1
|
Gomez HM, Haw TJ, Ilic D, Robinson P, Donovan C, Croft AJ, Vanka KS, Small E, Carroll OR, Kim RY, Mayall JR, Beyene T, Palanisami T, Ngo DTM, Zosky GR, Holliday EG, Jensen ME, McDonald VM, Murphy VE, Gibson PG, Horvat JC. Landscape fire smoke airway exposure impairs respiratory and cardiac function and worsens experimental asthma. J Allergy Clin Immunol 2024; 154:209-221.e6. [PMID: 38513838 DOI: 10.1016/j.jaci.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 μg/m3, 24-hour equivalent) or moderate (100 μg/m3, 24-hour equivalent) concentrations of LFS PM (10 μm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.
Collapse
Affiliation(s)
- Henry M Gomez
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Tatt J Haw
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Peter Robinson
- Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Chantal Donovan
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; School of Life Sciences, University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Amanda J Croft
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Kanth S Vanka
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; Newcastle Institute for Energy and Resources, University of Newcastle, Callaghan, Australia
| | - Ellen Small
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia; School of Life Sciences, University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Tesfalidet Beyene
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, University of Newcastle, Callaghan, Australia
| | - Doan T M Ngo
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, Newcastle, Australia; College of Health, Medicine, and Wellbeing, Centre of Excellence Newcastle Cardio-Oncology Research Group, University of Newcastle, Callaghan, Newcastle, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia; College of Health and Medicine, Tasmanian School of Medicine, University of Tasmania, Hobart, Australia
| | - Elizabeth G Holliday
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Megan E Jensen
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Vanessa M McDonald
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Vanessa E Murphy
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, University of Newcastle and Asthma and Breathing Program, Hunter Medical Research Institute, Newcastle, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Immune Health Program, Hunter Medical Research Institute, Newcastle, Australia.
| |
Collapse
|
2
|
Matthews RM, Bradley E, Griffin CS, Lim XR, Mullins ND, Hollywood MA, Lundy FT, McGarvey LP, Sergeant GP, Thornbury KD. Functional expression of Na V1.7 channels in freshly dispersed mouse bronchial smooth muscle cells. Am J Physiol Cell Physiol 2022; 323:C749-C762. [DOI: 10.1152/ajpcell.00011.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated smooth muscle cells (SMC) from mouse bronchus were studied using the whole-cell patch clamp technique at ~21oC. Stepping from -100 mV to -20 mV evoked inward currents of mean amplitude -275 pA. These inactivated (tau=1.1 ms) and were abolished when external Na+ was substituted with N-Methyl-D-glucamine. In current-voltage protocols, current peaked at -10 mV and reversed between +20 and +30 mV. The V1/2s of activation and inactivation were -25 & -86 mV, respectively. The current was highly sensitive to tetrodotoxin (IC50=1.5 nM) and the NaV1.7 subtype selective blocker, PF-05089771 (IC50=8.6 nM), consistent with NaV1.7 as the underlying pore-forming a subunit. Two NaV1.7-selective antibodies caused membrane-delineated staining of isolated SMC, as did a non-selective pan-NaVantibody. RT-PCR, performed on groups of ~15 isolated SMC, revealed transcripts for NaV1.7 in 7/8 samples. Veratridine (30 mM), a non-selective NaV channel activator, reduced peak current evoked by depolarization but induced a sustained current of 40 pA. Both effects were reversed by tetrodotoxin (100 nM). In tension experiments veratridine (10 mM) induced contractions that were entirely blocked by atropine (1 mM). However, in the presence of atropine, veratridine was able to modulate the pattern of activity induced by a combination of U-46619 (a thromboxane A2 mimetic) & PGE2(prostaglandin E2), by eliminating bursts in favour of sustained phasic contractions. These effects were readily reversed to control-like activity by tetrodotoxin (100 nM). In conclusion, mouse bronchial SMC functionally express NaV1.7 channels that are capable of modulating contractile activity, at least under experimental conditions.
Collapse
Affiliation(s)
- Ruth M. Matthews
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Caoimhin S. Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Xin Rui Lim
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Nicolas D. Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Fionnuala T. Lundy
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Lorcan P. McGarvey
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Gerard P. Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| |
Collapse
|
3
|
Alkawadri T, McGarvey LP, Mullins ND, Hollywood MA, Thornbury KD, Sergeant GP. Contribution of Postjunctional M2 Muscarinic Receptors to Cholinergic Nerve-Mediated Contractions of Murine Airway Smooth Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 3:zqab053. [PMID: 35330928 PMCID: PMC8788713 DOI: 10.1093/function/zqab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Postjunctional M2Rs on airway smooth muscle (ASM) outnumber M3Rs by a ratio of 4:1 in most species, however, it is the M3Rs that are thought to mediate the bronchoconstrictor effects of acetylcholine. In this study, we describe a novel and profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM at low stimulus frequencies.. Contractions induced by 2Hz EFS were augmented by > 2.5-fold when the stimulus interval was reduced from 100 to 10 s. This effect was reversed by the M2R antagonists, methoctramine, and AFDX116, and was absent in M2R null mice. The M3R antagonist 4-DAMP abolished the entire response in both WT and M2R KO mice. The M2R-mediated potentiation of EFS-induced contractions was not observed when the stimulus frequency was increased to 20 Hz. A subthreshold concentration of carbachol enhanced the amplitude of EFS-evoked contractions in WT, but not M2R null mice. These data highlight a significant M2R-mediated potentiation of M3R-dependent contractions of ASM at low frequency stimulation that could be relevant in diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Tuleen Alkawadri
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Lorcan P McGarvey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, BT7 1NN, Northern Ireland
| | - N D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, A91 K584, Ireland
| | | |
Collapse
|
4
|
Shi R, Xu JW, Xiao ZT, Chen RF, Zhang YL, Lin JB, Cheng KL, Wei GY, Li PB, Zhou WL, Su WW. Naringin and Naringenin Relax Rat Tracheal Smooth by Regulating BK Ca Activation. J Med Food 2019; 22:963-970. [PMID: 31259654 DOI: 10.1089/jmf.2018.4364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Naringin and its aglycone, naringenin, occur naturally in our regular diet and traditional Chinese medicines. This study aimed to detect an effective therapeutic approach for cough variant asthma (CVA) through evaluating the relaxant effect of these two bioactive herbal monomers as antitussive and antiasthmatic on rat tracheal smooth muscle. The relaxant effect was determined by measuring muscular tension with a mechanical recording system in rat tracheal rings. Cytosolic Ca2+ concentration was measured using a confocal imaging system in primary cultured tracheal smooth muscle cells. In rat tracheal rings, addition of both naringin and naringenin could concentration dependently relax carbachol (CCh)-evoked tonic contraction. This epithelium-independent relaxation could be suppressed by BaCl2, tetraethylammonium, and iberiotoxin (IbTX), but not by glibenclamide. After stimulating primary cultured tracheal smooth muscle cells by CCh or high KCl, the intracellular Ca2+ increase could be inhibited by both naringin and naringenin, respectively. This reaction was also suppressed by IbTX. These results demonstrate that both naringin and naringenin can relax tracheal smooth muscle through opening big conductance Ca2+-activated K+ channel, which mediates plasma membrane hyperpolarization and reduces Ca2+ influx. Our data indicate a potentially effective therapeutic approach of naringin and naringenin for CVA.
Collapse
Affiliation(s)
- Rui Shi
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Ting Xiao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruo-Fei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Bi Lin
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke-Ling Cheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gu-Yi Wei
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-Bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Wei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Postmarket Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Pan S, Conaway S, Deshpande DA. Mitochondrial regulation of airway smooth muscle functions in health and pulmonary diseases. Arch Biochem Biophys 2019; 663:109-119. [PMID: 30629957 DOI: 10.1016/j.abb.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria are important for airway smooth muscle physiology due to their diverse yet interconnected roles in calcium handling, redox regulation, and cellular bioenergetics. Increasing evidence indicates that mitochondria dysfunction is intimately associated with airway diseases such as asthma, IPF and COPD. In these pathological conditions, increased mitochondrial ROS, altered bioenergetics profiles, and calcium mishandling contribute collectively to changes in cellular signaling, gene expression, and ultimately changes in airway smooth muscle contractile/proliferative properties. Therefore, understanding the basic features of airway smooth muscle mitochondria and their functional contribution to airway biology and pathology are key to developing novel therapeutics for airway diseases. This review summarizes the recent findings of airway smooth muscle mitochondria focusing on calcium homeostasis and redox regulation, two key determinants of physiological and pathological functions of airway smooth muscle.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Stanley Conaway
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
6
|
Bradley E, Large RJ, Bihun VV, Mullins ND, Hollywood MA, Sergeant GP, Thornbury KD. Inhibitory effects of openers of large-conductance Ca 2+-activated K + channels on agonist-induced phasic contractions in rabbit and mouse bronchial smooth muscle. Am J Physiol Cell Physiol 2018; 315:C818-C829. [PMID: 30257105 DOI: 10.1152/ajpcell.00068.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Airway smooth muscle expresses abundant BKCa channels, but their role in regulating contractions remains controversial. This study examines the effects of two potent BKCa channel openers on agonist-induced phasic contractions in rabbit and mouse bronchi. First, we demonstrated the ability of 10 μM GoSlo-SR5-130 to activate BKCa channels in inside-out patches from rabbit bronchial myocytes, where it shifted the activation V1/2 by -88 ± 11 mV (100 nM Ca2+, n = 7). In mouse airway smooth muscle cells, GoSlo-SR5-130 dose dependently shifted V1/2 by 12-83 mV over a concentration range of 1-30 μM. Compound X, a racemic mixture of two enantiomers, reported to be potent BKCa channel openers, shifted V1/2 by 20-79 mV over a concentration range of 0.3-3 μM. In rabbit bronchial rings, exposure to histamine (1 μM) induced phasic contractions after a delay of ~35 min. These were abolished by GoSlo-SR5-130 (30 μM). Nifedipine (100 nM) and CaCCinhA01 (10 μM), a TMEM16A blocker, also abolished histamine-induced phasic contractions. In mouse bronchi, similar phasic contractions were evoked by exposure to U46619 (100 nM) and carbachol (100 nM). In each case, these were inhibited by concentrations of GoSlo-SR5-130 and compound X that shifted the activation V1/2 of BKCa channels in the order of -80 mV. In conclusion, membrane potential-dependent regulation of L-type Ca2+ channels appears to be important for histamine-, U46619-, and carbachol-induced phasic contractions in airway smooth muscle. Contractions can be abolished by BKCa channel openers, suggesting that these channels are potential targets for treating some causes of airway obstruction.
Collapse
Affiliation(s)
- Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | | | - Nicolas D Mullins
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
7
|
Semenov I, Brenner R. Voltage effects on muscarinic acetylcholine receptor-mediated contractions of airway smooth muscle. Physiol Rep 2018; 6:e13856. [PMID: 30187663 PMCID: PMC6125245 DOI: 10.14814/phy2.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 08/17/2018] [Indexed: 01/31/2023] Open
Abstract
Studies have shown that the activity of muscarinic receptors and their affinity to agonists are sensitive to membrane potential. It was reported that in airway smooth muscle (ASM) depolarization evoked by high K+ solution increases contractility through direct effects on M3 muscarinic receptors. In this study, we assessed the physiological relevance of voltage sensitivity of muscarinic receptors on ASM contractility. Our findings reveal that depolarization by high K+ solution induces contraction in intact mouse trachea predominantly through activation of acetylcholine release from embedded nerves, and to a lesser extent by direct effects on M3 receptors. We therefore devised a pharmacological approach to depolarize tissue to various extents in an organ bath preparation, and isolate contraction due exclusively to ASM muscarinic receptors within range of physiological voltages. Our results indicate that unliganded muscarinic receptors do not contribute to contraction regardless of voltage. Utilizing low K+ solution to hyperpolarize membrane potentials during contractions had no effect on liganded muscarinic receptor-evoked contractions, although it eliminated the contribution of voltage-gated calcium channels. However, we found that muscarinic signaling was potentiated by at least 42% at depolarizing voltages (average -12 mV) induced by high K+ solution (20 mmol/L K+ ). In summary, we conclude that contractions evoked by direct activation of muscarinic receptors have negligible sensitivity to physiological voltages. However, contraction activated by cholinergic stimulation can be potentiated by membrane potentials occurring beyond the physiological range of ASM.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkVirginia
| | - Robert Brenner
- Department of Cell and Integrative PhysiologyUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| |
Collapse
|
8
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Chen J, Sanderson MJ. Store-operated calcium entry is required for sustained contraction and Ca 2+ oscillations of airway smooth muscle. J Physiol 2016; 595:3203-3218. [PMID: 27396568 DOI: 10.1113/jp272694] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Airway hyper-responsiveness in asthma is driven by excessive contraction of airway smooth muscle cells (ASMCs). Agonist-induced Ca2+ oscillations underlie this contraction of ASMCs and the magnitude of this contraction is proportional to the Ca2+ oscillation frequency. Sustained contraction and Ca2+ oscillations require an influx of extracellular Ca2+ , although the mechanisms and pathways mediating this Ca2+ influx during agonist-induced ASMC contraction are not well defined. By inhibiting store-operated calcium entry (SOCE) or voltage-gated Ca2+ channels (VGCCs), we show that SOCE, rather than Ca2+ influx via VGCCs, provides the major Ca2+ entry pathway into ASMCs to sustain ASMCs contraction and Ca2+ oscillations. SOCE may therefore serve as a potential target for new bronchodilators to reduce airway hyper-responsiveness in asthma. ABSTRACT Asthma is characterized by airway hyper-responsiveness: the excessive contraction of airway smooth muscle. The extent of this airway contraction is proportional to the frequency of Ca2+ oscillations within airway smooth muscle cells (ASMCs). Sustained Ca2+ oscillations require a Ca2+ influx to replenish Ca2+ losses across the plasma membrane. Our previous studies implied store-operated calcium entry (SOCE) as the major pathway for this Ca2+ influx. In the present study, we explore this hypothesis, by examining the effects of SOCE inhibitors (GSK7975A and GSK5498A) as well as L-type voltage-gated Ca2+ channel inhibitors (nifedipine and nimodipine) on airway contraction and Ca2+ oscillations and SOCE-mediated Ca2+ influx in ASMCs within mouse precision-cut lung slices. We found that both GSK7975A and GSK5498A were able to fully relax methacholine-induced airway contraction by abolishing the Ca2+ oscillations, in a manner similar to that observed in zero extracellular Ca2+ ([Ca2+ ]e ). In addition, GSK7975A and GSK5498A inhibited increases in intracellular Ca2+ ([Ca2+ ]i ) in ASMCs with depleted Ca2+ -stores in response to increased [Ca2+ ]e , demonstrating a response consistent with the inhibition of SOCE. However, GSK7975A and GSK5498A did not reduce Ca2+ release via IP3 receptors stimulated with IP3 released from caged-IP3 . By contrast, nifedipine and nimodipine only partially reduced airway contraction, Ca2+ oscillation frequency and SOCE-mediated Ca2+ influx. These data suggest that SOCE is the major Ca2+ influx pathway for ASMCs with respect to sustaining agonist-induced airway contraction and the underlying Ca2+ oscillations. The mechanisms of SOCE may therefore form novel targets for new bronchodilators.
Collapse
Affiliation(s)
- Jun Chen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Venkatasamy R, Spina D. Novel relaxant effects of RPL554 on guinea pig tracheal smooth muscle contractility. Br J Pharmacol 2016; 173:2335-51. [PMID: 27174172 PMCID: PMC4945770 DOI: 10.1111/bph.13512] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effectiveness of RPL554, a dual PDE3 and 4 enzyme inhibitor, on airway smooth muscle relaxation and compared it with that induced by salbutamol, ipratropium bromide, glycopyrrolate or their combination on bronchomotor tone induced by different spasmogenic agents. EXPERIMENTAL APPROACH Guinea pig tracheal preparations were suspended under 1 g tension in Krebs-Henseleit solution maintained at 37°C and aerated with 95% O2 /5% CO2 and incubated in the presence of indomethacin (5 μM). Relaxation induced by cumulative concentrations of muscarinic receptor antagonists (ipratropium bromide or glycopyrrolate), β2 -adrenoceptor agonists (salbutamol or formoterol), PDE3 inhibitors (cilostamide, cilostazol or siguazodan) or a PDE4 inhibitor (roflumilast) was evaluated in comparison with RPL554. Maximal relaxation was calculated (% Emax papaverine) and expressed as mean ± SEM. KEY RESULTS Bronchomotor tone induced by the various spasmogens was reduced by the different bronchodilators to varying degrees. RPL554 (10-300 μM) caused near maximum relaxation irrespective of the spasmogen examined, whereas the efficacy of the other relaxant agents varied according to the contractile stimulus used. During the evaluation of potential synergistic interactions between bronchodilators, RPL554 proved superior to salbutamol when either was combined with muscarinic receptor antagonists. CONCLUSIONS AND IMPLICATIONS RPL554 produced near maximal relaxation of highly contracted respiratory smooth muscle and provided additional relaxation compared with that produced by other clinically used bronchodilator drugs. This suggests that RPL554 has the potential to produce additional beneficial bronchodilation over and above that of maximal clinical doses of standard bronchodilators in highly constricted airways of patients.
Collapse
Affiliation(s)
- R Venkatasamy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, UK
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, UK
| |
Collapse
|
11
|
Azuma YT, Samezawa N, Nishiyama K, Nakajima H, Takeuchi T. Differences in time to peak carbachol-induced contractions between circular and longitudinal smooth muscles of mouse ileum. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:63-72. [PMID: 26475617 DOI: 10.1007/s00210-015-1177-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.
Collapse
|
12
|
Donovan C, Seow HJ, Royce SG, Bourke JE, Vlahos R. Alteration of Airway Reactivity and Reduction of Ryanodine Receptor Expression by Cigarette Smoke in Mice. Am J Respir Cell Mol Biol 2015; 53:471-8. [DOI: 10.1165/rcmb.2014-0400oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Jha A, Sharma P, Anaparti V, Ryu MH, Halayko AJ. A role for transient receptor potential ankyrin 1 cation channel (TRPA1) in airway hyper-responsiveness? Can J Physiol Pharmacol 2015; 93:171-6. [PMID: 25654580 DOI: 10.1139/cjpp-2014-0417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway smooth muscle (ASM) contraction controls the airway caliber. Airway narrowing is exaggerated in obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The mechanism by which ASM tone is dysregulated in disease is not clearly understood. Recent research on ion channels, particularly transient receptor potential cation channel, subfamily A, member 1 (TRPA1), is uncovering new understanding of altered airway function. TRPA1, a member of the TRP channel superfamily, is a chemo-sensitive cation channel that can be activated by a variety of external and internal stimuli, leading to the influx of Ca(2+). Functional TRPA1 channels have been identified in neuronal and non-neuronal tissues of the lung, including ASM. In the airways, these channels can regulate the release of mediators that are markers of airway inflammation in asthma and COPD. For, example, TRPA1 controls cigarette-smoke-induced inflammatory mediator release and Ca(2+) mobilization in vitro and in vivo, a response tied to disease pathology in COPD. Recent work has revealed that pharmacological or genetic inhibition of TRPA1 inhibits the allergen-induced airway inflammation in vitro and airway hyper-responsiveness (AHR) in vivo. Collectively, it appears that TRPA1 channels may be determinants of ASM contractility and local inflammation control, positioning them as part of novel mechanisms that control (patho)physiological function of airways and ASM.
Collapse
Affiliation(s)
- Aruni Jha
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada., Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
14
|
Cheng YM, Cao AL, Zheng JP, Wang HW, Sun YS, Liu CF, Zhang BB, Wang Y, Zhu SL, Wu DZ. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol 2015; 51:701-8. [PMID: 24828018 DOI: 10.1165/rcmb.2013-0484oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gastroesophageal reflux is a common disorder closely related to chronic airway diseases, such as chronic cough, asthma, chronic bronchitis, and chronic obstructive disease. Indeed, gastroesophageal acid reflux into the respiratory tract causes bronchoconstriction, but the underlying mechanisms have still not been clarified. This study aimed to elucidate functional changes of bronchial smooth muscles (BSMs) isolated from guinea pigs in an animal model of gastroesophageal reflux. The marked airway inflammation, hyperresponsiveness and remodeling were observed after guinea pigs were exposed to intraesophageal HCl infusion for 14 days. In addition, contractile responses to acetylcholine (ACh), KCl, electrical field stimulation, and extracellular Ca(2+) were greater in guinea pigs infused with HCl compared with control groups. The L-type voltage-dependent Ca(2+) channels (L-VDCC) blocker, nicardipine, significantly inhibited ACh- and Ca(2+)-enhanced BSM contractions in guinea pigs infused with HCl. The Rho-kinase inhibitor, Y27632, attenuated ACh-enhanced BSM contractions in guinea pigs infused with HCl. Moreover, mRNA and protein expressions for muscarinic M2 and M3 receptors, RhoA, and L-VDCC in BSM were detected by real-time PCR and Western blot. Expressions of mRNA and protein for muscarinic M3 receptors, RhoA, and L-VDCC were greater than in BSM of HCl-infused guinea pigs, whereas levels of muscarinic M2 receptors were unchanged. We demonstrate that acid infusion to the lower esophagus and, subsequently, microaspiration into the respiratory tract in guinea pigs leads to airway hyperresponsiveness and overactive BSM. Functional and molecular results indicate that overactive BSM is the reason for enhancement of extracellular Ca(2+) influx via L-VDCC and Ca(2+) sensitization through Rho-kinase signaling.
Collapse
Affiliation(s)
- Yan-Mei Cheng
- 1 Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Du Y, Zhao J, Li X, Jin S, Ma WL, Mu Q, Xu S, Yang J, Rao S, Zhu L, Xin J, Cai PC, Su Y, Ye H. Dissociation of FK506-binding protein 12.6 kD from ryanodine receptor in bronchial smooth muscle cells in airway hyperresponsiveness in asthma. Am J Respir Cell Mol Biol 2014; 50:398-408. [PMID: 24053175 DOI: 10.1165/rcmb.2013-0222oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway hyperresponsiveness (AHR) in asthma is predominantly caused by increased sensitivity of bronchial smooth muscle cells (BSMCs) to stimuli. The sarcoplasmic reticulum (SR)-Ca(2+) release channel, known as ryanodine receptor (RyR), mediates the contractive response of BSMCs to stimuli. FK506-binding protein 12.6 kD (FKBP12.6) stabilizes the RyR2 channel in a closed state. However, the interaction of FKBP12.6 with RyR2 in AHR remains unknown. This study examined the interaction of FKBP12.6 with RyR2 in BSMCs in AHR of asthma. The interaction of FKBP12.6 with RyR2 and FKBP12.6 expression was determined in a rat asthma model and in BSMCs treated with inflammatory cytokines. The calcium responses to contractile agonists were determined in BSMCs with overexpression and knockdown of FKBP12.6. Asthmatic serum, IL-5, IL-13, and TNF-α enhance the calcium response of BSMCs to contractile agonists and cause dissociation of FKBP12.6 from RyR2 and a decrease in FKBP12.6 gene expression in BSMCs in culture and in ovalbumin (OVA)-sensitized and -challenged rats. Knockdown of FKBP12.6 in BSMCs causes a decrease in the association of RyR2 with FKBP12.6 and an increase in the calcium response of BSMCs. Overexpression of FKBP12.6 increases the association of FKBP12.6 with RyR2, decreases the calcium response of BSMCs, and normalizes airway responsiveness in OVA-sensitized and -challenged rats. Dissociation of FKBP12.6 from RyR2 in BSMCs is responsible for the increased calcium response contributing to AHR in asthma. Manipulating the interaction of FKBP12.6 with RyR2 might be a novel and useful treatment for asthma.
Collapse
Affiliation(s)
- Ying Du
- 1 Department of Pathophysiology
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways. Am J Physiol Lung Cell Mol Physiol 2014; 306:L476-86. [PMID: 24441871 PMCID: PMC3949081 DOI: 10.1152/ajplung.00253.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022] Open
Abstract
KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 μM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 μM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 μM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting β2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 μM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a β2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Dept. of Molecular Pharmacology & Therapeutics, Loyola Univ. Chicago, Stritch School of Medicine, 2160 S. First Ave., Bldg. 102, Rm. 3634, Maywood, IL 60153.
| | | | | | | | | | | | | |
Collapse
|
17
|
Donovan C, Simoons M, Esposito J, Ni Cheong J, Fitzpatrick M, Bourke JE. Rosiglitazone is a superior bronchodilator compared to chloroquine and β-adrenoceptor agonists in mouse lung slices. Respir Res 2014; 15:29. [PMID: 24621080 PMCID: PMC3995634 DOI: 10.1186/1465-9921-15-29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022] Open
Abstract
Background Current therapy for relieving bronchoconstriction may be ineffective in severe asthma, particularly in the small airways. The aim of this study was to further characterise responses to the recently identified novel bronchodilators rosiglitazone (RGZ) and chloroquine (CQ) under conditions where β-adrenoceptor agonist efficacy was limited or impaired in mouse small airways within lung slices. Methods Relaxation to RGZ and CQ was assessed following submaximal methacholine (MCh) pre-contraction, in slices treated overnight with either RGZ, CQ or albuterol (ALB) (to induce β-adrenoceptor desensitization), and in slices treated with caffeine/ryanodine in which contraction is associated with increases in Ca2+ sensitivity in the absence of contractile agonist-induced Ca2+ oscillations. Furthermore, the effects of RGZ, CQ, ALB and isoproterenol (ISO) on the initiation and development of methacholine-induced contraction were also compared. Results RGZ and CQ, but not ALB or ISO, elicited complete relaxation with increasing MCh pre-contraction and maintained their potency and efficacy following β-adrenoceptor desensitization. RGZ, CQ and ALB maintained efficacy following overnight incubation with RGZ or CQ. Relaxation responses to all dilators were generally maintained but delayed after caffeine/ryanodine. Pre-treatment with RGZ, but not CQ, ALB or ISO, reduced MCh potency. Conclusions This study demonstrates the superior effectiveness of RGZ in comparison to CQ and β-adrenoceptor agonists as a dilator of mouse small airways. Further investigation of the mechanisms underlying the relatively greater efficacy of RGZ under these conditions are warranted and should be extended to include studies in human asthmatic airways.
Collapse
Affiliation(s)
| | | | | | | | | | - Jane Elizabeth Bourke
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
18
|
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) are plasma membrane proteins involved in various important physiological processes. In epithelial cells, CaCC activity mediates the secretion of Cl(-) and of other anions, such as bicarbonate and thiocyanate. In smooth muscle and excitable cells of the nervous system, CaCCs have an excitatory role coupling intracellular Ca(2+) elevation to membrane depolarization. Recent studies indicate that TMEM16A (transmembrane protein 16 A or anoctamin 1) and TMEM16B (transmembrane protein 16 B or anoctamin 2) are CaCC-forming proteins. Induced expression of TMEM16A and B in null cells by transfection causes the appearance of Ca(2+)-activated Cl(-) currents similar to those described in native tissues. Furthermore, silencing of TMEM16A by RNAi causes disappearance of CaCC activity in cells from airway epithelium, biliary ducts, salivary glands, and blood vessel smooth muscle. Mice devoid of TMEM16A expression have impaired Ca(2+)-dependent Cl(-) secretion in the epithelial cells of the airways, intestine, and salivary glands. These animals also show a loss of gastrointestinal motility, a finding consistent with an important function of TMEM16A in the electrical activity of gut pacemaker cells, that is, the interstitial cells of Cajal. Identification of TMEM16 proteins will help to elucidate the molecular basis of Cl(-) transport.
Collapse
Affiliation(s)
- Loretta Ferrera
- Laboratory of Molecular Genetics, Istituto Giannina Gaslini, Genova, Italy
| | | | | |
Collapse
|
19
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
20
|
Flores-Soto E, Reyes-García J, Sommer B, Montaño LM. Sarcoplasmic reticulum Ca(2+) refilling is determined by L-type Ca(2+) and store operated Ca(2+) channels in guinea pig airway smooth muscle. Eur J Pharmacol 2013; 721:21-8. [PMID: 24113526 DOI: 10.1016/j.ejphar.2013.09.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022]
Abstract
Sarcoplasmic reticulum Ca(2+) refilling (SRREF) is crucial to sustain the agonists induced airway smooth muscle contraction. Nevertheless, its mechanisms have not been clearly described yet, although L-type voltage dependent, store operated, receptor operated channels and the Na(+)/Ca(2+) exchanger in its reverse mode (NCXREV) have been proposed as Ca(2+) handling proteins participating in this process. We found that in guinea pig and bovine tracheal smooth muscle, SRREF induced by caffeine was completely abolished by thapsigargin, even in the presence of Bay K8644, an activator of the L-type Ca(2+) channel. Activation of NCXREV in guinea pig tracheal myocytes increased SRREF in ~70%, while opening of the L-type Ca(2+) channels with Bay K8644 and favoring the capacitative Ca(2+) entry with 2-APB (32 μM) also augmented the SRREF by ~170% and ~71%, respectively. Methoxyverapamil (D-600, an L-type Ca(2+) channel blocker), 2-APB (100 µM, antagonist of the capacitative Ca(2+) entry) and PPADS (NCXREV blocker) diminished the SRREF by ~63%, ~72% and ~31%, respectively. The simultaneous addition of D-600 and 2-APB annulled SRREF. These last results were also seen when carbachol was used instead of caffeine. In tracheal rings, 2-APB and nifedipine abolished the carbachol-induced contraction. We concluded that the sarcoplasmic reticulum Ca(2+) pump is the only mechanism involved in the SRREF and that L-type Ca(2+) voltage dependent and store operated Ca(2+) channels are the principal membranal Ca(2+) handling proteins that provide extracellular Ca(2+) for SRREF and carbachol-induced contraction in the guinea pig airway smooth muscle; NCXREV seems to play a minor role.
Collapse
Affiliation(s)
- Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | |
Collapse
|
21
|
Gallos G, Remy KE, Danielsson J, Funayama H, Fu XW, Chang HYS, Yim P, Xu D, Emala CW. Functional expression of the TMEM16 family of calcium-activated chloride channels in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2013; 305:L625-34. [PMID: 23997176 DOI: 10.1152/ajplung.00068.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle hyperresponsiveness is a key component in the pathophysiology of asthma. Although calcium-activated chloride channel (CaCC) flux has been described in many cell types, including human airway smooth muscle (HASM), the true molecular identity of the channels responsible for this chloride conductance remains controversial. Recently, a new family of proteins thought to represent the true CaCCs was identified as the TMEM16 family. This led us to question whether members of this family are functionally expressed in native and cultured HASM. We further questioned whether expression of these channels contributes to the contractile function of HASM. We identified the mRNA expression of eight members of the TMEM16 family in HASM cells and show immunohistochemical evidence of TMEM16A in both cultured and native HASM. Functionally, we demonstrate that the classic chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), inhibited halide flux in cultured HASM cells. Moreover, HASM cells displayed classical electrophysiological properties of CaCCs during whole cell electrophysiological recordings, which were blocked by using an antibody selective for TMEM16A. Furthermore, two distinct TMEM16A antagonists (tannic acid and benzbromarone) impaired a substance P-induced contraction in isolated guinea pig tracheal rings. These findings demonstrate that multiple members of this recently described family of CaCCs are expressed in HASM cells, they display classic electrophysiological properties of CaCCs, and they modulate contractile tone in airway smooth muscle. The TMEM16 family may provide a novel therapeutic target for limiting airway constriction in asthma.
Collapse
Affiliation(s)
- George Gallos
- Dept. of Anesthesiology, 622 W. 168th St. P&S Box 46, Columbia Univ. College of Physicians and Surgeons, New York, NY 10032.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Croisier H, Tan X, Perez-Zoghbi JF, Sanderson MJ, Sneyd J, Brook BS. Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLoS One 2013; 8:e69598. [PMID: 23936056 PMCID: PMC3723852 DOI: 10.1371/journal.pone.0069598] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
Intracellular dynamics of airway smooth muscle cells (ASMC) mediate ASMC contraction and proliferation, and thus play a key role in airway hyper-responsiveness (AHR) and remodelling in asthma. We evaluate the importance of store-operated entry (SOCE) in these dynamics by constructing a mathematical model of ASMC signaling based on experimental data from lung slices. The model confirms that SOCE is elicited upon sufficient depletion of the sarcoplasmic reticulum (SR), while receptor-operated entry (ROCE) is inhibited in such conditions. It also shows that SOCE can sustain agonist-induced oscillations in the absence of other influx. SOCE up-regulation may thus contribute to AHR by increasing the oscillation frequency that in turn regulates ASMC contraction. The model also provides an explanation for the failure of the SERCA pump blocker CPA to clamp the cytosolic of ASMC in lung slices, by showing that CPA is unable to maintain the SR empty of . This prediction is confirmed by experimental data from mouse lung slices, and strongly suggests that CPA only partially inhibits SERCA in ASMC.
Collapse
Affiliation(s)
- Huguette Croisier
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Xiahui Tan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachussetts, United States of America
| | - Jose F. Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michael J. Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachussetts, United States of America
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Bindi S. Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol 2013; 11:e1001501. [PMID: 23472053 PMCID: PMC3589262 DOI: 10.1371/journal.pbio.1001501] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Bitter tastants can activate bitter taste receptors on constricted smooth muscle cells to inhibit L-type calcium channels and induce bronchodilation. Bronchodilators are a standard medicine for treating airway obstructive diseases, and β2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than β2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca2+ signals, as revealed in cultured ASM cells, to activate large-conductance Ca2+-activated K+ channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca2+ events nor alter spontaneous local Ca2+ transients. Interestingly, they increase global intracellular [Ca2+]i, although to a much lower level than bronchoconstrictors. We show that these Ca2+ changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cβ [PLCβ]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca2+]i induced by bronchoconstrictors, and this lowering of the [Ca2+]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca2+ channels (VDCCs), resulting in reversal in [Ca2+]i, and this inhibition can be prevented by pertussis toxin and G-protein βγ subunit inhibitors, but not by the blockers of PLCβ and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca2+ signaling pathways via Gβγ to increase [Ca2+]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca2+]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants. Bitter taste receptors (TAS2Rs), a G-protein-coupled receptor family long thought to be solely expressed in taste buds on the tongue, have recently been detected in airways. Bitter substances can activate TAS2Rs in airway smooth muscle to cause greater bronchodilation than β2 adrenergic receptor agonists, the most commonly used bronchodilators. However, the mechanisms underlying this bronchodilation remain elusive. Here we show that, in resting primary airway smooth muscle cells, bitter tastants activate a TAS2R-dependent signaling pathway that results in an increase in intracellular calcium levels, albeit to a level much lower than that produced by bronchoconstrictors. In bronchoconstricted cells, however, bitter tastants reverse the bronchoconstrictor-induced increase in calcium levels, which leads to the relaxation of smooth muscle cells. We find that this reversal is due to inhibition of L-type calcium channels. Our results suggest that under normal conditions, bitter tastants can activate TAS2Rs to modestly increase calcium levels, but that when smooth muscle cells are constricted, they can block L-type calcium channels to induce bronchodilation. We postulate that this novel mechanism could operate in other extraoral cells expressing TAS2Rs.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence M. Lifshitz
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Karl F. Uy
- Department of Surgery, Division of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts, United States of America
| | - Mitsuo Ikebe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kevin E. Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther 2013; 26:112-20. [PMID: 22634112 PMCID: PMC3574867 DOI: 10.1016/j.pupt.2012.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/11/2022]
Abstract
Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, The University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
25
|
How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. THE LANCET RESPIRATORY MEDICINE 2013; 1:137-47. [PMID: 24429094 DOI: 10.1016/s2213-2600(12)70058-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease.
Collapse
|
26
|
Hernandez JM, Janssen LJ. L-type Ca2+ channels, Ca2+-induced Ca2+ release, and BKCa channels in airway stretch-induced contraction. Eur J Pharmacol 2012; 696:161-5. [DOI: 10.1016/j.ejphar.2012.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 02/05/2023]
|
27
|
trans-Caryophyllene, a natural sesquiterpene, causes tracheal smooth muscle relaxation through blockade of voltage-dependent Ca²⁺ channels. Molecules 2012; 17:11965-77. [PMID: 23060288 PMCID: PMC6268956 DOI: 10.3390/molecules171011965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022] Open
Abstract
trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh), respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM), inhibited the inward Ba2+ current (IBa) to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.
Collapse
|
28
|
Yau KH, Mak JCW, Leung SWS, Yang D, Vanhoutte PM. A synthetic chloride channel relaxes airway smooth muscle of the rat. PLoS One 2012; 7:e45340. [PMID: 23049786 PMCID: PMC3458840 DOI: 10.1371/journal.pone.0045340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/16/2012] [Indexed: 02/03/2023] Open
Abstract
Synthetic ion channels may have potential therapeutic applications, provided they possess appropriate biological activities. The present study was designed to examine the ability of small molecule-based synthetic Cl– channels to modulate airway smooth muscle responsiveness. Changes in isometric tension were measured in rat tracheal rings. Relaxations to the synthetic chloride channel SCC-1 were obtained during sustained contractions to KCl. The anion dependency of the effect of SCC-1 was evaluated by ion substitution experiments. The sensitivity to conventional Cl– transport inhibitors was also tested. SCC-1 caused concentration-dependent relaxations during sustained contractions to potassium chloride. This relaxing effect was dependent on the presence of extracellular Cl– and HCO3−. It was insensitive to conventional Cl– channels/transport inhibitors that blocked the cystic fibrosis transmembrane conductance regulator and calcium-activated Cl– channels. SCC-1 did not inhibit contractions induced by carbachol, endothelin-1, 5-hydroxytryptamine or the calcium ionophore A23187. SCC-1 relaxes airway smooth muscle during contractions evoked by depolarizing solutions. The Cl– conductance conferred by this synthetic compound is distinct from the endogenous transport systems for chloride anions.
Collapse
Affiliation(s)
- Kwok-hei Yau
- Morningside Laboratory for Chemical Biology, Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Judith Choi-wo Mak
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Susan Wai-sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Paul M. Vanhoutte
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
29
|
Siddiqui S, Redhu NS, Ojo OO, Liu B, Irechukwu N, Billington C, Janssen L, Moir LM. Emerging airway smooth muscle targets to treat asthma. Pulm Pharmacol Ther 2012; 26:132-44. [PMID: 22981423 DOI: 10.1016/j.pupt.2012.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/28/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.
Collapse
Affiliation(s)
- Sana Siddiqui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain, Montréal, Québec H2X 2P2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lauzon AM, Bates JHT, Donovan G, Tawhai M, Sneyd J, Sanderson MJ. A multi-scale approach to airway hyperresponsiveness: from molecule to organ. Front Physiol 2012; 3:191. [PMID: 22701430 PMCID: PMC3371674 DOI: 10.3389/fphys.2012.00191] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022] Open
Abstract
Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy.
Collapse
Affiliation(s)
- Anne-Marie Lauzon
- Meakins-Christie Laboratories, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Janssen LJ. Airway smooth muscle electrophysiology in a state of flux? Am J Physiol Lung Cell Mol Physiol 2012; 302:L730-2. [DOI: 10.1152/ajplung.00032.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of chloride currents and release of internally sequestered Ca2+ in airway smooth muscle have long been associated with excitation and contraction. Surprisingly, however, two recent publications (Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Nat Med 16: 1299–1304, 2010; Gallos G, Yim P, Chang S, Zhang Y, Xu D, Cook JM, Gerthoffer WT, Emala CW Sr. Am J Physiol Lung Cell Mol Physiol 302: L248–L256, 2012) have linked both events to relaxation. This begs a closer look at our understanding of airway smooth muscle electrophysiology and its contribution to excitation-contraction coupling. This Editorial Focus highlights those two aforementioned studies and several other equally paradoxical findings and proposes some possible reinterpretations of the data and/or new directions of research in which the answers might be found.
Collapse
Affiliation(s)
- Luke J. Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Aguiar LA, Porto RS, Lahlou S, Ceccatto VM, Barbosa R, Lemos TLG, dos Santos HS, Coelho-de-Souza AN, Magalhães PJC, Zin WA, Leal-Cardoso JH. Antispasmodic effects of a new kaurene diterpene isolated from Croton argyrophylloides on rat airway smooth muscle. ACTA ACUST UNITED AC 2012; 64:1155-64. [PMID: 22775219 DOI: 10.1111/j.2042-7158.2012.01494.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The effects of rel-(1S,4aS,7S,8aS)-7-(1-vinyl)-tetradecahydro-1,4a-dimethylphenanthrene-7,8a-carbolactone-1-carboxylic acid (TCCA), a new ent-kaurene diterpene isolated from Croton argyrophylloides, on rat tracheal preparations were investigated. METHODS Tracheae were removed and cut into two-cartilage segments that were mounted in organ baths containing Tyrode's solution. RESULTS TCCA reduced the contractions induced by electrical field stimulation, relaxed K(+)-induced contractions, and inhibited both phasic and tonic components of the K(+)- and ACh-induced contractions. TCCA reduced the serotonin-induced contraction, abolished that evoked by K(+) in the presence of epinephrine, and also reduced the ACh-induced contractions under Ca(2+)-free conditions. TCCA blocked contractions that depend on divalent cation inflow through voltage-operated Ca(2+) channels (VOCCs) and receptor-operated Ca(2+) channels (ROCCs), but had greater potency to block VOCC- than ROCC-dependent contractions or contractions induced by ACh in Ca(2+)-free conditions. TCCA relaxed the phorbol 12,13 dibutyrate (1 µm) induced contraction, but with slight potency. CONCLUSIONS TCCA induces an antispasmodic effect through several mechanisms including blockade of either VOCCs (with greater potency) or ROCCs, blockade of IP(3)-induced Ca(2+) release from sarcoplasmic reticulum (with intermediate potency) and reduction of the sensitivity of contractile proteins to Ca(2+).
Collapse
Affiliation(s)
- Liza Araújo Aguiar
- Electrophysiology Laboratory, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gallos G, Yim P, Emala CW. Chloride in airway smooth muscle: the ignored anion no longer? Am J Physiol Lung Cell Mol Physiol 2012; 302:L733-5. [PMID: 22345576 DOI: 10.1152/ajplung.00053.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This Perspectives accompanies an Editorial Focus that summarizes new developments concerning the role of chloride in airway smooth muscle physiology. We provide several observations and mechanistic insights to reconcile recent experimental evidence with existing paradigms concerning chloride channel-mediated effects on airway smooth muscle tone. In addition, we highlight the potentially complex and dynamic nature that chloride currents and membrane potential have on calcium handling and airway smooth muscle contractility.
Collapse
Affiliation(s)
- George Gallos
- Department of Anesthesiology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
34
|
Brueggemann LI, Kakad PP, Love RB, Solway J, Dowell ML, Cribbs LL, Byron KL. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy. Am J Physiol Lung Cell Mol Physiol 2011; 302:L120-32. [PMID: 21964407 DOI: 10.1152/ajplung.00194.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Valverde MA, Cantero-Recasens G, Garcia-Elias A, Jung C, Carreras-Sureda A, Vicente R. Ion channels in asthma. J Biol Chem 2011; 286:32877-82. [PMID: 21799020 DOI: 10.1074/jbc.r110.215491] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.
Collapse
Affiliation(s)
- Miguel A Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Cinnamomi ramulus Ethanol Extract Exerts Vasorelaxation through Inhibition of Ca Influx and Ca Release in Rat Aorta. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:513068. [PMID: 21785647 PMCID: PMC3137977 DOI: 10.1155/2012/513068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/15/2011] [Indexed: 01/20/2023]
Abstract
Contraction of vascular smooth muscle cells depends on the induction of cytosolic calcium ion (Ca2+) due to either Ca2+ influx through voltage-gated Ca2+ channels or to receptor-mediated Ca2+ release from the sarcoplasmic reticulum. The present study investigated the vasorelaxation effect of Cinnamomi ramulus ethanol extract (CRE) and the possible mechanisms in rat aorta. CRE (0.1 mg/mL) relaxed vasoconstriction induced by phenylephrine (PE; 1 μM) and angiotensin II (5 μM). Preincubation with CRE significantly reduced the rat aortic contraction by addition of CaCl2 in Ca2+-free Krebs solution and FPL64176 (10 μM). Pretreatment with nifedipine (100 μM) or verapamil (1 μM) significantly reduced the CRE-mediated vasorelaxation of PE-induced vascular contraction. In addition, CRE also relaxed the vascular contraction caused by m-3M3FBS (5 μg/mL), but U73122 (10 μM) significantly inhibited the vasorelaxation of PE precontracted aortic rings. Furthermore, CRE significantly reduced the magnitude of PE- and caffeine (30 mM)-induced transient contraction. In vascular strips, CRE downregulated the expression levels of phosphorylated PLC and phosphoinositide 3-kinase elevated by PE or m-3M3FBS. These results suggest that CRE relaxes vascular smooth muscle through the inhibition of both Ca2+ influx via L-type Ca2+ channel and inositol triphosphate-induced Ca2+ release from the sarcoplasmic reticulum.
Collapse
|
37
|
Semenov I, Wang B, Herlihy JT, Brenner R. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization. J Physiol 2011; 589:1803-17. [PMID: 21300746 DOI: 10.1113/jphysiol.2010.204347] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.
Collapse
Affiliation(s)
- Iurii Semenov
- Department of Physiology, UT Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
38
|
Yim PD, Gallos G, Xu D, Zhang Y, Emala CW. Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. FASEB J 2011; 25:1706-17. [PMID: 21282206 DOI: 10.1096/fj.10-170530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Airway smooth muscle (ASM) contraction is an important component of the pathophysiology of asthma. Taurine, an agonist of glycine receptor chloride (GlyR Cl(-)) channels, was found to relax contracted ASM, which led us to question whether functional GlyR Cl(-) channels are expressed in ASM. Messenger RNA for β (GLRB), α1 (GLRA1), α2 (GLRA2), and α4 (GLRA4) subunits were found in human (Homo sapiens) and guinea pig (Cavia porcellus) tracheal smooth muscle. Immunoblotting confirmed the protein expression of GLRA1 and GLRB subunits in ASM. Electrical activity of cultured human ASM cells was assessed using a fluorescent potentiometric dye and electrophysiological recordings. Glycine increased current and significantly increased fluorescence in a dose-dependent manner. The GlyR Cl(-) channel antagonist strychnine significantly blocked the effects of glycine on potentiometric fluorescence in ASM cells. Guinea pig airway ring relaxation of ACh-induced contractions by isoproterenol was significantly left-shifted in the presence of glycine. This effect of glycine was blocked by pretreatment with the GlyR Cl(-) channel antagonist strychnine. Glycine treatment during tachykinin- and acetylcholine-induced contractions significantly decreased the maintenance of muscle force compared to control. GlyR Cl(-) channels are expressed on ASM and regulate smooth muscle force and offer a novel target for therapeutic relaxation of ASM.
Collapse
Affiliation(s)
- Peter D Yim
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
39
|
Lima FC, Peixoto-Neves D, Gomes MDM, Coelho-de-Souza AN, Lima CC, Araújo Zin W, Magalhães PJC, Saad L, Leal-Cardoso JH. Antispasmodic effects of eugenol on rat airway smooth muscle. Fundam Clin Pharmacol 2010; 25:690-9. [DOI: 10.1111/j.1472-8206.2010.00892.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Kroigaard C, Dalsgaard T, Simonsen U. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles: analogy to EDHF-type relaxation in rat pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2010; 298:L531-42. [DOI: 10.1152/ajplung.00220.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small (SKCa) and intermediate (IKCa)-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IKCa and SKCa3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries, respectively. In 5-hydroxytryptamine (1 μM)-contracted bronchioles (828 ± 20 μm, n = 84) and U46619 (0.03 μM)-contracted arteries (720 ± 24 μm, n = 68), NS309 (0.001–10 μM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IKCa channels with charybdotoxin and in bronchioles also by blocking SKCa channels with apamin. Inhibition of cyclooxygenase, nitric oxide synthase, and cytochrome 2C isoenzymes, or blockade of large (BKCa)-conductance calcium-activated potassium channels with iberiotoxin, failed to reduce NS309 relaxation. In contrast to the pulmonary arteries, relaxations to a β2-adrenoceptor agonist, salbutamol, were reduced in bronchioles by removing the epithelium or blocking IKCa and/or SKCa channels. Extracellular K+ (2–20 mM) induced relaxation in both bronchioles and arteries. An inhibitor of Na+-K+-ATPase, ouabain, abolished relaxations to NS309, salbutamol, and K+. These results suggest that IKCa and SKCa3 channels are located in the epithelium of bronchioles and endothelium of pulmonary arteries. Analog to the endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in pulmonary arteries, these channels may be involved in EpDHF-type relaxation of bronchioles caused by epithelial K+ efflux followed by activation of Na+-K+-ATPase in the underlying smooth muscle layer.
Collapse
Affiliation(s)
- Christel Kroigaard
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Thomas Dalsgaard
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Sanderson MJ, Bai Y, Perez-Zoghbi J. Ca2+ Oscillations Regulate Contraction Of Intrapulmonary Smooth Muscle Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:77-96. [DOI: 10.1007/978-1-60761-500-2_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Zhuge R, Bao R, Fogarty KE, Lifshitz LM. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle. J Biol Chem 2009; 285:2203-10. [PMID: 19920135 DOI: 10.1074/jbc.m109.067546] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.
Collapse
Affiliation(s)
- Ronghua Zhuge
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|
43
|
Barro-Soria R, Aldehni F, Almaça J, Witzgall R, Schreiber R, Kunzelmann K. ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 2009; 459:485-97. [PMID: 19823864 DOI: 10.1007/s00424-009-0745-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023]
Abstract
Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca(2+) signaling and activation of Ca(2+)-dependent Cl(-) (TMEM16A) and K(+) (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca(2+) deposits. hBest1 is, therefore, important for Ca(2+) handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP(3))-induced Ca(2+) release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca(2+) signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.
Collapse
Affiliation(s)
- René Barro-Soria
- Institut für Physiologie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Prakash YS, Thompson MA, Pabelick CM. Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle. Am J Respir Cell Mol Biol 2009; 41:603-11. [PMID: 19213875 DOI: 10.1165/rcmb.2008-0151oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is increasing recognition that neurotrophin (NT) signaling occurs in non-neuronal tissues, including airway smooth muscle (ASM). We recently demonstrated that NTs, such as brain-derived neurotrophic factor (BDNF), enhance intracellular Ca2+ ([Ca2+](i)) and force regulation in human ASM. Increased NT expression has been observed in airway diseases, such as asthma and allergy. In the present study, we tested the hypothesis that NTs contribute to inflammation-induced enhancement of ASM contractility. Using human ASM cells and real-time fluorescence [Ca2+](i) imaging, we examined the contribution of the high-affinity tropomyosin-related kinase and low-affinity, pan-NT p75NTR receptors to [Ca2+](i) regulation under control conditions and after exposure to the proinflammatory cytokine TNF-alpha (20 ng/ml). Exposure to TNF-alpha enhanced [Ca2+](i) responses to agonist (acetylcholine, histamine). Exposure to 10 nM BDNF for even 30 minutes substantially and synergistically enhanced TNF-alpha effects on [Ca2+](i) responses to agonist. Small interfering RNA suppression of tropomyosin-related kinase substantially blunted the effect of BDNF on [Ca2+](i) responses to agonist (with greater effect on Ca2+ influx via store-operated Ca2+ entry compared with sarcoplasmic reticulum Ca2+ release) in both control and TNF-alpha-exposed cells. However, p75NTR suppression by small interfering RNA had no significant effect on [Ca2+](i) responses in either cell group. These novel data demonstrate that NTs influence ASM contractility, and suggest a potential role for NTs in airway diseases.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
45
|
Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:388-97. [PMID: 19007899 DOI: 10.1016/j.pupt.2008.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/03/2008] [Accepted: 09/28/2008] [Indexed: 12/11/2022]
Abstract
Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.
Collapse
Affiliation(s)
- Jose F Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Bao R, Lifshitz LM, Tuft RA, Bellvé K, Fogarty KE, ZhuGe R. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle. ACTA ACUST UNITED AC 2008; 132:145-60. [PMID: 18591421 PMCID: PMC2442178 DOI: 10.1085/jgp.200709933] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ca2+ sparks are highly localized, transient releases of Ca2+ from sarcoplasmic reticulum through ryanodine receptors (RyRs). In smooth muscle, Ca2+ sparks trigger spontaneous transient outward currents (STOCs) by opening nearby clusters of large-conductance Ca2+-activated K+ channels, and also gate Ca2+-activated Cl− (Cl(Ca)) channels to induce spontaneous transient inward currents (STICs). While the molecular mechanisms underlying the activation of STOCs by Ca2+ sparks is well understood, little information is available on how Ca2+ sparks activate STICs. In the present study, we investigated the spatial organization of RyRs and Cl(Ca) channels in spark sites in airway myocytes from mouse. Ca2+ sparks and STICs were simultaneously recorded, respectively, with high-speed, widefield digital microscopy and whole-cell patch-clamp. An image-based approach was applied to measure the Ca2+ current underlying a Ca2+ spark (ICa(spark)), with an appropriate correction for endogenous fixed Ca2+ buffer, which was characterized by flash photolysis of NPEGTA. We found that ICa(spark) rises to a peak in 9 ms and decays with a single exponential with a time constant of 12 ms, suggesting that Ca2+ sparks result from the nonsimultaneous opening and closure of multiple RyRs. The onset of the STIC lags the onset of the ICa(spark) by less than 3 ms, and its rising phase matches the duration of the ICa(spark). We further determined that Cl(Ca) channels on average are exposed to a [Ca2+] of 2.4 μM or greater during Ca2+ sparks. The area of the plasma membrane reaching this level is <600 nm in radius, as revealed by the spatiotemporal profile of [Ca2+] produced by a reaction-diffusion simulation with measured ICa(spark). Finally we estimated that the number of Cl(Ca) channels localized in Ca2+ spark sites could account for all the Cl(Ca) channels in the entire cell. Taken together these results lead us to propose a model in which RyRs and Cl(Ca) channels in Ca2+ spark sites localize near to each other, and, moreover, Cl(Ca) channels concentrate in an area with a radius of ∼600 nm, where their density reaches as high as 300 channels/μm2. This model reveals that Cl(Ca) channels are tightly controlled by Ca2+ sparks via local Ca2+ signaling.
Collapse
Affiliation(s)
- Rongfeng Bao
- Biomedical Imaging Group and Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
47
|
Michoud MC, Robert R, Hassan M, Moynihan B, Haston C, Govindaraju V, Ferraro P, Hanrahan JW, Martin JG. Role of the cystic fibrosis transmembrane conductance channel in human airway smooth muscle. Am J Respir Cell Mol Biol 2008; 40:217-22. [PMID: 18757309 DOI: 10.1165/rcmb.2006-0444oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with cystic fibrosis (CF) suffer from asthma-like symptoms and gastrointestinal cramps, attributed to a mutation in the CF transmembrane conductance regulator (CFTR) gene present in a variety of cells. Pulmonary manifestations of the disease include the production of thickened mucus and symptoms of asthma, such as cough and wheezing. A possible alteration in airway smooth muscle (ASM) cell function of patients with CF has not been investigated. The aim of this study was to determine whether the (CFTR) channel is present and affects function of human ASM cells. Cell cultures were obtained from the main or lobar bronchi of patients with and without CF, and the presence of the CFTR channel detected by immunofluorescence. Cytosolic Ca(2+) was measured using Fura-2 and dual-wavelength microfluorimetry. The results show that CFTR is expressed in airway bronchial tissue and in cultured ASM cells. Peak Ca(2+) release in response to histamine was significantly decreased in CF cells compared with non-CF ASM cells (357 +/- 53 nM versus 558 +/- 20 nM; P < 0.001). The CFTR pharmacological blockers, glibenclamide and N-phenyl anthranilic acid, significantly reduced histamine-induced Ca(2+) release in non-CF cells, and similar results were obtained when CFTR expression was varied using antisense oligonucleotides. In conclusion, these data show that the CFTR channel is present in ASM cells, and that it modulates the release of Ca(2+) in response to contractile agents. In patients with CF, a dysfunctional CFTR channel could contribute to the asthma diathesis and gastrointestinal problems experienced by these patients.
Collapse
Affiliation(s)
- Marie-Claire Michoud
- Meakins Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain, Montreal, PQ, H2X 2P2 Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hernandez JM, Cox G, Janssen LJ. Involvement of the Neurokinin-2 Receptor in Airway Smooth Muscle Stretch-Activated Contractions Assessed in Perfused Intact Bovine Bronchial Segments. J Pharmacol Exp Ther 2008; 327:503-10. [DOI: 10.1124/jpet.108.141176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Role of Ca(2+) mobilization in desensitization of beta-adrenoceptors by platelet-derived growth factor in airway smooth muscle. Eur J Pharmacol 2008; 591:259-65. [PMID: 18611401 DOI: 10.1016/j.ejphar.2008.06.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 06/13/2008] [Accepted: 06/22/2008] [Indexed: 11/20/2022]
Abstract
Platelet-derived growth factor (PDGF), which is released from eosinophils and fibroblasts, may be implicated in the pathophysiology of bronchial asthma. To examine the involvement of airway inflammation in beta-adrenergic desensitization, the present study was designed to determine whether pre-exposure to PDGF deteriorates beta-adrenoceptor function in airway smooth muscle. We focused on Ca(2+) signaling as an intracellular mechanism involved in this phenomenon. Isometric tension and F(340)/F(380) (an indicator of intracellular Ca(2+) concentration) induced by isoprenaline and other cAMP-related agents were simultaneously measured before and after exposure to PDGF in fura-2-loaded guinea-pig tracheal smooth muscle. Indomethacin was applied throughout the experiments to abolish prostaglandin synthesis by PDGF. After exposure of the tissues to 10 ng/ml PDGF for 15 min, the effects of isoprenaline, a beta-adrenoceptor agonist, and forskolin, a direct inhibitor of adenylyl cyclase, against methacholine-induced contraction were markedly reduced with increasing F(340)/F(380). However, in the presence of verapamil, an inhibitor of voltage-dependent Ca(2+) channels, the reduced responsiveness to isoprenaline and forskolin induced by pre-exposure to PDGF was reversed with reducing F(340)/F(380). Reduced responsiveness to isoprenaline by PDGF was also not observed in the presence of Ca(2+)-free solution. The inhibitory effects of db-cAMP, an analogue of cAMP, and theophylline, a nonselective inhibitor of phosphodiesterase, were not attenuated by PDGF. In conclusion, pre-exposure to PDGF causes impairment of the beta-adrenoceptors/adenylyl cyclase processes in airway smooth muscle that is independent of cyclooxygenase synthesis by PDGF. Ca(2+) mobilization by Ca(2+) influx through voltage-dependent Ca(2+) channels is involved in this heterologous desensitization of beta-adrenoceptors.
Collapse
|
50
|
Abstract
The guinea pig has been the most commonly used small animal species in preclinical studies related to asthma and COPD. The primary advantages of the guinea pig are the similar potencies and efficacies of agonists and antagonists in human and guinea pig airways and the many similarities in physiological processes, especially airway autonomic control and the response to allergen. The primary disadvantages to using guinea pigs are the lack of transgenic methods, limited numbers of guinea pig strains for comparative studies and a prominent axon reflex that is unlikely to be present in human airways. These attributes and various models developed in guinea pigs are discussed.
Collapse
Affiliation(s)
- Brendan J Canning
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|