, Ludwig A. Lack of Laminar Shear Stress Facilitates the Endothelial Uptake of Very Small Superparamagnetic Iron Oxide Nanoparticles by Modulating the Endothelial Surface Layer. Int J Nanomedicine 2024; 19:3123-3142. [PMID: 38585474 PMCID: PMC10998537 DOI: 10.2147/ijn.s437714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.
Collapse
Affiliation(s)
- Shailey Gale Twamley
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Héctor Eduardo Sánchez-Ibarra
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Tobias Christaller
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Victoria Isakzai
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Harald Kratz
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ronodeep Mitra
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Lena Kampen
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Anke Stach
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Heike Heilmann
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Berit Söhl-Kielczynski
- Institute for Integrative Neurophysiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eno Essien Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Agnieszka Münster-Wandowski
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antje Ludwig
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
4
|
Lindner M, Laporte A, Elomaa L, Lee-Thedieck C, Olmer R, Weinhart M. Flow-induced glycocalyx formation and cell alignment of HUVECs compared to iPSC-derived ECs for tissue engineering applications. Front Cell Dev Biol 2022; 10:953062. [PMID: 36133919 PMCID: PMC9483120 DOI: 10.3389/fcell.2022.953062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The relevance of cellular in vitro models highly depends on their ability to mimic the physiological environment of the respective tissue or cell niche. Static culture conditions are often unsuitable, especially for endothelial models, since they completely neglect the physiological surface shear stress and corresponding reactions of endothelial cells (ECs) such as alignment in the direction of flow. Furthermore, formation and maturation of the glycocalyx, the essential polysaccharide layer covering all endothelial surfaces and regulating diverse processes, is highly dependent on applied fluid flow. This fragile but utterly important macromolecular layer is hard to analyze, its importance is often underestimated and accordingly neglected in many endothelial models. Therefore, we exposed human umbilical vein ECs (HUVECs) and human induced pluripotent stem cell-derived ECs (iPSC-ECs) as two relevant EC models in a side-by-side comparison to static and physiological dynamic (6.6 dyn cm-2) culture conditions. Both cell types demonstrated an elongation and alignment along the flow direction, some distinct changes in glycocalyx composition on the surface regarding the main glycosaminoglycan components heparan sulfate, chondroitin sulfate or hyaluronic acid as well as an increased and thereby improved glycocalyx thickness and functionality when cultured under homogeneous fluid flow. Thus, we were able to demonstrate the maturity of the employed iPSC-EC model regarding its ability to sense fluid flow along with the general importance of physiological shear stress for glycocalyx formation. Additionally, we investigated EC monolayer integrity with and without application of surface shear stress, revealing a comparable existence of tight junctions for all conditions and a reorganization of the cytoskeleton upon dynamic culture leading to an increased formation of focal adhesions. We then fabricated cell sheets of EC monolayers after static and dynamic culture via non-enzymatic detachment using thermoresponsive polymer coatings as culture substrates. In a first proof-of-concept we were able to transfer an aligned iPSC-EC sheet to a 3D-printed scaffold thereby making a step in the direction of vascular modelling. We envision these results to be a valuable contribution to improvements of in vitro endothelial models and vascular engineering in the future.
Collapse
Affiliation(s)
- Marcus Lindner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anna Laporte
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz Universität Hannover, Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- REBIRTH–Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
5
|
Siren EMJ, Luo HD, Bajaj S, MacKenzie J, Daneshi M, Martinez DM, Conway EM, Cheung KC, Kizhakkedathu JN. An improved in vitro model for studying the structural and functional properties of the endothelial glycocalyx in arteries, capillaries and veins. FASEB J 2021; 35:e21643. [PMID: 33977574 DOI: 10.1096/fj.201802376rrrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/30/2022]
Abstract
The endothelial glycocalyx is a dynamic structure integral to blood vessel hemodynamics and capable of tightly regulating a range of biological processes (ie, innate immunity, inflammation, and coagulation) through dynamic changes in its composition of the brush structure. Evaluating the specific roles of the endothelial glycocalyx under a range of pathophysiologic conditions has been a challenge in vitro as it is difficult to generate functional glycocalyces using commonly employed 2D cell culture models. We present a new multi-height microfluidic platform that promotes the growth of functional glycocalyces by eliciting unique shear stress forces over a continuous human umbilical vein endothelial cell monolayer at magnitudes that recapitulate the physical environment in arterial, capillary and venous regions of the vasculature. Following 72 hours of shear stress, unique glycocalyx structures formed within each region that were distinct from that observed in short (3 days) and long-term (21 days) static cell culture. The model demonstrated glycocalyx-specific properties that match the characteristics of the endothelium in arteries, capillaries and veins, with respect to surface protein expression, platelet adhesion, lymphocyte binding and nanoparticle uptake. With artery-to-capillary-to-vein transition on a continuous endothelial monolayer, this in vitro platform is an improved system over static cell culture for more effectively studying the role of the glycocalyx in endothelial biology and disease.
Collapse
Affiliation(s)
- Erika M J Siren
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Sargun Bajaj
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jordan MacKenzie
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Masoud Daneshi
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - D Mark Martinez
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen C Cheung
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Immuno-Electron and Confocal Laser Scanning Microscopy of the Glycocalyx. BIOLOGY 2021; 10:biology10050402. [PMID: 34064459 PMCID: PMC8147923 DOI: 10.3390/biology10050402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary The glycocalyx (GCX) is a hydrated, gel-like layer of biological macromolecules attached to the cell membrane. The GCX acts as a barrier and regulates the entry of external substances into the cell. The function of the GCX is highly dependent on its structure and composition. Pathogenic factors can affect the protective structure of the GCX. We know very little about the three-dimensional organization of the GXC. The tiny and delicate structures of the GCX are difficult to study by microscopic techniques. In this study, we evaluated a method to preserve and label sensitive GCX components with antibodies for high-resolution microscopy analysis. High-resolution microscopy is a powerful tool because it allows visualization of ultra-small components and biological interactions. Our method can be used as a tool to better understand the role of the GCX during the development and progression of diseases, such as viral infections, tumor invasion, and the development of atherosclerosis. Abstract The glycocalyx (GCX), a pericellular carbohydrate rich hydrogel, forms a selective barrier that shields the cellular membrane, provides mechanical support, and regulates the transport and diffusion of molecules. The GCX is a fragile structure, making it difficult to study by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Sample preparation by conventional chemical fixation destroys the GCX, giving a false impression of its organization. An additional challenge is to process the GCX in a way that preserves its morphology and enhanced antigenicity to study its cell-specific composition. The aim of this study was to provide a protocol to preserve both antigen accessibility and the unique morphology of the GCX. We established a combined high pressure freezing (HPF), osmium-free freeze substitution (FS), rehydration, and pre-embedding immunogold labeling method for TEM. Our results showed specific immunogold labeling of GCX components expressed in human monocytic THP-1 cells, hyaluronic acid receptor (CD44) and chondroitin sulfate (CS), and maintained a well-preserved GCX morphology. We adapted the protocol for antigen localization by CLSM and confirmed the specific distribution pattern of GCX components. The presented combination of HPF, FS, rehydration, and immunolabeling for both TEM and CLSM offers the possibility for analyzing the morphology and composition of the unique GCX structure.
Collapse
|
7
|
Shin KH, Kim JJ, Son SW, Hwang KS, Han SB. Early Postoperative Hypoalbuminaemia as a Risk Factor for Postoperative Pneumonia Following Hip Fracture Surgery. Clin Interv Aging 2020; 15:1907-1915. [PMID: 33116445 PMCID: PMC7547765 DOI: 10.2147/cia.s272610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Postoperative pneumonia is a common and devastating complication of hip fracture surgery in older individuals. This study aimed to determine the relationship between early postoperative hypoalbuminaemia and pneumonia after hip fracture surgery. Patients and Methods In this retrospective cohort study conducted at one centre, we reviewed the medical records of 1155 consecutive patients (>60 years) who underwent hip fracture surgery. Multivariate logistic regression analysis was performed to identify the independent risk factors for postoperative pneumonia. After determining the cut-off value for postoperative serum albumin, the patients were divided into two groups according to the minimum serum albumin level recorded during the first two postoperative days: group A included patients with a minimum serum album level less than 3.0 g/dL and group B included patients with a minimum serum album level of at least 3.0 g/dL. The prevalence of postoperative pneumonia was analysed using inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) analyses. Results The incidence of postoperative pneumonia following hip fracture surgery was 5.1% (n=59). Age, cardiovascular disease, and early postoperative hypoalbuminaemia during the first two postoperative days were independent risk factors for postoperative pneumonia. Early postoperative hypoalbuminaemia was associated with postoperative pneumonia development in the PSM and IPTW analyses (P = 0.016 and <0.001, respectively). Conclusion This study demonstrated that early postoperative hypoalbuminaemia is an independent risk factor for the development of postoperative pneumonia in patients undergoing hip fracture surgery.
Collapse
Affiliation(s)
- Kyun-Ho Shin
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Joong Kim
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Sei-Wook Son
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Kyo-Sun Hwang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529 DOI: 10.1016/s1441-2772(23)00394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Hempel C, Kapishnikov S, Perez-Berna AJ, Werner S, Guttmann P, Pereiro E, Qvortrup K, Andresen TL. The need to freeze-Dehydration during specimen preparation for electron microscopy collapses the endothelial glycocalyx regardless of fixation method. Microcirculation 2020; 27:e12643. [PMID: 32542908 DOI: 10.1111/micc.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Medical Parasitology, Department for Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Kapishnikov
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephan Werner
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Peter Guttmann
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Yooprasertchuti K, Dechadilok P. Effect of molecular shape of suspended colloids on an osmotic flow across a fibrous membrane. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
In Vivo Imaging of the Buccal Mucosa Shows Loss of the Endothelial Glycocalyx and Perivascular Hemorrhages in Pediatric Plasmodium falciparum Malaria. Infect Immun 2020; 88:IAI.00679-19. [PMID: 31871101 DOI: 10.1128/iai.00679-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Severe malaria is mostly caused by Plasmodium falciparum, resulting in considerable, systemic inflammation and pronounced endothelial activation. The endothelium forms an interface between blood and tissue, and vasculopathy has previously been linked with malaria severity. We studied the extent to which the endothelial glycocalyx that normally maintains endothelial function is involved in falciparum malaria pathogenesis by using incident dark-field imaging in the buccal mucosa. This enabled calculation of the perfused boundary region, which indicates to what extent erythrocytes can permeate the endothelial glycocalyx. The perfused boundary region was significantly increased in severe malaria patients and mirrored by an increase of soluble glycocalyx components in plasma. This is suggestive of a substantial endothelial glycocalyx loss. Patients with severe malaria had significantly higher plasma levels of sulfated glycosaminoglycans than patients with uncomplicated malaria, whereas other measured glycocalyx markers were raised to a comparable extent in both groups. In severe malaria, the plasma level of the glycosaminoglycan hyaluronic acid was positively correlated with the perfused boundary region in the buccal cavity. Plasma hyaluronic acid and heparan sulfate were particularly high in severe malaria patients with a low Blantyre coma score, suggesting involvement in its pathogenesis. In vivo imaging also detected perivascular hemorrhages and sequestering late-stage parasites. In line with this, plasma angiopoietin-1 was decreased while angiopoietin-2 was increased, suggesting vascular instability. The density of hemorrhages correlated negatively with plasma levels of angiopoietin-1. Our findings indicate that as with experimental malaria, the loss of endothelial glycocalyx is associated with vascular dysfunction in human malaria and is related to severity.
Collapse
|
13
|
Bihari S, Wiersema UF, Perry R, Schembri D, Bouchier T, Dixon D, Wong T, Bersten AD. Efficacy and safety of 20% albumin fluid loading in healthy subjects: a comparison of four resuscitation fluids. J Appl Physiol (1985) 2019; 126:1646-1660. [DOI: 10.1152/japplphysiol.01058.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, buffered salt solutions and 20% albumin (small volume resuscitation) have been advocated as an alternative fluid for intravenous resuscitation. The relative comparative efficacy and potential adverse effects of these solutions have not been evaluated. In a randomized, double blind, cross-over study of six healthy male subjects we compared the pulmonary and hemodynamic effects of intravenous administration of 30 ml/kg of 0.9% saline, Hartmann's solution and 4% albumin, and 6 ml/kg of 20% albumin (albumin dose equivalent). Lung tests (spirometry, ultrasound, impulse oscillometry, diffusion capacity, and plethysmography), two- to three-dimensional Doppler echocardiography, carotid applanation tonometry, blood gases, serum/urine markers of endothelial, and kidney injury were measured before and after each fluid bolus. Data were analyzed with repeated measures ANOVA with effect of fluid type examined as an interaction. Crystalloids caused lung edema [increase in ultrasound B line ( P = 0.006) and airway resistance ( P = 0.009)], but evidence of lung injury [increased angiopoietin-2 ( P = 0.019)] and glycocalyx injury [increased syndecan ( P = 0.026)] was only observed with 0.9% saline. The colloids caused greater left atrial stretch, decrease in lung volumes, and increase in diffusion capacity than the crystalloids, but without pulmonary edema. Stroke work increased proportionally to increase in preload with all four fluids ( R2 = 0.71). There was a greater increase in cardiac output and stroke volume after colloid administration, associated with a reduction in afterload. Hartmann’s solution did not significantly alter ventricular performance. Markers of kidney injury were not affected by any of the fluids administrated. Bolus administration of 20% albumin is both effective and safe in healthy subjects. NEW & NOTEWORTHY Bolus administration of 20% albumin is both effective and safe in healthy subjects when compared with other commonly available crystalloids and colloidal solution.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Rebecca Perry
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Department of Heart Health, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - David Schembri
- Department of Respiratory Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Tara Bouchier
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Dani Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Teresa Wong
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
George SA, Hoeker G, Calhoun PJ, Entz M, Raisch TB, King DR, Khan M, Baker C, Gourdie RG, Smyth JW, Nielsen MS, Poelzing S. Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. Am J Physiol Heart Circ Physiol 2019; 316:H849-H861. [PMID: 30707595 DOI: 10.1152/ajpheart.00083.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Gregory Hoeker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Patrick J Calhoun
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Michael Entz
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Tristan B Raisch
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - D Ryan King
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Momina Khan
- Department of Human Food Nutrition and Exercise, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Chandra Baker
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Robert G Gourdie
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - James W Smyth
- Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Department of Biological Sciences, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| | - Morten S Nielsen
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Steven Poelzing
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University , Blacksburg, Virginia.,Center for Heart and Reparative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia.,Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University , Blacksburg, Virginia
| |
Collapse
|
15
|
Shin KH, Han SB. Early postoperative hypoalbuminemia is a risk factor for postoperative acute kidney injury following hip fracture surgery. Injury 2018; 49:1572-1576. [PMID: 29908852 DOI: 10.1016/j.injury.2018.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a common and serious complication after hip fracture surgery in older adults. Hypoalbuminemia is a known independent risk factor for AKI. However, few studies have investigated the relationship between early postoperative hypoalbuminemia and AKI after hip fracture surgery. Therefore, we sought to determine the incidence of and risk factors for AKI and the effects of early postoperative hypoalbuminemia on AKI incidence after surgery for hip fractures, especially intertrochanteric fractures of the proximal femur. PATIENTS AND METHODS In this retrospective cohort study from a single center, we reviewed the medical records of 481 consecutive patients (>60 years) who underwent surgery for intertrochanteric fracture of the proximal femur. Multiple logistic regression was performed to identify independent risk factors for AKI. After determining the cut-off value of the minimal level of postoperative serum albumin during the first two postoperative days, we divided the patients into two groups: group 1 included 251 patients whose minimal early postoperative serum albumin level was <2.9 g/dL during the first two postoperative days; and group 2 included 230 patients whose minimal early postoperative serum albumin level was ≥2.9 g/dL. The incidence of AKI was analyzed using inverse probability of treatment weighting (IPTW), propensity score matching (PSM), and propensity score matching weighting (PSMW) analyses. RESULTS The incidence of AKI, defined based on the Kidney Disease Improving Global Outcomes criteria, was 11.8% (n = 57). Chronic kidney disease and the minimal early postoperative serum albumin level <2.9 g/dL at any point during the first two postoperative days were independent risk factors for AKI. The IPTW, PSM, and PSMW analyses comparing the incidence of AKI between the two groups revealed that the minimal early postoperative serum albumin level <2.9 g/dL was significantly associated with AKI development (P < 0.001, P = 0.025, and P = 0.011, respectively). CONCLUSION The incidence of postoperative AKI was 11.8%. Our findings demonstrate that early postoperative hypoalbuminemia is an independent risk factor for AKI in patients undergoing surgery for intertrochanteric fracture of the proximal femur.
Collapse
Affiliation(s)
- Kyun-Ho Shin
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Oncotically Driven Control over Glycocalyx Dimension for Cell Surface Engineering and Protein Binding in the Longitudinal Direction. Sci Rep 2018; 8:7581. [PMID: 29765073 PMCID: PMC5954099 DOI: 10.1038/s41598-018-25870-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
Here we present a simple technique for re-directing reactions on the cell surface to the outermost region of the glycocalyx. Macromolecular crowding with inert polymers was utilized to reversibly alter the accessibility of glycocalyx proteoglycans toward cell-surface reactive probes allowing for reactivity control in the longitudinal direction (‘z’-direction) on the glycocalyx. Studies in HUVECs demonstrated an oncotically driven collapse of the glycocalyx brush structure in the presence of crowders as the mechanism responsible for re-directing reactivity. This phenomenon is consistent across a variety of macromolecular agents including polymers, protein markers and antibodies which all displayed enhanced binding to the outermost surface of multiple cell types. We then demonstrated the biological significance of the technique by increasing the camouflage of red blood cell surface antigens via a crowding-enhanced attachment of voluminous polymers to the exterior of the glycocalyx. The accessibility to Rhesus D (RhD) and CD47 proteins on the cell surface was significantly decreased in crowding-assisted polymer grafting in comparison to non-crowded conditions. This strategy is expected to generate new tools for controlled glycocalyx engineering, probing the glycocalyx structure and function, and improving the development of cell based therapies.
Collapse
|
17
|
Park I, Choe K, Seo H, Hwang Y, Song E, Ahn J, Hwan Jo Y, Kim P. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model. BIOMEDICAL OPTICS EXPRESS 2018; 9:2383-2393. [PMID: 29760995 PMCID: PMC5946796 DOI: 10.1364/boe.9.002383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 05/18/2023]
Abstract
Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Howon Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jinhyo Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620
- Department of Emergency Medicine, Seoul National University College of Medicine (SNUCM), 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
18
|
Sieve I, Münster-Kühnel AK, Hilfiker-Kleiner D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vascul Pharmacol 2018; 100:26-33. [DOI: 10.1016/j.vph.2017.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022]
|
19
|
Yoshino O, Perini MV, Christophi C, Weinberg L. Perioperative fluid management in major hepatic resection: an integrative review. Hepatobiliary Pancreat Dis Int 2017; 16:458-469. [PMID: 28992877 DOI: 10.1016/s1499-3872(17)60055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/10/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Fluid intervention and vasoactive pharmacological support during hepatic resection depend on the preference of the attending clinician, institutional resources, and practice culture. Evidence-based recommendations to guide perioperative fluid management are currently limited. Therefore, we provide a contemporary clinical integrative overview of the fundamental principles underpinning fluid intervention and hemodynamic optimization for adult patients undergoing major hepatic resection. DATA SOURCES A literature review was performed of MEDLINE, EMBASE and the Cochrane Central Registry of Controlled Trials using the terms "surgery", "anesthesia", "starch", "hydroxyethyl starch derivatives", "albumin", "gelatin", "liver resection", "hepatic resection", "fluids", "fluid therapy", "crystalloid", "colloid", "saline", "plasma-Lyte", "plasmalyte", "hartmann's", "acetate", and "lactate". Search results for MEDLINE and EMBASE were additionally limited to studies on human populations that included adult age groups and publications in English. RESULTS A total of 113 articles were included after appropriate inclusion criteria screening. Perioperative fluid management as it relates to various anesthetic and surgical techniques is discussed. CONCLUSIONS Clinicians should have a fundamental understanding of the surgical phases of the resection, hemodynamic goals, and anesthesia challenges in attempts to individualize therapy to the patient's underlying pathophysiological condition. Therefore, an ideal approach for perioperative fluid therapy is always individualized. Planning and designing large-scale clinical trials are imperative to define the optimal type and amount of fluid for patients undergoing major hepatic resection. Further clinical trials evaluating different intraoperative goal-directed strategies are also eagerly awaited.
Collapse
Affiliation(s)
- Osamu Yoshino
- Department of Surgery, Austin Hospital and University of Melbourne, Melbourne, Victoria, Australia.
| | - Marcos Vinicius Perini
- Department of Surgery, Austin Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | - Laurence Weinberg
- Department of Surgery, Austin Hospital and University of Melbourne, Melbourne, Victoria, Australia; Anaesthesia Perioperative Pain Medicine Unit, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Job KM, O'Callaghan R, Hlady V, Barabanova A, Dull RO. The Biomechanical Effects of Resuscitation Colloids on the Compromised Lung Endothelial Glycocalyx. Anesth Analg 2017; 123:382-93. [PMID: 27331777 DOI: 10.1213/ane.0000000000001284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The endothelial glycocalyx is an important component of the vascular permeability barrier, forming a scaffold that allows serum proteins to create a gel-like layer on the endothelial surface and transmitting mechanosensing and mechanotransduction information that influences permeability. During acute inflammation, the glycocalyx is degraded, changing how it interacts with serum proteins and colloids used during resuscitation and altering its barrier properties and biomechanical characteristics. We quantified changes in the biomechanical properties of lung endothelial glycocalyx during control conditions and after degradation by hyaluronidase using biophysical techniques that can probe mechanics at (1) the aqueous/glycocalyx interface and (2) inside the glycocalyx. Our goal was to discern the location-specific effects of albumin and hydroxyethyl starch (HES) on glycocalyx function. METHODS The effects of albumin and HES on the mechanical properties of bovine lung endothelial glycocalyx were studied using a combination of atomic force microscopy and reflectance interference contrast microscopy. Logistic regression was used to determine the odds ratios for comparing the effects of varying concentrations of albumin and HES on the glycocalyx with and without hyaluronidase. RESULTS Atomic force microscopy measurements demonstrated that both 0.1% and 4% albumin increased the thickness and reduced the stiffness of glycocalyx when compared with 1% albumin. The effect of HES on glycocalyx thickness was similar to albumin, with thickness increasing significantly between 0.1% and 1% HES and a trend toward a softer glycocalyx at 4% HES. Reflectance interference contrast microscopy revealed a concentration-dependent softening of the glycocalyx in the presence of albumin, but a concentration-dependent increase in stiffness with HES. After glycocalyx degradation with hyaluronidase, stiffness was increased only at 4% albumin and 1% HES. CONCLUSIONS Albumin and HES induced markedly different effects on glycocalyx mechanics and had notably different effects after glycocalyx degradation by hyaluronidase. We conclude that HES is not comparable with albumin for studies of vascular permeability and glycocalyx-dependent signaling. Characterizing the molecular and biomechanical effects of resuscitation colloids on the glycocalyx should clarify their indicated uses and permit a better understanding of how HES and albumin affect vascular function.
Collapse
Affiliation(s)
- Kathleen M Job
- From the *Department of Bioengineering, University of Utah, Salt lake City, Utah; and †Department of Anesthesiology, University of Illinois Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
21
|
Abstract
In the United States trauma is the leading cause of mortality among those under the age of 45, claiming approximately 192,000 lives each year. Significant personal disability, lost productivity, and long-term healthcare needs are common and contribute 580 billion dollars in economic impact each year. Improving resuscitation strategies and the early acute care of trauma patients has the potential to reduce the pathological sequelae of combined exuberant inflammation and immune suppression that can co-exist, or occur temporally, and adversely affect outcomes. The endothelial and epithelial glycocalyx has emerged as an important participant in both inflammation and immunomodulation. Constituents of the glycocalyx have been used as biomarkers of injury severity and have the potential to be target(s) for therapeutic interventions aimed at immune modulation. In this review, we provide a contemporary understanding of the physiologic structure and function of the glycocalyx and its role in traumatic injury with a particular emphasis on lung injury.
Collapse
|
22
|
The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3758278. [PMID: 27699168 PMCID: PMC5028820 DOI: 10.1155/2016/3758278] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures.
Collapse
|
23
|
Bihari S, Wiersema UF, Schembri D, De Pasquale CG, Dixon DL, Prakash S, Lawrence MD, Bowden JJ, Bersten AD. Bolus intravenous 0.9% saline, but not 4% albumin or 5% glucose, causes interstitial pulmonary edema in healthy subjects. J Appl Physiol (1985) 2015; 119:783-92. [PMID: 26228998 DOI: 10.1152/japplphysiol.00356.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
Rapid intravenous (iv) infusion of 0.9% saline alters respiratory mechanics in healthy subjects. However, the relative cardiovascular and respiratory effects of bolus iv crystalloid vs. colloid are unknown. Six healthy male volunteers were given 30 ml/kg iv 0.9% saline, 4% albumin, and 5% glucose at a rate of 100 ml/min on 3 separate days in a double-blinded, randomized crossover study. Impulse oscillometry, spirometry, lung volumes, diffusing capacity (DLCO), and blood samples were measured before and after fluid administration. Lung ultrasound B-line score (indicating interstitial pulmonary edema) and Doppler echocardiography indices of cardiac preload were measured before, midway, immediately after, and 1 h after fluid administration. Infusion of 0.9% saline increased small airway resistance at 5 Hz (P = 0.04) and lung ultrasound B-line score (P = 0.01) without changes in Doppler echocardiography measures of preload. In contrast, 4% albumin increased DLCO, decreased lung volumes, and increased the Doppler echocardiography mitral E velocity (P = 0.001) and E-to-lateral/septal e' ratio, estimated blood volume, and N-terminal pro B-type natriuretic peptide (P = 0.01) but not lung ultrasound B-line score, consistent with increased pulmonary blood volume without interstitial pulmonary edema. There were no significant changes with 5% glucose. Plasma angiopoietin-2 concentration increased only after 0.9% saline (P = 0.001), suggesting an inflammatory mechanism associated with edema formation. In healthy subjects, 0.9% saline and 4% albumin have differential pulmonary effects not attributable to passive fluid filtration. This may reflect either different effects of these fluids on active signaling in the pulmonary circulation or a protective effect of albumin.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia;
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia
| | - David Schembri
- Department of Respiratory Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Carmine G De Pasquale
- Cardiology, Flinders Medical Centre, Adelaide, Australia; and Department of Medicine, Flinders University, Adelaide, Australia
| | - Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| | - Shivesh Prakash
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia
| | - Mark D Lawrence
- Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| | - Jeffrey J Bowden
- Department of Respiratory Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Andrew D Bersten
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; Department of Critical Care Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
24
|
Wiedermann CJ, Joannidis M. Nephroprotective Potential of Human Albumin Infusion: A Narrative Review. Gastroenterol Res Pract 2015; 2015:912839. [PMID: 26136776 PMCID: PMC4475554 DOI: 10.1155/2015/912839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Albumin infusion improves renal function in cirrhosis; however, mechanisms are incompletely understood. In clinical practice, human albumin is used in various intensive care unit indications to deal with a wide range of problems, from volume replacement in hypovolemic shock, or sepsis, to treatment of ascites in patients with liver cirrhosis. Against the background of the results of recent studies on the use of human albumin in septic patients, the importance of the natural colloid in these critically ill patients is being redefined. In addition to the hemodynamic effects of administration of human albumin impacting on sympathetic tone, attention is being paid to other effects in which its pharmacodynamics is associated with the physiological importance of endogenous albumin. The morbidity and mortality data discussed in this paper support the importance of both the hemodynamic and the pharmacological effects of the administration of human albumin in various indications. The contribution that human albumin could make towards the maintenance of renal function in the course and treatment of severe sepsis and cirrhosis of the liver is the subject of this narrative review.
Collapse
Affiliation(s)
- Christian J. Wiedermann
- Department of Internal Medicine, Central Hospital of Bolzano/Bozen, Lorenz-Böhler Street 5, 39100 Bolzano, Italy
- Interdisciplinary Medical Research Institute South Tyrol (IMREST), Lorenz-Böhler Street 5, 39100 Bolzano, Italy
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Anich Street 35, 6020 Innsbruck, Austria
| |
Collapse
|
25
|
Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80:389-402. [PMID: 25778676 DOI: 10.1111/bcp.12629] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
The endothelial glycocalyx has a profound influence at the vascular wall on the transmission of shear stress, on the maintenance of a selective permeability barrier and a low hydraulic conductivity, and on attenuating firm adhesion of blood leukocytes and platelets. Major constituents of the glycocalyx, including syndecans, heparan sulphates and hyaluronan, are shed from the endothelial surface under various acute and chronic clinical conditions, the best characterized being ischaemia and hypoxia, sepsis and inflammation, atherosclerosis, diabetes, renal disease and haemorrhagic viral infections. Damage has also been detected by in vivo microscopic techniques. Matrix metalloproteases may shed syndecans and heparanase, released from activated mast cells, cleaves heparan sulphates from core proteins. According to new data, not only hyaluronidase but also the serine proteases thrombin, elastase, proteinase 3 and plasminogen, as well as cathepsin B lead to loss of hyaluronan from the endothelial surface layer, suggesting a wide array of potentially destructive conditions. Appropriately, pharmacological agents such as inhibitors of inflammation, antithrombin and inhibitors of metalloproteases display potential to attenuate shedding of the glycocalyx in various experimental models. Also, plasma components, especially albumin, stabilize the glycocalyx and contribute to the endothelial surface layer. Though symptoms of the above listed diseases and conditions correlate with sequelae expected from disturbance of the endothelial glycocalyx (oedema, inflammation, leukocyte and platelet adhesion, low reflow), therapeutic studies to prove a causal connection have yet to be designed. With respect to studies on humans, some clinical evidence exists for benefits from application of sulodexide, a preparation delivering precursors of the glycocalyx constituent heparan sulphate. At present, the simplest option for protecting the glycocalyx seems to be to ensure an adequate level of albumin. However, also in this case, definite proof of causality needs to be delivered.
Collapse
Affiliation(s)
- Bernhard F Becker
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Jacob
- Department of Anaesthesiology, Hospital St Elisabeth, Straubing, Germany
| | - Stephanie Leipert
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrew H J Salmon
- Bristol Renal, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Daniel Chappell
- Department of Anaesthesiology, University Hospital Munich, Munich, Germany
| |
Collapse
|
26
|
Marki A, Esko JD, Pries AR, Ley K. Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 2015; 98:503-15. [PMID: 25979432 DOI: 10.1189/jlb.3mr0115-011r] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.
Collapse
Affiliation(s)
- Alex Marki
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Jeffrey D Esko
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Axel R Pries
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Klaus Ley
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| |
Collapse
|
27
|
Dabagh M, Jalali P, Butler PJ, Tarbell JM. Shear-induced force transmission in a multicomponent, multicell model of the endothelium. J R Soc Interface 2015; 11:20140431. [PMID: 24966239 DOI: 10.1098/rsif.2014.0431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Haemodynamic forces applied at the apical surface of vascular endothelial cells (ECs) provide the mechanical signals at intracellular organelles and through the inter-connected cellular network. The objective of this study is to quantify the intracellular and intercellular stresses in a confluent vascular EC monolayer. A novel three-dimensional, multiscale and multicomponent model of focally adhered ECs is developed to account for the role of potential mechanosensors (glycocalyx layer, actin cortical layer, nucleus, cytoskeleton, focal adhesions (FAs) and adherens junctions (ADJs)) in mechanotransmission and EC deformation. The overriding issue addressed is the stress amplification in these regions, which may play a role in subcellular localization of mechanotransmission. The model predicts that the stresses are amplified 250-600-fold over apical values at ADJs and 175-200-fold at FAs for ECs exposed to a mean shear stress of 10 dyne cm(-2). Estimates of forces per molecule in the cell attachment points to the external cellular matrix and cell-cell adhesion points are of the order of 8 pN at FAs and as high as 3 pN at ADJs, suggesting that direct force-induced mechanotransmission by single molecules is possible in both. The maximum deformation of an EC in the monolayer is calculated as 400 nm in response to a mean shear stress of 1 Pa applied over the EC surface which is in accord with measurements. The model also predicts that the magnitude of the cell-cell junction inclination angle is independent of the cytoskeleton and glycocalyx. The inclination angle of the cell-cell junction is calculated to be 6.6° in an EC monolayer, which is somewhat below the measured value (9.9°) reported previously for ECs subjected to 1.6 Pa shear stress for 30 min. The present model is able, for the first time, to cross the boundaries between different length scales in order to provide a global view of potential locations of mechanotransmission.
Collapse
Affiliation(s)
- Mahsa Dabagh
- School of Technology, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Payman Jalali
- School of Technology, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Peter J Butler
- Department of Biomedical Engineering, The Pennsylvania State University, Pennsylvania, PA, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, USA
| |
Collapse
|
28
|
Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L924-35. [PMID: 25381026 PMCID: PMC4269690 DOI: 10.1152/ajplung.00318.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively.
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
29
|
Abstract
Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer-the glycocalyx (GCX)-that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031
| | | | | |
Collapse
|
30
|
Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia 2014; 69:777-84. [PMID: 24773303 DOI: 10.1111/anae.12661] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
The endothelial glycocalyx is an important part of the vascular barrier. The glycocalyx is intimately linked to the homoeostatic functions of the endothelium. Damage to the glycocalyx precedes vascular pathology. In the first part of this paper, we have reviewed the structure, physiology and pathology of the endothelial glycocalyx, based on a literature search of the past five years. In the second part, we have systematically reviewed interventions to protect or repair the glycocalyx. Glycocalyx damage can be caused by hypervolaemia and hyperglycaemia and can be prevented by maintaining a physiological concentration of plasma protein, particularly albumin. Other interventions have been investigated in animal models: these require clinical research before their introduction into medical practice.
Collapse
Affiliation(s)
- C S Alphonsus
- Department of Anaesthesia, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | | |
Collapse
|
31
|
Vincent PE, Weinberg PD. Flow-dependent concentration polarization and the endothelial glycocalyx layer: multi-scale aspects of arterial mass transport and their implications for atherosclerosis. Biomech Model Mechanobiol 2013; 13:313-26. [DOI: 10.1007/s10237-013-0512-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
32
|
Oberleithner H. Vascular endothelium leaves fingerprints on the surface of erythrocytes. Pflugers Arch 2013; 465:1451-8. [PMID: 23665954 DOI: 10.1007/s00424-013-1288-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 01/21/2023]
Abstract
Gliding of red blood cells (RBC) through blood vessels is mediated by the negatively charged glycocalyx located on the surfaces of both RBC and endothelial cells (EC). In various vasculopathies, EC gradually lose this protective surface layer. As a consequence, RBC come into close physical contact with the vascular endothelium. It is hypothesized that the RBC glycocalyx could be adversely affected by a poor EC glycocalyx. This hypothesis was tested by evaluating the RBC and EC surface layers with atomic force microscopy techniques. In the first series of experiments, EC monolayers grown in culture were exposed to rhythmic drag forces exerted from a blood overlay (drag force treatment), and thereafter, the EC surface was investigated in terms of thickness and adhesiveness. In the second series, the glycocalyx of the EC monolayers was disturbed by enzymatic cleavage of negatively charged heparan sulfates before drag force treatment, and thereafter, the RBC surface was evaluated. In the third series, the RBC glycocalyx of the blood overlay was enzymatically disturbed before drag force treatment, and thereafter, the EC surface was evaluated. A strong positive correlation between the RBC and EC surface properties was found (r (2) = 0.95). An enzymatically affected EC glycocalyx lead to the shedding of the RBC glycocalyx and vice versa. It is concluded that there is physical interaction between the blood and endothelium. Apparently, the RBC glycocalyx reflects properties of the EC glycocalyx. This observation could have a significant impact on diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany,
| |
Collapse
|
33
|
VanTeeffelen JWGE, Brands J, Janssen BJA, Vink H. Effect of acute hyaluronidase treatment of the glycocalyx on tracer-based whole body vascular volume estimates in mice. J Appl Physiol (1985) 2013; 114:1132-40. [DOI: 10.1152/japplphysiol.00842.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endothelial glycocalyx forms a hyaluronan-containing interface between the flowing blood and the endothelium throughout the body. By comparing the systemic distribution of a small glycocalyx-accessible tracer vs. a large circulating plasma tracer, the size-selective barrier properties of the glycocalyx have recently been utilized to estimate whole body glycocalyx volumes in humans and animals, but a comprehensive validation of this approach has been lacking at the moment. In the present study, we compared, in anesthetized, ventilated C57Bl/6 mice, the whole body distribution of small (40 kDa) dextrans (Texas Red labeled; Dex40) vs. that of intermediate (70 kDa) and large (500 kDa) dextrans (both FITC labeled; Dex70 and Dex500, respectively) using tracer dilution and vs. that of circulating plasma, as derived from the dilution of fluorescein-labeled red blood cells and large-vessel hematocrit. The contribution of the glycocalyx was evaluated by intravenous infusion of a bolus of the enzyme hyaluronidase. In saline-treated control mice, distribution volume (in ml) differed between tracers ( P < 0.05; ANOVA) in the following order: Dex40 (0.97 ± 0.04) > Dex70 (0.90 ± 0.04) > Dex500 (0.81 ± 0.10) > plasma (0.71 ± 0.02), resulting in an inaccessible vascular volume, i.e., compared with the distribution volume of Dex40, of 0.03 ± 0.01, 0.15 ± 0.04, and 0.31 ± 0.05 ml for Dex70, Dex500, and plasma, respectively. In hyaluronidase-treated mice, Dex70 and Dex40 volumes were not different from each other, and inaccessible vascular volumes for Dex500 (0.03 ± 0.03) and plasma (0.14 ± 0.05) were smaller ( P < 0.05) than those in control animals. Clearance of Dex70 and Dex500 from the circulation was enhanced ( P < 0.05) in hyaluronidase-treated vs. control mice. These results indicate that the glycocalyx contributes to size-dependent differences in whole body vascular distribution of plasma solutes in mice. Whole body vascular volume measurements based on the differential distribution of glycocalyx-selective tracers appear appropriate for the detection of generalized glycocalyx degradation in experimental animals and humans.
Collapse
Affiliation(s)
- Jurgen W. G. E. VanTeeffelen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith Brands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- UPMC Cardiovascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ben J. A. Janssen
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; and
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
34
|
Savery MD, Jiang JX, Park PW, Damiano ER. The endothelial glycocalyx in syndecan-1 deficient mice. Microvasc Res 2013; 87:83-91. [PMID: 23428342 DOI: 10.1016/j.mvr.2013.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 01/28/2023]
Abstract
The existence of a hydrodynamically relevant endothelial glycocalyx has been established in capillaries, venules, and arterioles in vivo. The glycocalyx is thought to consist primarily of membrane-bound proteoglycans with glycosaminoglycan side-chains, membrane-bound glypicans, and adsorbed plasma proteins. The proteoglycans found on the luminal surface of endothelial cells are syndecans-1, -2, and -4, and glypican-1. The extent to which any of these proteins might serve to anchor the glycocalyx to the endothelium has not yet been determined. To test whether syndecan-1, in particular, is an essential anchoring protein, we performed experiments to determine the hydrodynamically relevant glycocalyx thickness in syndecan-1 deficient (Sdc1(-/-)) mice. Micro-particle image velocimetry data were collected using a previously described method. Microviscometric analysis of these data consistently revealed the existence of a hydrodynamically relevant endothelial glycocalyx in Sdc1(-/-) mice in vivo. The mean glycocalyx thickness found in Sdc1(-/-) mice was 0.45±0.10 μm (N=15), as compared with 0.54±0.12 μm (N=11) in wild-type (WT) mice (p=0.03). The slightly thinner glycocalyx observed in Sdc1(-/-) mice relative to WT mice may be due to the absence of syndecan-1. These findings show that healthy Sdc1(-/-) mice are able to synthesize and maintain a hydrodynamically relevant glycocalyx, which indicates that syndecan-1 is not an essential anchoring protein for the glycocalyx in Sdc1(-/-) mice. This may also be the case for WT mice; however, Sdc1(-/-) mice might adapt to the lack of syndecan-1 by increasing the expression of other proteoglycans. In any case, syndecan-1 does not appear to be a prerequisite for the existence of an endothelial glycocalyx.
Collapse
Affiliation(s)
- Michele D Savery
- Boston University, Department of Biomedical Engineering, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
35
|
Yang Y, Schmidt EP. The endothelial glycocalyx: an important regulator of the pulmonary vascular barrier. Tissue Barriers 2013; 1. [PMID: 24073386 PMCID: PMC3781215 DOI: 10.4161/tisb.23494] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Once thought to be a structure of small size and uncertain significance, the endothelial glycocalyx is now known to be an important regulator of endothelial function. Studies of the systemic vasculature have demonstrated that the glycocalyx forms a substantial in vivo endothelial surface layer (ESL) critical to inflammation, barrier function and mechanotransduction. The pulmonary ESL is significantly thicker than the systemic ESL, suggesting unique physiologic function. We have recently demonstrated that the pulmonary ESL regulates exposure of endothelial surface adhesion molecules, thereby serving as a barrier to neutrophil adhesion and extravasation. While the pulmonary ESL is not a critical structural component of the endothelial barrier to fluid and protein, it serves a major role in the mechanotransduction of vascular pressure, with impact on the active regulation of endothelial permeability. It is likely that the ESL serves numerous additional functions in vascular physiology, representing a fertile area for future investigation.
Collapse
Affiliation(s)
- Yimu Yang
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
36
|
Koo A, Dewey CF, García-Cardeña G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol 2012; 304:C137-46. [PMID: 23114962 DOI: 10.1152/ajpcell.00187.2012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx, a glycosaminoglycan layer located on the apical surface of vascular endothelial cells, has been shown to be important for several endothelial functions. Previous studies have documented that the glycocalyx is highly abundant in the mouse common carotid region, where the endothelium is exposed to laminar shear stress, and it is resistant to atherosclerosis. In contrast, the glycocalyx is scarce or absent in the mouse internal carotid sinus region, an area exposed to nonlaminar shear stress and highly susceptible to atherosclerosis. On the basis of these observations, we hypothesized that the expression of components of the endothelial glycocalyx is differentially regulated by distinct hemodynamic environments. To test this hypothesis, human endothelial cells were exposed to shear stress waveforms characteristic of atherosclerosis-resistant or atherosclerosis-susceptible regions of the human carotid, and the expression of several components of the glycocalyx was assessed. These experiments revealed that expression of several components of the endothelial glycocalyx is differentially regulated by distinct shear stress waveforms. Interestingly, we found that heparan sulfate expression is increased and evenly distributed on the apical surface of endothelial cells exposed to the atheroprotective waveform and is irregularly present in cells exposed to the atheroprone waveform. Furthermore, expression of a heparan sulfate proteoglycan, syndecan-1, is also differentially regulated by the two waveforms, and its suppression mutes the atheroprotective flow-induced cell surface expression of heparan sulfate. Collectively, these data link distinct hemodynamic environments to the differential expression of critical components of the endothelial glycocalyx.
Collapse
Affiliation(s)
- Andrew Koo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
37
|
Zeng Y, Ebong EE, Fu BM, Tarbell JM. The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One 2012; 7:e43168. [PMID: 22905223 PMCID: PMC3419189 DOI: 10.1371/journal.pone.0043168] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/20/2012] [Indexed: 12/11/2022] Open
Abstract
Rationale It is widely believed that glycosaminoglycans (GAGs) and bound plasma proteins form an interconnected gel-like structure on the surface of endothelial cells (the endothelial glycocalyx layer–EGL) that is stabilized by the interaction of its components. However, the structural organization of GAGs and proteins and the contribution of individual components to the stability of the EGL are largely unknown. Objective To evaluate the hypothesis that the interconnected gel-like glycocalyx would collapse when individual GAG components were almost completely removed by a specific enzyme. Methods and Results Using confocal microscopy, we observed that the coverage and thickness of heparan sulfate (HS), chondroitin sulfate (CS), hyaluronic acid (HA), and adsorbed albumin were similar, and that the thicknesses of individual GAGs were spatially nonuniform. The individual GAGs were degraded by specific enzymes in a dose-dependent manner, and decreased much more in coverage than in thickness. Removal of HS or HA did not result in cleavage or collapse of any of the remaining components. Simultaneous removal of CS and HA by chondroitinase did not affect HS, but did reduce adsorbed albumin, although the effect was not large. Conclusion All GAGs and adsorbed proteins are well inter-mixed within the structure of the EGL, but the GAG components do not interact with one another. The GAG components do provide binding sites for albumin. Our results provide a new view of the organization of the endothelial glycocalyx layer and provide the first demonstration of the interaction between individual GAG components.
Collapse
Affiliation(s)
- Ye Zeng
- Department of Biomedical Engineering, The City College of New York, New York, New York, United States of America
| | | | | | | |
Collapse
|
38
|
The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18:1217-23. [PMID: 22820644 DOI: 10.1038/nm.2843] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/15/2012] [Indexed: 12/16/2022]
Abstract
Sepsis, a systemic inflammatory response to infection, commonly progresses to acute lung injury (ALI), an inflammatory lung disease with high morbidity. We postulated that sepsis-associated ALI is initiated by degradation of the pulmonary endothelial glycocalyx, leading to neutrophil adherence and inflammation. Using intravital microscopy, we found that endotoxemia in mice rapidly induced pulmonary microvascular glycocalyx degradation via tumor necrosis factor-α (TNF-α)-dependent mechanisms. Glycocalyx degradation involved the specific loss of heparan sulfate and coincided with activation of endothelial heparanase, a TNF-α-responsive, heparan sulfate-specific glucuronidase. Glycocalyx degradation increased the availability of endothelial surface adhesion molecules to circulating microspheres and contributed to neutrophil adhesion. Heparanase inhibition prevented endotoxemia-associated glycocalyx loss and neutrophil adhesion and, accordingly, attenuated sepsis-induced ALI and mortality in mice. These findings are potentially relevant to human disease, as sepsis-associated respiratory failure in humans was associated with higher plasma heparan sulfate degradation activity; moreover, heparanase content was higher in human lung biopsies showing diffuse alveolar damage than in normal human lung tissue.
Collapse
|
39
|
Job KM, Dull RO, Hlady V. Use of reflectance interference contrast microscopy to characterize the endothelial glycocalyx stiffness. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1242-9. [PMID: 22505668 DOI: 10.1152/ajplung.00341.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reflectance interference contrast microscopy (RICM) was used to study the mechanics of the endothelial glycocalyx. This technique tracks the vertical position of a glass microsphere probe that applies very light fluctuating loads to the outermost layer of the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx. Fluctuations in probe vertical position are used to estimate the effective stiffness of the underlying layer. Stiffness was measured before and after removal of specific glycocalyx components. The mean stiffness of BLMVEC glycocalyx was found to be ~7.5 kT/nm(2) (or ~31 pN/nm). Enzymatic digestion of the glycocalyx with pronase or hyaluronan with hyaluronidase increased the mean effective stiffness of the glycocalyx; however, the increase of the mean stiffness on digestion of heparan sulfate with heparinase III was not significant. The results imply that hyaluronan chains act as a cushioning layer to distribute applied forces to the glycocalyx structure. Effective stiffness was also measured for the glycocalyx exposed to 0.1%, 1.0%, and 4.0% BSA; glycocalyx compliance increased at two extreme BSA concentrations. The RICM images indicated that glycocalyx thickness increases with BSA concentrations. Results demonstrate that RICM is sensitive to detect the subtle changes of glycocalyx compliance at the fluid-fiber interface.
Collapse
Affiliation(s)
- Kathleen M Job
- Dept. of Bioengineering, Univ. of Utah, BPRB, Rm. 108A, Salt Lake City, UT 84312, USA
| | | | | |
Collapse
|
40
|
Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM. Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res 2012; 83:337-46. [PMID: 22349291 DOI: 10.1016/j.mvr.2012.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/19/2022]
Abstract
The glycocalyx on the surface of endothelium lining blood vessel walls modulates vascular barrier function, cell adhesion and also serves as a mechano-sensor for blood flow. Reduction of glycocalyx has been reported in many diseases including atherosclerosis, inflammation, myocardial edema, and diabetes. The surface glycocalyx layer (SGL) is composed of proteoglycans and glycosaminoglycans, of which heparan sulfate is one of the most abundant. To quantify the SGL thickness on the microvessels of rat mesentery and mouse cremaster muscle in situ, we applied a single vessel cannulation and perfusion technique to directly inject FITC-anti-heparan sulfate into a group of microvessels for immuno-labeling the SGL. We also used anti-heparan sulfate for immuno-labeling the SGL on rat and mouse aortas ex vivo. High resolution confocal microscopy revealed that the thickness of the SGL on rat mesenteric capillaries and post-capillary venules is 0.9±0.1 μm and 1.2±0.3 μm, respectively; while the thickness of the SGL on mouse cremaster muscle capillaries and post-capillary venules is 1.5±0.1 μm and 1.5±0.2 μm, respectively. Surprisingly, there was no detectable SGL in either rat mesenteric or mouse cremaster muscle arterioles. The SGL thickness is 2.5±0.1 μm and 2.1±0.2 μm respectively, on rat and mouse aorta. In addition, we observed that the SGL is continuously and evenly distributed on the aorta wall but not on the microvessel wall.
Collapse
Affiliation(s)
- Wan-Yi Yen
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
41
|
Dull RO, Cluff M, Kingston J, Hill D, Chen H, Hoehne S, Malleske DT, Kaur R. Lung heparan sulfates modulate K(fc) during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction. Am J Physiol Lung Cell Mol Physiol 2011; 302:L816-28. [PMID: 22160307 DOI: 10.1152/ajplung.00080.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (K(fc)) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in K(fc). Isolated perfused rat lung preparation was used to measure K(fc) in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered K(fc) in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on K(fc), demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in K(fc). Ventilation strategies altered lung NO concentration and the K(fc) response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies.
Collapse
Affiliation(s)
- Randal O Dull
- Department of Anesthesiology, Lung Vascular Biology Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84132-2304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
No-reflow phenomenon and endothelial glycocalyx of microcirculation. Biochem Res Int 2011; 2012:859231. [PMID: 22191033 PMCID: PMC3235431 DOI: 10.1155/2012/859231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/20/2011] [Indexed: 12/27/2022] Open
Abstract
The progress in reperfusion therapy dictated the necessity for developing new tools and procedures for adjacent/additional therapy of acute cardiovascular disorders. The adjacent therapy is targeted on the damage of the microcirculation, leading to the unfavorable prognosis for the patients. The no-reflow phenomenon holds special place in the multifactorial etiology of the microcirculation disorders, offering a new challenge in treating the patients associated with ST-segment elevation on ECG at myocardial infarction. One of the numerous causes of no-reflow, the influence of the endothelial glycocalyx of the microcirculation, is analyzed. The results obtained in the studies of the endothelial glycocalyx ultrastructure are generalized, the effect that the fragments of the glycocalyx glycosaminoglycans have on the function of the vascular wall is demonstrated. The trends in searching for correlations between the thickness of the capillary glycocalyx and the cardiovascular disease risk are noted.
Collapse
|
43
|
Veeraraghavan R, Salama ME, Poelzing S. Interstitial volume modulates the conduction velocity-gap junction relationship. Am J Physiol Heart Circ Physiol 2011; 302:H278-86. [PMID: 22021331 DOI: 10.1152/ajpheart.00868.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac conduction through gap junctions is an important determinant of arrhythmia susceptibility. Yet, the relationship between degrees of G(j) uncoupling and conduction velocity (θ) remains controversial. Conflicting results in similar experiments are normally attributed to experimental differences. We hypothesized that interstitial volume modulates conduction velocity and its dependence on G(j). Interstitial volume (V(IS)) was quantified histologically from guinea pig right ventricle. Optical mapping was used to quantify conduction velocity and anisotropy (AR(θ)). Albumin (4 g/l) decreased histologically assessed V(IS), increased transverse θ by 71 ± 10%, and lowered AR(θ). Furthermore, albumin did not change isolated cell size. Conversely, mannitol increased V(IS), decreased transverse θ by 24 ± 4%, and increased AR(θ). Mannitol also decreased cell width by 12%. Furthermore, mannitol was associated with spontaneous ventricular tachycardias in three of eight animals relative to zero of 15 during control. The θ-G(j) relationship was assessed using the G(j) uncoupler carbenoxolone (CBX). Whereas 13 μM CBX did not significantly affect θ during control, it slowed transverse θ by 38 ± 9% during mannitol (edema). These data suggest changes in V(IS) modulate θ, AR(θ), and the θ-G(j) relationship and thereby alter arrhythmia susceptibility. Therefore, V(IS) may underlie arrhythmia susceptibility, particularly in diseases associated with gap junction remodeling.
Collapse
Affiliation(s)
- Rengasayee Veeraraghavan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, 84112-5000, USA
| | | | | |
Collapse
|
44
|
Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng 2011; 40:828-39. [PMID: 22009311 DOI: 10.1007/s10439-011-0429-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/03/2011] [Indexed: 12/16/2022]
Abstract
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Collapse
Affiliation(s)
- F E Curry
- Department of Physiology and Membrane Biology, School of Medicine, University of California at Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
45
|
Klinger AL, Pichette B, Sobolewski P, Eckmann DM. Mechanotransductional basis of endothelial cell response to intravascular bubbles. Integr Biol (Camb) 2011; 3:1033-42. [PMID: 21931900 DOI: 10.1039/c1ib00017a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon Oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways.
Collapse
Affiliation(s)
- Alexandra L Klinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
46
|
Lennon FE, Singleton PA. Hyaluronan regulation of vascular integrity. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:200-213. [PMID: 22254199 PMCID: PMC3253523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated, in part, by the endothelial glycocalyx and cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including atherosclerosis, ischemia/reperfusion, tumor angiogenesis, cancer metastasis, diabetes, sepsis and acute lung injury. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through endothelial glycocalyx modulation, caveolin-enriched microdomain regulation and interaction with endothelial HA binding proteins. Certain disease states increase hyaluronidase activity and reactive oxygen species (ROS) generation which break down high molecular weight HA to low molecular weight fragments causing damage to the endothelial glycocalyx. Further, these HA fragments can activate specific HA binding proteins upregulated in vascular disease to promote actin cytoskeletal reorganization and inhibition of endothelial cell-cell contacts. This review focuses on the crucial role of HA in vascular integrity and how HA degradation promotes vascular barrier disruption.
Collapse
|
47
|
Liu X, Fan Y, Deng X. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure. J Theor Biol 2011; 283:71-81. [DOI: 10.1016/j.jtbi.2011.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/03/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
|
48
|
O'Callaghan R, Job KM, Dull RO, Hlady V. Stiffness and heterogeneity of the pulmonary endothelial glycocalyx measured by atomic force microscopy. Am J Physiol Lung Cell Mol Physiol 2011; 301:L353-60. [PMID: 21705487 DOI: 10.1152/ajplung.00342.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical properties of endothelial glycocalyx were studied using atomic force microscopy with a silica bead (diameter ∼18 μm) serving as an indenter. Even at indentations of several hundred nanometers, the bead exerted very low compressive pressures on the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx and allowed for an averaging of stiffness in the bead-cell contact area. The elastic modulus of BLMVEC glycocalyx was determined as a pointwise function of the indentation depth before and after enzymatic degradation of specific glycocalyx components. The modulus-indentation depth profiles showed the cells becoming progressively stiffer with increased indentation. Three different enzymes were used: heparinases III and I and hyaluronidase. The main effects of heparinase III and hyaluronidase enzymes were that the elastic modulus in the cell junction regions increased more rapidly with the indentation than in BLMVEC controls, and that the effective thickness of glycocalyx was reduced. Cytochalasin D abolished the modulus increase with the indentation. The confocal profiling of heparan sulfate and hyaluronan with atomic force microscopy indentation data demonstrated marked heterogeneity of the glycocalyx composition between cell junctions and nuclear regions.
Collapse
Affiliation(s)
- Ryan O'Callaghan
- 20 S. 2030 E., Rm. 108A, Dept. of Bioengineering, Univ. of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
49
|
Weinbaum S, Duan Y, Thi MM, You L. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cell Mol Bioeng 2011; 4:510-537. [PMID: 23976901 DOI: 10.1007/s12195-011-0179-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
50
|
Ebong EE, Macaluso FP, Spray DC, Tarbell JM. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 2011; 31:1908-15. [PMID: 21474821 DOI: 10.1161/atvbaha.111.225268] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Recent publications questioned the validity of endothelial cell (EC) culture studies of glycocalyx (GCX) function because of findings that GCX in vitro may be substantially thinner than GCX in vivo. The assessment of thickness differences is complicated by GCX collapse during dehydration for traditional electron microscopy. We measured in vitro GCX thickness using rapid freezing/freeze substitution (RF/FS) transmission electron microscopy (TEM), taking advantage of the high spatial resolution provided by TEM and the capability to stably preserve the GCX in its hydrated configuration by RF/FS. METHODS AND RESULTS Bovine aortic EC (BAEC) and rat fat pad EC were subjected to conventional or RF/FS-TEM. Conventionally preserved BAEC GCX was ≈0.040 μm in thickness. RF/FS-TEM revealed impressively thick BAEC GCX of ≈11 μm and rat fat pad EC GCX of ≈5 μm. RF/FS-TEM also discerned GCX structure and thickness variations due to heparinase III enzyme treatment and extracellular protein removal, respectively. Immunoconfocal studies confirmed that the in vitro GCX is several micrometers thick and is composed of extensive and well-integrated heparan sulfate, hyaluronic acid, and protein layers. CONCLUSIONS New observations by RF/FS-TEM reveal substantial GCX layers on cultured EC, supporting their continued use for fundamental studies of GCX and its function in the vasculature.
Collapse
Affiliation(s)
- Eno E Ebong
- Department of Biomedical Engineering, City College of New York, NY, USA.
| | | | | | | |
Collapse
|