1
|
Tompkins E, Mimic B, Penn RB, Pera T. The biased M3 mAChR ligand PD 102807 mediates qualitatively distinct signaling to regulate airway smooth muscle phenotype. J Biol Chem 2023; 299:105209. [PMID: 37660916 PMCID: PMC10520882 DOI: 10.1016/j.jbc.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Airway smooth muscle (ASM) cells attain a hypercontractile phenotype during obstructive airway diseases. We recently identified a biased M3 muscarinic acetylcholine receptor (mAChR) ligand, PD 102807, that induces GRK-/arrestin-dependent AMP-activated protein kinase (AMPK) activation to inhibit transforming growth factor-β-induced hypercontractile ASM phenotype. Conversely, the balanced mAChR agonist, methacholine (MCh), activates AMPK yet does not regulate ASM phenotype. In the current study, we demonstrate that PD 102807- and MCh-induced AMPK activation both depend on Ca2+/calmodulin-dependent kinase kinases (CaMKKs). However, MCh-induced AMPK activation is calcium-dependent and mediated by CaMKK1 and CaMKK2 isoforms. In contrast, PD 102807-induced signaling is calcium-independent and mediated by the atypical subtype protein kinase C-iota and the CaMKK1 (but not CaMKK2) isoform. Both MCh- and PD 102807-induced AMPK activation involve the AMPK α1 isoform. PD 102807-induced AMPK α1 (but not AMPK α2) isoform activation mediates inhibition of the mammalian target of rapamycin complex 1 (mTORC1) in ASM cells, as demonstrated by increased Raptor (regulatory-associated protein of mTOR) phosphorylation as well as inhibition of phospho-S6 protein and serum response element-luciferase activity. The mTORC1 inhibitor rapamycin and the AMPK activator metformin both mimic the ability of PD 102807 to attenuate transforming growth factor-β-induced α-smooth muscle actin expression (a marker of hypercontractile ASM). These data indicate that PD 102807 transduces a signaling pathway (AMPK-mediated mTORC1 inhibition) qualitatively distinct from canonical M3 mAChR signaling to prevent pathogenic remodeling of ASM, thus demonstrating PD 102807 is a biased M3 mAChR ligand with therapeutic potential for the management of obstructive airway disease.
Collapse
Affiliation(s)
- Eric Tompkins
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Bogdana Mimic
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA
| | - Tonio Pera
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
The Role of the Acetylcholine System in Common Respiratory Diseases and COVID-19. Molecules 2023; 28:molecules28031139. [PMID: 36770805 PMCID: PMC9920988 DOI: 10.3390/molecules28031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
As an indispensable component in human beings, the acetylcholine system regulates multiple physiological processes not only in neuronal tissues but also in nonneuronal tissues. However, since the concept of the "Nonneuronal cholinergic system (NNCS)" has been proposed, the role of the acetylcholine system in nonneuronal tissues has received increasing attention. A growing body of research shows that the acetylcholine system also participates in modulating inflammatory responses, regulating contraction and mucus secretion of respiratory tracts, and influencing the metastasis and invasion of lung cancer. In addition, the susceptibility and severity of respiratory tract infections caused by pathogens such as Mycobacterium Tuberculosis and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can also correlate with the regulation of the acetylcholine system. In this review, we summarized the major roles of the acetylcholine system in respiratory diseases. Despite existing achievements in the field of the acetylcholine system, we hope that more in-depth investigations on this topic will be conducted to unearth more possible pharmaceutical applications for the treatment of diverse respiratory diseases.
Collapse
|
3
|
Amrani Y. New Tricks for an Old Dog: Biased GPCR Agonism of an M4 Muscarinic Acetylcholine Receptor Antagonist in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 67:515-517. [PMID: 36049223 PMCID: PMC9651195 DOI: 10.1165/rcmb.2022-0335ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yassine Amrani
- Department of Respiratory SciencesUniversity of LeicesterLeicester, United Kingdom
| |
Collapse
|
4
|
Tompkins E, Mimic B, Cuevas-Mora K, Schorsch H, Shah SD, Deshpande DA, Benovic JL, Penn RB, Pera T. PD 102807 Induces M3 mAChR-Dependent GRK-/Arrestin-Biased Signaling in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 67:550-561. [PMID: 35944139 PMCID: PMC9651198 DOI: 10.1165/rcmb.2021-0320oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated β-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl-coenzyme A carboxylase (ACC). PD 102807- induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by β-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor β (TGF-β)-mediated functions, PD 102807 inhibited TGF-β-induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.
Collapse
Affiliation(s)
- Eric Tompkins
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Bogdana Mimic
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Karina Cuevas-Mora
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Hannah Schorsch
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Sushrut D. Shah
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Deepak A. Deshpande
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| | - Tonio Pera
- Department of Medicine, Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania; and
| |
Collapse
|
5
|
Cheng F, Lu T, Wang Y, Yuan D, Wei Z, Li Y, Li J, Tang R. Expression of airway smooth muscle contractile proteins in children with acute interstitial pneumonia. Int J Exp Pathol 2022; 103:190-197. [PMID: 35527237 PMCID: PMC9482355 DOI: 10.1111/iep.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
The purpose of the present study was to investigate the expression of α-SMA and SM22α in airway smooth muscle (ASM) of bronchioles from children younger than 14 years who died of acute interstitial pneumonia (AIP). This is based upon the hypothesis that as contractile marker proteins α-SMA and SM22α can serve as an index of the overcontractile phenotype of ASM that is seen in AIP. Lung tissue samples of children were obtained from autopsies and divided into the AIP group (55.9% male and 44.1% female, between 0.4 and 132 months old, n = 34) and the control group (60% male and 40% female, between 2 and 156 months old, n = 10). We recorded the post-mortem interval (PMI), height, clinical symptoms and abdominal fat thickness (AFT) of each case. Haematoxylin-and-eosin-stained sections were used to examine the luminal area and observe the morphological changes in the bronchioles. Immunohistochemistry and Masson's trichrome staining were used to detect the expression of contractile marker proteins and the degree of pulmonary fibrosis respectively. Compared with the control group, the luminal areas of bronchioles in the AIP group were smaller (p < .001). The expression differences in α-SMA and SM22α between the two groups were statistically significant (p = .01 and p = .02 respectively). Also, there was no significant correlation of the contractile marker proteins expression with PMI, height, clinical symptoms and AFT. The collagen deposition difference in lung between the two groups was not statistically significant (p = .224). These findings suggest that enhancement of ASM contractile function appears to be involved in the death mechanism of children with AIP, which affords more insights into the understanding of AIP.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Tao Lu
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Yicheng Wang
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Didi Yuan
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Zehong Wei
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Renkuan Tang
- Department of Forensic Medicine, Faculty of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Mitochondrial ATP-Sensitive K+ Channel Opening Increased the Airway Smooth Muscle Cell Proliferation by Activating the PI3K/AKT Signaling Pathway in a Rat Model of Asthma. Can Respir J 2021; 2021:8899878. [PMID: 34336047 PMCID: PMC8289566 DOI: 10.1155/2021/8899878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 12/02/2022] Open
Abstract
Abnormal proliferation of airway smooth muscle cells (ASMCs) leads to airway remodeling and the development of asthma. This study aimed to assess whether mitochondrial ATP-sensitive K+ (mitoKATP) channels regulated the proliferation of ASMCs by regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway in asthmatic rats. Forty-eight Sprague Dawley rats were immunized with ovalbumin-containing alum to establish the asthma models. The ASMCs were isolated and identified by phase-contrast microscopic images and immunohistochemical staining for α-smooth muscle actin. The ASMCs were treated with a potent activator of mitoKATP, diazoxide, or an inhibitor of mitoKATP, 5-hydroxydecanoate (5-HD). Rhodamine-123 (R-123) was used for detecting the mitochondrial membrane potential (Δψm). The proliferation of ASMCs was examined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The protein and mRNA expressions of AKT and p-AKT were detected using western blotting and quantitative real-time PCR. The results showed that diazoxide enhanced the mitoKATP channel opening in ASMCs in the rat model of asthma, while 5-HD impeded it. Diazoxide also increased ASMC proliferation in the rat model of asthma, whereas 5-HD alleviated it. However, LY294002, a PI3K/AKT pathway inhibitor, reversed the functional roles of diazoxide in the proliferation ability of ASMCs in the rat model of asthma. Furthermore, treatment with diazoxide induced the phosphorylation of AKT, and treatment with 5-HD decreased the phosphorylation of AKT in ASMCs in the rat model of asthma. In conclusion, the mitoKATP channel opening increased the proliferation of ASMCs by activating the PI3K/AKT signaling pathway in a rat model of asthma.
Collapse
|
8
|
Sagar S, Kapoor H, Chaudhary N, Roy SS. Cellular and mitochondrial calcium communication in obstructive lung disorders. Mitochondrion 2021; 58:184-199. [PMID: 33766748 DOI: 10.1016/j.mito.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) signalling is well known to dictate cellular functioning and fate. In recent years, the accumulation of Ca2+ in the mitochondria has emerged as an important factor in Chronic Respiratory Diseases (CRD) such as Asthma and Chronic Obstructive Pulmonary Disease (COPD). Various reports underline an aberrant increase in the intracellular Ca2+, leading to mitochondrial ROS generation, and further activation of the apoptotic pathway in these diseases. Mitochondria contribute to Ca2+ buffering which in turn regulates mitochondrial metabolism and ATP production. Disruption of this Ca2+ balance leads to impaired cellular processes like apoptosis or necrosis and thus contributes to the pathophysiology of airway diseases. This review highlights the key role of cytoplasmic and mitochondrial Ca2+ signalling in regulating CRD, such as asthma and COPD. A better understanding of the dysregulation of mitochondrial Ca2+ homeostasis in these diseases could provide cues for the development of advanced therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himanshi Kapoor
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Melatonin modulates airway smooth muscle cell phenotype by targeting the STAT3/Akt/GSK-3β pathway in experimental asthma. Cell Tissue Res 2019; 380:129-142. [PMID: 31867684 DOI: 10.1007/s00441-019-03148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Among the troika of clinicopathologic features of asthma, airway remodelling has gained sufficient attention for its contribution to progressive airway narrowing. Much effort has been directed at the management of airway smooth muscle cells (ASMCs), but few attempts have proven to prevent the progression of remodelling. Recently, accumulating data have shown the anti-inflammatory/anti-proliferative potency of melatonin (a crucial neurohormone involved in many physiological and pathological processes) in diverse cells. However, no evidence has confirmed its effect on ASMCs. The present study investigates the benefits of melatonin in asthma, with an emphasis on airway remodelling. The results indicated that melatonin significantly attenuated airway hyperresponsiveness (AHR), inflammation and remodelling in a house dust mite (HDM) model. Melatonin markedly alleviated goblet cell hyperplasia/metaplasia, collagen deposition and airway smooth muscle hyperplasia/hypertrophy, implying the achievement of remodelling remission. The data obtained in vitro further revealed that melatonin notably inhibited ASMCs proliferation, VEGF synthesis and cell migration induced by PDGF, which might depend on STAT3 signalling. Moreover, melatonin remarkably relieved ASMCs contraction and reversed ASMCs phenotype switching induced by TGF-β, probably via the Akt/GSK-3β pathway. Altogether, our findings illustrated for the first time that melatonin improves asthmatic airway remodelling by balancing the phenotypic proportions of ASMCs, thus highlighting a novel purpose for melatonin as a potent option for the management of asthma.
Collapse
|
10
|
Gosens R, Gross N. The mode of action of anticholinergics in asthma. Eur Respir J 2018; 52:13993003.01247-2017. [PMID: 30115613 PMCID: PMC6340638 DOI: 10.1183/13993003.01247-2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/09/2018] [Indexed: 01/25/2023]
Abstract
Acetylcholine binds to muscarinic receptors to play a key role in the pathophysiology of asthma, leading to bronchoconstriction, increased mucus secretion, inflammation and airway remodelling. Anticholinergics are muscarinic receptor antagonists that are used in the treatment of chronic obstructive pulmonary disease and asthma. Recent in vivo and in vitro data have increased our understanding of how acetylcholine contributes to the disease manifestations of asthma, as well as elucidating the mechanism of action of anticholinergics. This review assesses the latest literature on acetylcholine in asthma pathophysiology, with a closer look at its role in airway inflammation and remodelling. New insights into the mechanism of action of anticholinergics, their effects on airway remodelling, and a review of the efficacy and safety of long-acting anticholinergics in asthma treatment will also be covered, including a summary of the latest clinical trial data. Pre-clinical data suggest that anticholinergics can reduce acetylcholine-induced airway inflammation and remodellinghttp://ow.ly/xqAQ30loP8F
Collapse
Affiliation(s)
| | - Nicholas Gross
- University Medical Research LLC, St Francis Hospital, Hartford, CT, USA
| |
Collapse
|
11
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
12
|
Yan F, Gao H, Zhao H, Bhatia M, Zeng Y. Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease. J Transl Med 2018; 16:262. [PMID: 30257694 PMCID: PMC6158847 DOI: 10.1186/s12967-018-1635-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/16/2018] [Indexed: 12/24/2022] Open
Abstract
The airway smooth muscle (ASM) plays an indispensable role in airway structure and function. Dysfunction in ASM plays a central role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and contributes to alterations of contractility, inflammatory response, immunoreaction, phenotype, quantity, and size of airways. ASM makes a key contribution in COPD by various mechanisms including altered contractility and relaxation induce by [Ca2+]i, cell proliferation and hypertrophy, production and modulation of extracellular cytokines, and release of pro-and-anti-inflammatory mediators. Multiple dysfunctions of ASM contribute to modulating airway responses to stimuli, remodeling, and fibrosis, as well as influence the compliance of lungs. The present review highlights regulatory roles of multiple factors in the development of ASM dysfunction in COPD, aims to understand the regulatory mechanism by which ASM dysfunctions are initiated, and explores the clinical significance of ASM on alterations of airway structure and function in COPD and development of novel therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Furong Yan
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hong Zhao
- Center for Molecular Diagnosis and Therapy, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
13
|
Yu Q, Yu X, Zhao W, Zhu M, Wang Z, Zhang J, Huang M, Zeng X. Inhibition of H3K27me3 demethylases attenuates asthma by reversing the shift in airway smooth muscle phenotype. Clin Exp Allergy 2018; 48:1439-1452. [PMID: 30084510 DOI: 10.1111/cea.13244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/11/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The shift in airway smooth muscle cells (ASMCs) phenotype between proliferation and contraction during asthma has been reported recently, highlighting a role of ASMCs plasticity in the pathophysiology of asthma. As an event involved in epigenetic post-translational modification, histone H3 lysine27 (H3K27) demethylation has attracted significant attention with respect to the epigenetic changes in diverse cells; however, little is known about its contribution to the switching of ASMCs phenotype in asthma. OBJECTIVE To investigate the role of trimethylated H3K27 (H3k27me3) demethylation in ASM remodelling as well as the underling mechanism. METHODS Mice were exposed five times a week to house dust mite (HDM) extract for 5 weeks. Lung function was measured following the final HDM challenge. Airway inflammation and remodelling were then assessed in lungs of individual mice. Human ASMCs were purchased from Sciencell Research Laboratories. Proliferation, synthesis, migration and contraction of ASMCs were analysed, respectively. RESULTS We observed demethylation at H3k27me3 sites in lungs harvested from mice exposed to HDM extract. Administration of a selective inhibitor of H3K27 demethylase (GSK-J4) could ameliorate the classical hallmarks of asthma, such as airway hyperresponsiveness, airway inflammation and remodelling. We established a proliferative as well as a contractive model of human ASMCs to explore the impacts of H3K27 demethylase inhibition on ASMCs phenotype. Our results indicated that GSK-J4 decreased ASMCs proliferation and migration elicited by PDGF through the Akt/JNK signalling; GSK-J4 also prevented the upregulation of contractile proteins in ASMCs induced by TGF-β through the Smad3 pathway. CONCLUSIONS Inhibition of H3K27me3 demethylation alleviated the development of asthmatic airway disease in vivo and modulated ASMCs phenotype in vitro. Collectively, our findings highlight a role of H3K27me3 demethylation in experimental asthma and ASMCs phenotype switch.
Collapse
Affiliation(s)
- Qijun Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowei Yu
- Department of Respiratory Medicine, Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wenxue Zhao
- Department of Medicine, Lung Biology Center, University of California San Francisco, San Francisco, California
| | - Manni Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengxia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxiang Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mao Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoning Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Chen F, Shao F, Hinds A, Yao S, Ram-Mohan S, Norman TA, Krishnan R, Fine A. Retinoic acid signaling is essential for airway smooth muscle homeostasis. JCI Insight 2018; 3:120398. [PMID: 30135301 DOI: 10.1172/jci.insight.120398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Airway smooth muscle (ASM) is a dynamic and complex tissue involved in regulation of bronchomotor tone, but the molecular events essential for the maintenance of ASM homeostasis are not well understood. Observational and genome-wide association studies in humans have linked airway function to the nutritional status of vitamin A and its bioactive metabolite retinoic acid (RA). Here, we provide evidence that ongoing RA signaling is critical for the regulation of adult ASM phenotype. By using dietary, pharmacologic, and genetic models in mice and humans, we show that (a) RA signaling is active in adult ASM in the normal lung, (b) RA-deficient ASM cells are hypertrophic, hypercontractile, profibrotic, but not hyperproliferative, (c) TGF-β signaling, known to cause ASM hypertrophy and airway fibrosis in human obstructive lung diseases, is hyperactivated in RA-deficient ASM, (d) pharmacologic and genetic inhibition of the TGF-β activity in ASM prevents the development of the aberrant phenotype induced by RA deficiency, and (e) the consequences of transient RA deficiency in ASM are long-lasting. These results indicate that RA signaling actively maintains adult ASM homeostasis, and disruption of RA signaling leads to aberrant ASM phenotypes similar to those seen in human chronic airway diseases such as asthma.
Collapse
Affiliation(s)
- Felicia Chen
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Fengzhi Shao
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Anne Hinds
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sean Yao
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Timothy A Norman
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Alan Fine
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Division of Pulmonary, Critical Care, and Allergy, West Roxbury Veterans Hospital, West Roxbury, Massachusetts, USA
| |
Collapse
|
15
|
Ojiaku CA, Cao G, Zhu W, Yoo EJ, Shumyatcher M, Himes BE, An SS, Panettieri RA. TGF-β1 Evokes Human Airway Smooth Muscle Cell Shortening and Hyperresponsiveness via Smad3. Am J Respir Cell Mol Biol 2018; 58:575-584. [PMID: 28984468 PMCID: PMC5946330 DOI: 10.1165/rcmb.2017-0247oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023] Open
Abstract
Transforming growth factor β1 (TGF-β1), a cytokine whose levels are elevated in the airways of patients with asthma, perpetuates airway inflammation and modulates airway structural cell remodeling. However, the role of TGF-β1 in excessive airway narrowing in asthma, or airway hyperresponsiveness (AHR), remains unclear. In this study, we set out to investigate the direct effects of TGF-β1 on human airway smooth muscle (HASM) cell shortening and hyperresponsiveness. The dynamics of AHR and single-cell excitation-contraction coupling were measured in human precision-cut lung slices and in isolated HASM cells using supravital microscopy and magnetic twisting cytometry, respectively. In human precision-cut lung slices, overnight treatment with TGF-β1 significantly augmented basal and carbachol-induced bronchoconstriction. In isolated HASM cells, TGF-β1 increased basal and methacholine-induced cytoskeletal stiffness in a dose- and time-dependent manner. TGF-β1-induced single-cell contraction was corroborated by concomitant increases in myosin light chain and myosin phosphatase target subunit 1 phosphorylation levels, which were attenuated by small interfering RNA-mediated knockdown of Smad3 and pharmacological inhibition of Rho kinase. Strikingly, these physiological effects of TGF-β1 occurred through a RhoA-independent mechanism, with little effect on HASM cell [Ca2+]i levels. Together, our data suggest that TGF-β1 enhances HASM excitation-contraction coupling pathways to induce HASM cell shortening and hyperresponsiveness. These findings reveal a potential link between airway injury-repair responses and bronchial hyperreactivity in asthma, and define TGF-β1 signaling as a potential target to reduce AHR in asthma.
Collapse
Affiliation(s)
- Christie A. Ojiaku
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, and
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey; and
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey; and
| | - Wanqu Zhu
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, and
| | - Edwin J. Yoo
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, and
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey; and
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven S. An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, and
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey; and
| |
Collapse
|
16
|
Fukumitsu K, Kanemitsu Y, Asano T, Takeda N, Ichikawa H, Yap JMG, Fukuda S, Uemura T, Takakuwa O, Ohkubo H, Maeno K, Ito Y, Oguri T, Nakamura A, Takemura M, Niimi A. Tiotropium Attenuates Refractory Cough and Capsaicin Cough Reflex Sensitivity in Patients with Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1613-1620.e2. [PMID: 29408386 DOI: 10.1016/j.jaip.2018.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/30/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Asthmatic cough is often refractory to standard treatments such as inhaled corticosteroids (ICS) and long-acting β2 agonists (LABA). Tiotropium may modulate cough reflex sensitivity of acute viral cough, but its efficacy in asthmatic cough remains unknown. OBJECTIVE To evaluate whether tiotropium improves cough and cough reflex sensitivity in patients with asthma refractory to ICS/LABA. METHODS Seventeen consecutive patients with asthma with chronic cough despite the use of ICS/LABA (13 women; 43.4 ± 19.0 years; average ICS dose, 651 ± 189 μg/d; fluticasone equivalent) were additionally treated with tiotropium (5 μg/d) for 4 to 8 weeks to examine its effects on pulmonary function and capsaicin cough reflex sensitivity (cough thresholds C2 and C5). Cough severity, cough-specific quality of life, and asthma control were also evaluated using cough visual analog scales (VASs), the Japanese version of Leicester Cough Questionnaire (J-LCQ), and Asthma Control Test (ACT), respectively. Patients with an improved cough VAS score of 15 mm or more were considered responders to tiotropium. RESULTS Tiotropium significantly improved cough VAS, J-LCQ, and ACT scores, but not FEV1. Changes in cough VAS score correlated with those in C2 (r = -0.58; P = .03), C5 (r = -0.58; P = .03), and ACT scores (r = -0.62; P = .02), but not in FEV1 in the overall patients. When analyses were confined to the 11 responders, tiotropium significantly improved capsaicin cough reflex sensitivity within the subgroup (C2: P = .01 and C5: P = .02) and versus the nonresponders (C2: P = .004 and C5: P = .02). CONCLUSION Tiotropium may alleviate asthmatic cough refractory to ICS/LABA by modulating cough reflex sensitivity but not through bronchodilation.
Collapse
Affiliation(s)
- Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.
| | - Takamitsu Asano
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hiroya Ichikawa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Osamu Takakuwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Atsushi Nakamura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| |
Collapse
|
17
|
Shaifta Y, MacKay CE, Irechukwu N, O'Brien KA, Wright DB, Ward JPT, Knock GA. Transforming growth factor-β enhances Rho-kinase activity and contraction in airway smooth muscle via the nucleotide exchange factor ARHGEF1. J Physiol 2017; 596:47-66. [PMID: 29071730 PMCID: PMC5746525 DOI: 10.1113/jp275033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/19/2017] [Indexed: 01/16/2023] Open
Abstract
Key points Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood. We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle. TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content). TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively. ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice. ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness.
Abstract Transforming growth factor‐β (TGF‐β), RhoA/Rho‐kinase and Src‐family kinases (SrcFK) have independently been implicated in airway hyper‐responsiveness, but how they interact to regulate airway smooth muscle contractility is not fully understood. We found that TGF‐β pre‐treatment enhanced acute contractile responses to bradykinin (BK) in isolated rat bronchioles, and inhibitors of RhoGEFs (Y16) and Rho‐kinase (Y27632), but not the SrcFK inhibitor PP2, prevented this enhancement. In cultured human airway smooth muscle cells (hASMCs), TGF‐β pre‐treatment enhanced the protein expression of the Rho guanine nucleotide exchange factor ARHGEF1, MLC20, MYPT‐1 and the actin‐severing protein cofilin, but not of RhoA, ROCK2 or c‐Src. In hASMCs, acute treatment with BK triggered subcellular translocation of ARHGEF1 and RhoA and enhanced auto‐phosphorylation of SrcFK and phosphorylation of MYPT1 and MLC20, but induced de‐phosphorylation of cofilin. TGF‐β pre‐treatment amplified the effects of BK on RhoA translocation and MYPT1/MLC20 phosphorylation, but suppressed the effects of BK on RhoA‐GTP content, SrcFK auto‐phosphorylation and cofilin de‐phosphorylation. In hASMCs, an ARHGEF1 small interfering RNA suppressed the effects of BK and TGF‐β on RhoA‐GTP content, RhoA translocation and MYPT1 and MLC20 phosphorylation, but minimally influenced the effects of TGF‐β on cofilin expression and phosphorylation. ARHGEF1 expression was also enhanced in ASMCs of asthmatic patients and in lungs of ovalbumin‐sensitized mice. Our data indicate that TGF‐β enhances BK‐induced contraction, RhoA translocation and Rho‐kinase activity in airway smooth muscle largely via ARHGEF1, but independently of SrcFK and total RhoA‐GTP content. A role for smooth muscle ARHGEF1 in asthmatic airway hyper‐responsiveness is worthy of further investigation. Transforming growth‐factor‐β (TGF‐β) and RhoA/Rho‐kinase are independently implicated in the airway hyper‐responsiveness associated with asthma, but how these proteins interact is not fully understood. We examined the effects of pre‐treatment with TGF‐β on expression and activity of RhoA, Rho‐kinase and ARHGEF1, an activator of RhoA, as well as on bradykinin‐induced contraction, in airway smooth muscle. TGF‐β enhanced bradykinin‐induced RhoA translocation, Rho‐kinase‐dependent phosphorylation and contraction, but partially suppressed bradykinin‐induced RhoA activity (RhoA‐GTP content). TGF‐β enhanced the expression of ARHGEF1, while a small interfering RNA against ARHGEF1 and a RhoGEF inhibitor prevented the effects of TGF‐β on RhoA and Rho‐kinase activity and contraction, respectively. ARHGEF1 expression was also enhanced in airway smooth muscle from asthmatic patients and ovalbumin‐sensitized mice. ARHGEF1 is a key TGF‐β target gene, an important regulator of Rho‐kinase activity and therefore a potential therapeutic target for the treatment of asthmatic airway hyper‐responsiveness.
Collapse
Affiliation(s)
- Yasin Shaifta
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Charles E MacKay
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Nneka Irechukwu
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Katie A O'Brien
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - David B Wright
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Jeremy P T Ward
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| | - Greg A Knock
- Division of Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, UK
| |
Collapse
|
18
|
Patel KR, Bai Y, Trieu KG, Barrios J, Ai X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. FASEB J 2017; 31:4335-4346. [PMID: 28619712 PMCID: PMC5602904 DOI: 10.1096/fj.201700186r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.
Collapse
Affiliation(s)
- Kruti R Patel
- Division of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth G Trieu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Barrios
- Pulmonary Division, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
19
|
Ojiaku CA, Yoo EJ, Panettieri RA. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-442. [PMID: 27854509 DOI: 10.1165/rcmb.2016-0307tr] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Edwin J Yoo
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
20
|
Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling. Inflammation 2016; 39:16-29. [PMID: 26242865 DOI: 10.1007/s10753-015-0218-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling.
Collapse
|
21
|
Knock GA. Tyrosine kinases as key modulators of smooth muscle function in health and disease. J Physiol 2016; 593:3805-6. [PMID: 26331833 DOI: 10.1113/jp271023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- G A Knock
- Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| |
Collapse
|
22
|
Roth M. Airway and lung remodelling in chronic pulmonary obstructive disease: a role for muscarinic receptor antagonists? Drugs 2015; 75:1-8. [PMID: 25414120 DOI: 10.1007/s40265-014-0319-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lung tissue remodelling in chronic inflammatory lung diseases has long been regarded as a follow-up event to inflammation. Recent studies have indicated that, although airway and lung tissue remodelling is often independent of inflammation, it precedes or causes inflammation. None of the available therapies has a significant effect on airway and lung tissue remodelling in asthma, bronchiectasis, fibrosis and chronic obstructive pulmonary disease (COPD). The goal of stopping or reversing lung tissue remodelling is difficult, as the term summarizes the net effect of independent events, including (1) cell proliferation, (2) cell volume increase, (3) cell migration, (4) modified deposition and metabolism of specific extracellular matrix components, and (5) local action of infiltrated inflammatory cells. The extracellular matrix of the lung has a very high turnover, and thus small changes may accumulate to significant structural pathologies, which seem to be irreversible. The most important question is 'why are pathological changes of the lung structure irreversible and resistant to drugs?' Many drugs have the potential to reduce remodelling mechanisms in vitro but fail in clinical trials. New evidence suggests that muscarinic receptor inhibitors have the potential to improve lung function through modifying tissue remodelling. However, the role of muscarinic receptors in lung remodelling, especially their supportive role for other remodelling driving factors, needs to be further investigated. The focus of this review is the role of muscarinic receptors in lung tissue remodelling as it has been reported in the human lung.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research and Pneumology, Department Biomedicine and Internal Medicine, University Hospital Basel, 4031, Basel, Switzerland,
| |
Collapse
|
23
|
Abstract
Asthma remains a major health problem with significant morbidity, mortality and economic costs. In asthma, airway remodelling, which refers to all the microscopic structural changes seen in the airway tissue, has been recognised for many decades and remains one of the defining characteristics of the disease; however, it is still poorly understood. The detrimental pathophysiological consequences of some features of remodelling, like increased airway smooth muscle mass and subepithelial fibrosis, are well documented. However, whether targeting these by therapy would be beneficial is unknown. Although the prevailing thinking is that remodelling is an abnormal response to persistent airway inflammation, recent evidence, especially from studies of remodelling in asthmatic children, suggests that the two processes occur in parallel. The effects of asthma therapy on airway remodelling have not been studied extensively due to the challenges of obtaining airway tissue in the context of clinical trials. Corticosteroids remain the cornerstone of asthma therapy, and their effects on remodelling have been better studied than other drugs. Bronchial thermoplasty is the only asthma therapy to primarily target remodelling, although how it results in the apparent clinical benefits seen is not exactly clear. In this article we discuss the mechanisms of airway remodelling in asthma and review the effects of conventional and novel asthma therapies on the process.
Collapse
Affiliation(s)
- Rachid Berair
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, Glenfield Hospital, University of Leicester, Leicester, LE3 9QP, UK
| | | |
Collapse
|
24
|
Gosens R, Grainge C. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest 2015; 147:798-803. [PMID: 25732446 DOI: 10.1378/chest.14-1142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | - Chris Grainge
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
25
|
Kistemaker LEM, Gosens R. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling. Trends Pharmacol Sci 2014; 36:164-71. [PMID: 25511176 DOI: 10.1016/j.tips.2014.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 01/06/2023]
Abstract
Acetylcholine is the primary parasympathetic neurotransmitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Dekkers BGJ, Naeimi S, Bos IST, Menzen MH, Halayko AJ, Hashjin GS, Meurs H. L-thyroxine promotes a proliferative airway smooth muscle phenotype in the presence of TGF-β1. Am J Physiol Lung Cell Mol Physiol 2014; 308:L301-6. [PMID: 25480330 DOI: 10.1152/ajplung.00071.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypothyroidism may reduce, whereas hyperthyroidism may aggravate, asthma symptoms. The mechanisms underlying this relationship are largely unknown. Since thyroid hormones have central roles in cell growth and differentiation, we hypothesized that airway remodeling, in particular increased airway smooth muscle (ASM) mass, may be involved. To address this hypothesis, we investigated the effects of triiodothyronine (T3) and l-thyroxine (T4) in the absence and presence of the profibrotic transforming growth factor (TGF)-β1 on human ASM cell phenotype switching. T3 (1-100 nM) and T4 (1-100 nM) did not affect basal ASM proliferation. However, when combined with TGF-β1 (2 ng/ml), T4 synergistically increased the proliferative response, whereas only a minor effect was observed for T3. In line with a switch from a contractile to a proliferative ASM phenotype, T4 reduced the TGF-β1-induced contractile protein expression by ∼50%. Cotreatment with T3 reduced TGF-β1-induced contractile protein expression by ∼25%. The synergistic increase in proliferation was almost fully inhibited by the integrin αvβ3 antagonist tetrac (100 nM), whereas no significant effects of the thyroid receptor antagonist 1-850 (3 μM) were observed. Inhibition of MEK1/2, downstream of the integrin αvβ3, also inhibited the T4- and TGF-β1-induced proliferative responses. Collectively, the results indicate that T4, and to a lesser extent T3, promotes a proliferative ASM phenotype in the presence of TGF-β1, which is predominantly mediated by the membrane-bound T4 receptor αvβ3. These results indicate that thyroid hormones may enhance ASM remodeling in asthma, which could be of relevance for hyperthyroid patients with this disease.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands;
| | - Saeideh Naeimi
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Department of Pharmacology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Winnipeg, Canada; and
| | - Goudarz Sadeghi Hashjin
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Teheran, Iran
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Poppinga WJ, Muñoz-Llancao P, González-Billault C, Schmidt M. A-kinase anchoring proteins: cAMP compartmentalization in neurodegenerative and obstructive pulmonary diseases. Br J Pharmacol 2014; 171:5603-23. [PMID: 25132049 PMCID: PMC4290705 DOI: 10.1111/bph.12882] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/14/2014] [Accepted: 08/10/2014] [Indexed: 12/25/2022] Open
Abstract
The universal second messenger cAMP is generated upon stimulation of Gs protein-coupled receptors, such as the β2 -adreneoceptor, and leads to the activation of PKA, the major cAMP effector protein. PKA oscillates between an on and off state and thereby regulates a plethora of distinct biological responses. The broad activation pattern of PKA and its contribution to several distinct cellular functions lead to the introduction of the concept of compartmentalization of cAMP. A-kinase anchoring proteins (AKAPs) are of central importance due to their unique ability to directly and/or indirectly interact with proteins that either determine the cellular content of cAMP, such as β2 -adrenoceptors, ACs and PDEs, or are regulated by cAMP such as the exchange protein directly activated by cAMP. We report on lessons learned from neurons indicating that maintenance of cAMP compartmentalization by AKAP5 is linked to neurotransmission, learning and memory. Disturbance of cAMP compartments seem to be linked to neurodegenerative disease including Alzheimer's disease. We translate this knowledge to compartmentalized cAMP signalling in the lung. Next to AKAP5, we focus here on AKAP12 and Ezrin (AKAP78). These topics will be highlighted in the context of the development of novel pharmacological interventions to tackle AKAP-dependent compartmentalization.
Collapse
Affiliation(s)
- W J Poppinga
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - P Muñoz-Llancao
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - C González-Billault
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile
| | - M Schmidt
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| |
Collapse
|
28
|
Dai Y, Li F, Wu L, Wang R, Li P, Yan S, Xu H, Xia M, Bai C. Roxithromycin treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1 in rat airway smooth muscle cells. Respir Res 2014; 15:96. [PMID: 25109503 PMCID: PMC4256937 DOI: 10.1186/s12931-014-0096-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Roxithromycin (RXM) has been widely used in asthma treatment; however, the mechanism has not been fully understood. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression. METHODS Firstly, the rat ovalbumin (OVA) model was built according to the previous papers. Rat ASMCs were prepared and cultured, and then TGF-β1 production in ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the proliferation of ASMCs was determined using cell counting kit (CCK-8) assay. Additionally, the expressions of caveolin-1, phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated-AKT (p-AKT) in ASMCs treated with or without PD98059 (an ERK1/2 inhibitor), wortannin (a PI3K inhibitor), β-cyclodextrin (β-CD) and RXM were measured by Western blot. Finally, data were evaluated using t-test or one-way ANOVA, and then a P value < 0.05 was set as a threshold. RESULTS Compared with normal control, TGF-β1 secretion was significantly increased in asthmatic ASMCs; meanwhile, TGF-β1 promoted ASMCs proliferation (P < 0.05). However, ASMCs proliferation was remarkably inhibited by RXM, β-CD, PD98059 and wortmannin (P < 0.05). Moreover, the expressions of p-ERK1/2 and p-AKT were increased and peaked at 20 min after TGF-β1 stimulation, and then suppressed by RXM. Further, caveolin-1 level was down-regulated by TGF-β1 and up-regulated by inhibitors and RXM. CONCLUSION Our findings demonstrate that RXM treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1, which may be the potential mechanism of RXM protection from chronic inflammatory diseases, including bronchial asthma.
Collapse
|
29
|
Noble PB, Pascoe CD, Lan B, Ito S, Kistemaker LEM, Tatler AL, Pera T, Brook BS, Gosens R, West AR. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther 2014; 29:96-107. [PMID: 25062835 DOI: 10.1016/j.pupt.2014.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Asthma is an obstructive airway disease, with a heterogeneous and multifactorial pathogenesis. Although generally considered to be a disease principally driven by chronic inflammation, it is becoming increasingly recognised that the immune component of the pathology poorly correlates with the clinical symptoms of asthma, thus highlighting a potentially central role for non-immune cells. In this context airway smooth muscle (ASM) may be a key player, as it comprises a significant proportion of the airway wall and is the ultimate effector of acute airway narrowing. Historically, the contribution of ASM to asthma pathogenesis has been contentious, yet emerging evidence suggests that ASM contractile activation imparts chronic effects that extend well beyond the temporary effects of bronchoconstriction. In this review article we describe the effects that ASM contraction, in combination with cellular mechanotransduction and novel contraction-inflammation synergies, contribute to asthma pathogenesis. Specific emphasis will be placed on the effects that ASM contraction exerts on the mechanical properties of the airway wall, as well as novel mechanisms by which ASM contraction may contribute to more established features of asthma such as airway wall remodelling.
Collapse
Affiliation(s)
- Peter B Noble
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA, Australia
| | - Chris D Pascoe
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada
| | - Bo Lan
- Center for Heart Lung Innovation, University of British Columbia, BC, Canada; Bioengineering College, Chongqing University, Chongqing, China
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University, Aichi, Japan
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Amanda L Tatler
- Division of Respiratory Medicine, University of Nottingham, United Kingdom
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, United Kingdom
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Adrian R West
- Department of Physiology, University of Manitoba, MB, Canada; Biology of Breathing, Manitoba Institute of Child Health, MB, Canada.
| |
Collapse
|
30
|
Kistemaker LEM, Bos ST, Mudde WM, Hylkema MN, Hiemstra PS, Wess J, Meurs H, Kerstjens HAM, Gosens R. Muscarinic M₃ receptors contribute to allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 2014; 50:690-8. [PMID: 24156289 DOI: 10.1165/rcmb.2013-0220oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asthma is a chronic obstructive airway disease, characterized by inflammation and remodeling. Acetylcholine contributes to symptoms by inducing bronchoconstriction via the muscarinic M3 receptor. Recent evidence suggests that bronchoconstriction can regulate airway remodeling, and therefore implies a role for the muscarinic M3 receptor. The objective of this work was to study the contribution of the muscarinic M3 receptor to allergen-induced remodeling using muscarinic M3 receptor subtype-deficient (M3R(-/-)) mice. Wild-type (WT), M1R(-/-), and M2R(-/-) mice were used as controls. C57Bl/6 mice were sensitized and challenged with ovalbumin (twice weekly for 4 wk). Control animals were challenged with saline. Allergen exposure induced goblet cell metaplasia, airway smooth muscle thickening (1.7-fold), pulmonary vascular smooth muscle remodeling (1.5-fold), and deposition of collagen I (1.7-fold) and fibronectin (1.6-fold) in the airway wall of WT mice. These effects were absent or markedly lower in M3R(-/-) mice (30-100%), whereas M1R(-/-) and M2R(-/-) mice responded similarly to WT mice. In addition, airway smooth muscle and pulmonary vascular smooth muscle mass were 35-40% lower in saline-challenged M3R(-/-) mice compared with WT mice. Interestingly, allergen-induced airway inflammation, assessed as infiltrated eosinophils and T helper type 2 cytokine expression, was similar or even enhanced in M3R(-/-) mice. Our data indicate that acetylcholine contributes to allergen-induced remodeling and smooth muscle mass via the muscarinic M3 receptor, and not via M1 or M2 receptors. No stimulatory role for muscarinic M3 receptors in allergic inflammation was observed, suggesting that the role of acetylcholine in remodeling is independent of the allergic inflammatory response, and may involve bronchoconstriction.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- 1 Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang K, Song Y, Tang YB, Xu ZP, Zhou W, Hou LN, Zhu L, Yu ZH, Chen HZ, Cui YY. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells. BMC Pulm Med 2014; 14:53. [PMID: 24678619 PMCID: PMC3975135 DOI: 10.1186/1471-2466-14-53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has been proposed as a mechanism in the progression of airway diseases and cancer. Here, we explored the role of acetylcholine (ACh) and the pathway involved in the process of EMT, as well as the effects of mAChRs antagonist. METHODS Human lung epithelial cells were stimulated with carbachol, an analogue of ACh, and epithelial and mesenchymal marker proteins were evaluated using western blot and immunofluorescence analyses. RESULTS Decreased E-cadherin expression and increased vimentin and α-SMA expression induced by TGF-β1 in alveolar epithelial cell (A549) were significantly abrogated by the non-selective mAChR antagonist atropine and enhanced by the acetylcholinesterase inhibitor physostigmine. An EMT event also occurred in response to physostigmine alone. Furthermore, ChAT express and ACh release by A549 cells were enhanced by TGF-β1. Interestingly, ACh analogue carbachol also induced EMT in A549 cells as well as in bronchial epithelial cells (16HBE) in a time- and concentration-dependent manner, the induction of carbachol was abrogated by selective antagonist of M1 (pirenzepine) and M3 (4-DAMP) mAChRs, but not by M2 (methoctramine) antagonist. Moreover, carbachol induced TGF-β1 production from A549 cells concomitantly with the EMT process. Carbachol-induced EMT occurred through phosphorylation of Smad2/3 and ERK, which was inhibited by pirenzepine and 4-DAMP. CONCLUSIONS Our findings for the first time indicated that mAChR activation, perhaps via M1 and M3 mAChR, induced lung epithelial cells to undergo EMT and provided insights into novel therapeutic strategies for airway diseases in which lung remodeling occurs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | | |
Collapse
|
32
|
Stamatiou R, Paraskeva E, Vasilaki A, Mylonis I, Molyvdas PA, Gourgoulianis K, Hatziefthimiou A. Long-term exposure to muscarinic agonists decreases expression of contractile proteins and responsiveness of rabbit tracheal smooth muscle cells. BMC Pulm Med 2014; 14:39. [PMID: 24607024 PMCID: PMC3995846 DOI: 10.1186/1471-2466-14-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/25/2014] [Indexed: 12/23/2022] Open
Abstract
Background Chronic airway diseases, like asthma or COPD, are characterized by excessive acetylcholine release and airway remodeling. The aim of this study was to investigate the long-term effect of muscarinic agonists on the phenotype and proliferation of rabbit tracheal airway smooth muscle cells (ASMCs). Methods ASMCs were serum starved before treatment with muscarinic agonists. Cell phenotype was studied by optical microscopy and indirect immunofluorescence, using smooth muscle α-actin, desmin and SM-Myosin Heavy Chain (SM-MHC) antibodies. [N-methyl-3H]scopolamine binding studies were performed in order to assess M3 muscarinic receptor expression on isolated cell membranes. Contractility studies were performed on isolated ASMCs treated with muscarinic agonists. Proliferation was estimated using methyl-[3H]thymidine incorporation, MTT or cell counting methods. Involvement of PI3K and MAPK signalling pathways was studied by cell incubation with the pathway inhibitors LY294002 and PD98059 respectively. Results Prolonged culture of ASMCs with acetylcholine, carbachol or FBS, reduced the expression of α-actin, desmin and SM-MHC compared to cells cultured in serum free medium. Treatment of ASMCs with muscarinic agonists for 3-15 days decreased muscarinic receptor expression and their responsiveness to muscarinic stimulation. Acetylcholine and carbachol induced DNA synthesis and increased cell number, of ASMCs that had acquired a contractile phenotype by 7 day serum starvation. This effect was mediated via a PI3K and MAPK dependent mechanism. Conclusions Prolonged exposure of rabbit ASMCs to muscarinic agonists decreases the expression of smooth muscle specific marker proteins, down-regulates muscarinic receptors and decreases ASMC contractile responsiveness. Muscarinic agonists are mitogenic, via the PI3K and MAPK signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Apostolia Hatziefthimiou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Thessaly, 3 Panepistimiou Str, 41500 BIOPOLIS Larissa, Greece.
| |
Collapse
|
33
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
34
|
Oenema TA, Mensink G, Smedinga L, Halayko AJ, Zaagsma J, Meurs H, Gosens R, Dekkers BGJ. Cross-talk between transforming growth factor-β₁ and muscarinic M₂ receptors augments airway smooth muscle proliferation. Am J Respir Cell Mol Biol 2013; 49:18-27. [PMID: 23449734 DOI: 10.1165/rcmb.2012-0261oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transforming growth factor-β₁ (TGF-β₁) is a central mediator in tissue remodeling processes, including fibrosis and airway smooth muscle (ASM) hyperplasia, as observed in asthma. The mechanisms underlying this response, however, remain unclear because TGF-β₁ exerts only weak mitogenic effects on ASM cells. In this study, we hypothesized that the mitogenic effect of TGF-β₁ on ASM is indirect and requires prolonged exposure to allow for extracellular matrix (ECM) deposition. To address this hypothesis, we investigated the effects of acute and prolonged treatment with TGF-β₁, alone and in combination with the muscarinic receptor agonist methacholine, on human ASM cell proliferation. Acutely, TGF-β₁ exerted no mitogenic effect. However, prolonged treatment (for 7 d) with TGF-β₁ increased ASM cell proliferation and potentiated the platelet-derived growth factor-induced mitogenic response. Muscarinic receptor stimulation with methacholine synergistically enhanced the effect of TGF-β₁. Interestingly, the integrin-blocking peptide Arg-Gly-Asp-Ser, as well as integrin α5β1 function-blocking antibodies, inhibited the effects of TGF-β₁ and its combination with methacholine on cell proliferation. Accordingly, prolonged treatment with TGF-β₁ increased fibronectin expression, which was also synergistically enhanced by methacholine. The synergistic effects of methacholine on TGF-β₁-induced proliferation were reduced by the long-acting muscarinic receptor antagonist tiotropium and the M₂ receptor subtype-selective antagonist gallamine, but not the M₃-selective antagonist DAU5884. In line with these findings, the irreversible Gi protein inhibitor pertussis toxin also prevented the potentiation of TGF-β₁-induced proliferation by methacholine. We conclude that prolonged exposure to TGF-β₁ enhances ASM cell proliferation, which is mediated by extracellular matrix-integrin interactions, and which can be enhanced by muscarinic M₂ receptor stimulation.
Collapse
Affiliation(s)
- Tjitske A Oenema
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Oenema TA, Maarsingh H, Smit M, Groothuis GMM, Meurs H, Gosens R. Bronchoconstriction Induces TGF-β Release and Airway Remodelling in Guinea Pig Lung Slices. PLoS One 2013; 8:e65580. [PMID: 23840342 PMCID: PMC3694103 DOI: 10.1371/journal.pone.0065580] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/26/2013] [Indexed: 01/25/2023] Open
Abstract
Airway remodelling, including smooth muscle remodelling, is a primary cause of airflow limitation in asthma. Recent evidence links bronchoconstriction to airway remodelling in asthma. The mechanisms involved are poorly understood. A possible player is the multifunctional cytokine TGF-β, which plays an important role in airway remodelling. Guinea pig lung slices were used as an in vitro model to investigate mechanisms involved in bronchoconstriction-induced airway remodelling. To address this aim, mechanical effects of bronchoconstricting stimuli on contractile protein expression and TGF-β release were investigated. Lung slices were viable for at least 48 h. Both methacholine and TGF-β1 augmented the expression of contractile proteins (sm-α-actin, sm-myosin, calponin) after 48 h. Confocal fluorescence microscopy showed that increased sm-myosin expression was enhanced in the peripheral airways and the central airways. Mechanistic studies demonstrated that methacholine-induced bronchoconstriction mediated the release of biologically active TGF-β, which caused the increased contractile protein expression, as inhibition of actin polymerization (latrunculin A) or TGF-β receptor kinase (SB431542) prevented the methacholine effects, whereas other bronchoconstricting agents (histamine and KCl) mimicked the effects of methacholine. Collectively, bronchoconstriction promotes the release of TGF-β, which induces airway smooth muscle remodelling. This study shows that lung slices are a useful in vitro model to study mechanisms involved in airway remodelling.
Collapse
Affiliation(s)
- Tjitske A. Oenema
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Harm Maarsingh
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Marieke Smit
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Geny M. M. Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol 2013; 13:316-23. [PMID: 23643733 DOI: 10.1016/j.coph.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.
Collapse
|
37
|
Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects. Mediators Inflamm 2012; 2012:409580. [PMID: 23226927 PMCID: PMC3512336 DOI: 10.1155/2012/409580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/12/2012] [Indexed: 01/15/2023] Open
Abstract
Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma.
Collapse
|