1
|
Wojtas D, Mzyk A, Li R, Zehetbauer M, Schafler E, Jarzębska A, Sułkowski B, Schirhagl R. Verifying the cytotoxicity of a biodegradable zinc alloy with nanodiamond sensors. BIOMATERIALS ADVANCES 2024; 162:213927. [PMID: 38917649 DOI: 10.1016/j.bioadv.2024.213927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Metals are widely utilized as implant materials for bone fixtures as well as stents. Biodegradable versions of these implants are highly desirable since patients do not have to undergo a second surgery for the materials to be removed. Attractive options for such materials are zinc silver alloys since they also offer the benefit of being antibacterial. However, it is important to investigate the effect of the degradation products of such alloys on the surrounding cells, taking into account silver cytotoxicity. Here we investigated zinc alloyed with 1 % of silver (Zn1Ag) and how differently concentrated extracts (1 %-100 %) of this material impact human umbilical vein endothelial cells (HUVECs). More specifically, we focused on free radical generation and oxidative stress as well as the impact on cell viability. To determine free radical production we used diamond-based quantum sensing as well as conventional fluorescent assays. The viability was assessed by observing cell morphology and the metabolic activity via the MTT assay. We found that 1 % and 10 % extracts are well tolerated by the cells. However, at higher extract concentrations we observed severe impact on cell viability and oxidative stress. We were also able to show that quantum sensing was able to detect significant free radical generation even at the lowest tested concentrations.
Collapse
Affiliation(s)
- Daniel Wojtas
- Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czechia; Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland; Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Aldona Mzyk
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands; Department of Health Technology, Danish Technical University, Ørsteds Plads, DK-2800 Kongens Lyngby, Denmark.
| | - Runrun Li
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Michael Zehetbauer
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - Erhard Schafler
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria
| | - Anna Jarzębska
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Kraków, Poland
| | - Bartosz Sułkowski
- Faculty of Non-ferrous Metals, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands.
| |
Collapse
|
2
|
Yang F, Smith MJ, Siow RC, Aarsland D, Maret W, Mann GE. Interactions between zinc and NRF2 in vascular redox signalling. Biochem Soc Trans 2024; 52:269-278. [PMID: 38372426 PMCID: PMC10903478 DOI: 10.1042/bst20230490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Recent evidence highlights the importance of trace metal micronutrients such as zinc (Zn) in coronary and vascular diseases. Zn2+ plays a signalling role in modulating endothelial nitric oxide synthase and protects the endothelium against oxidative stress by up-regulation of glutathione synthesis. Excessive accumulation of Zn2+ in endothelial cells leads to apoptotic cell death resulting from dysregulation of glutathione and mitochondrial ATP synthesis, whereas zinc deficiency induces an inflammatory phenotype, associated with increased monocyte adhesion. Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor known to target hundreds of different genes. Activation of NRF2 affects redox metabolism, autophagy, cell proliferation, remodelling of the extracellular matrix and wound healing. As a redox-inert metal ion, Zn has emerged as a biomarker in diagnosis and as a therapeutic approach for oxidative-related diseases due to its close link to NRF2 signalling. In non-vascular cell types, Zn has been shown to modify conformations of the NRF2 negative regulators Kelch-like ECH-associated Protein 1 (KEAP1) and glycogen synthase kinase 3β (GSK3β) and to promote degradation of BACH1, a transcriptional suppressor of select NRF2 genes. Zn can affect phosphorylation signalling, including mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinases and protein kinase C, which facilitate NRF2 phosphorylation and nuclear translocation. Notably, several NRF2-targeted proteins have been suggested to modify cellular Zn concentration via Zn exporters (ZnTs) and importers (ZIPs) and the Zn buffering protein metallothionein. This review summarises the cross-talk between reactive oxygen species, Zn and NRF2 in antioxidant responses of vascular cells against oxidative stress and hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Fan Yang
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Matthew J. Smith
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard C.M. Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, U.K
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College, London, U.K
| | - Giovanni E. Mann
- School of Cardiovascular and Metabolic Medicine and Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
3
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
4
|
Rani V, Verma Y, Rana SVS. Zinc Oxide Nanoparticles Ameliorate Dimethylnitrosamine-Induced Renal Toxicity in Rat. Appl Biochem Biotechnol 2021; 194:1699-1715. [PMID: 34855113 DOI: 10.1007/s12010-021-03689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Dimethylnitrosamine (DMN) is an established carcinogen. It is toxic to several organs, viz., the liver, kidney, and lungs, and immune system. Several drugs have been used in the past to modulate its toxicity using experimental animal models. The present study was designed to investigate the effect of zinc oxide nanoparticles (ZnONPs) on renal toxicity caused by DMN in laboratory rat. Since oxidative mechanisms are mainly involved in its toxicity, the proposed study focuses on the amelioration of oxidative stress response by ZnONPs, if any. The present results show that administration of ZnONPs (50 mg/kg body weight/rat) to DMN (2 μl/100 g body weight/rat)-treated rats diminuted the concentration of malonaldehyde, H2O2, and NO in the kidney. However, reduced glutathione (GSH) concentration increased after ZnONP treatment. Results on glutathione S-transferase and glutathione peroxidase favored its antioxidative effects. These results are supported by the recovery of oxidative DNA damage and less pronounced histopathological changes in the kidney. It is hypothesized that ZnONPs might be toxic to renal tissue; however, its strong therapeutic/antioxidative potential helps in ameliorating DMN-induced renal toxicity in rat.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
5
|
de Araujo Bastos Santana L, Oliveira Junior PH, Damia C, Dos Santos Tavares D, Dos Santos EA. Bioactivity in SBF versus trace element effects: The isolated role of Mg 2+ and Zn 2+ in osteoblast behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111320. [PMID: 33254959 DOI: 10.1016/j.msec.2020.111320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/23/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The bioactivity assay originally proposed by Kokubo is one of the most commonly used tests to indirectly evaluate the biocompatibility of bioactive glasses. However, extensive evidence has shown that trace elements present in biomaterials may stimulate cellular behavior in different ways even when no apatite formation is observed, i.e., in biomaterials with low or no bioactivity. To further elucidate this topic, we designed three different SiO2-rich bioglass compositions in which CaO was partially replaced by ZnO and MgO, two oxides known to affect bioactivity as well as osteoblastic behavior. The physicochemical changes induced by the presence of oxides and their effects on biological behavior, as well as the adhesion, proliferation and differentiation of human osteoblast-like osteosarcoma cells (MG-63), were followed by a bioactivity assay in simulated body fluid (SBF). The insertion of ZnO or MgO decreased the glass transition (Tg) and crystallization (Tc) temperatures as a function of the increase in nonbonding oxygens, which was directly reflected in the higher solubility. The release of Mg2+ ions from the MgO-containing samples inhibited the bioactivity in SBF, inducing high cell adhesion and proliferation and moderate ALP activity. The release of Zn2+ also inhibited the bioactivity in SBF but, in contrast to the release of Mg2+, induced low cell adhesion and proliferation and high ALP activity compared to the control.
Collapse
Affiliation(s)
- Lucas de Araujo Bastos Santana
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil
| | - Paulo Henrique Oliveira Junior
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil
| | - Chantal Damia
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Euler Araujo Dos Santos
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil.
| |
Collapse
|
6
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
7
|
Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 2020; 8:4973-4989. [DOI: 10.1039/d0tb00739k] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide nanoparticles are characterized by a good biocompatibility while providing a versatile potential as innovative therapeutic agents in cancer medicine.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| | - Wolfgang Tremel
- Department of Chemistry
- Johannes Gutenberg-University
- 55128 Mainz
- Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery
- University Medical Centre of the Johannes Gutenberg-University
- Laboratory for Molecular Tumor Biology
- 55131 Mainz
- Germany
| |
Collapse
|
8
|
Oliviero M, Schiavo S, Dumontet S, Manzo S. DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:756-765. [PMID: 30248658 DOI: 10.1016/j.scitotenv.2018.09.243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The recent advances in nanotechnology lead to a potential increase of the release of nanoparticles (NPs) into marine environment through different routes, with possible toxic effects upon the living part of this ecosystem. One of the ways of NPs marine contamination gaining today increasing concern stems from the widespread use cosmetics containing ZnO NPs as UV-filter. Although the possible adverse effects on marine organisms have been already ascertained, the information about the possible genotoxicity of ZnO NPs is still scant. In this work the spermiotoxicity of ZnO particles of different sizes (ZnO Bulk > 200 nm, ZnO NPs 100 nm and ZnO NPs 14 nm) was assessed, using Paracentrotus lividus spermatozoa, by evaluating the DNA damage of the exposed sperm, fertilization capability and DNA damage transmission to progeny. Our results showed that ZnO NPs induced DNA damages in spermatozoa after 30 min of exposure. While the sperm fertilization capability was not affected, morphological alterations (skeletal alterations) in offspring were observed and a positive correlation between sperm DNA damage and offspring quality was reported. This study underlines that a possible spermiotoxic action of ZnO NPs at concentration close to those reported in marine coastal water could occur.
Collapse
Affiliation(s)
- Maria Oliviero
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy; Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - Simona Schiavo
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy; Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - Stefano Dumontet
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | - Sonia Manzo
- Enea CR Portici. P.le E. Fermi, 1, 80055 Portici, Naples, Italy.
| |
Collapse
|
9
|
Valle ML, Dworshak J, Sharma A, Ibrahim AS, Al-Shabrawey M, Sharma S. Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp Eye Res 2018; 178:27-36. [PMID: 30240585 DOI: 10.1016/j.exer.2018.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells. Thus, in conclusion, these results indicate that IL-6 trans-signaling is an important mediator of inflammation, apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the IL-6 trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
Collapse
Affiliation(s)
- Maria L Valle
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Janine Dworshak
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ahmed S Ibrahim
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Al-Shabrawey
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Zalewski PD, Beltrame JF, Wawer AA, Abdo AI, Murgia C. Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 2018; 59:3511-3525. [PMID: 29999409 DOI: 10.1080/10408398.2018.1495614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of the roles of nitric oxide (NO) in cardiovascular signaling has led to a revolution in the understanding of cardiovascular disease. A new perspective to this story involving zinc (Zn) is emerging. Zn and its associated Zn transporter proteins are important for the integrity and functions of both the large conduit vessels and the microvascular resistance vessels. The Zn and NO pathways are tightly coordinated. Zn ions are required for the dimerization of endothelial nitric oxide synthase and subsequent generation of NO while generation of NO leads to a rapid mobilization of endothelial Zn stores. Labile Zn may mediate important downstream actions of NO including vascular cytoprotection and vasodilation. Several vascular disease risk factors (including aging, smoking and diabetes) interfere with Zn homeostatic mechanisms and both hypozincaemia and Zn transporter protein abnormalities are linked to atherosclerosis and microvascular disease. Some vegetarian diets and long-term use of certain anti-hypertensives may also impact on Zn status. The available evidence supports the existence of a Zn regulatory pathway in the vascular wall that is coupled to the generation and actions of NO and which is compromised in Zn deficiency with consequent implications for the pathogenesis and therapy of vascular disease.
Collapse
Affiliation(s)
- P D Zalewski
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - J F Beltrame
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A A Wawer
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - A I Abdo
- Discipline of Medicine, University of Adelaide, The Queen Elizabeth Hospital and the Basil Hetzel Institute for Translational Health Research, Woodville, South Australia
| | - C Murgia
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Inhibitory Effect of Flower-Shaped Zinc Oxide Nanostructures on the Growth and Aflatoxin Production of a Highly Toxigenic Strain of Aspergillus flavus Link. MATERIALS 2018; 11:ma11081265. [PMID: 30042297 PMCID: PMC6117727 DOI: 10.3390/ma11081265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 11/27/2022]
Abstract
Flower-shaped zinc oxide (ZnO) nanostructures were prepared via a simple aqueous precipitation strategy at room temperature. The as-grown nanostructures were characterized by UV–vis spectroscopy, UV–vis diffuse reflectance spectroscopy (DRS), spectrofluorometry, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflection (ATR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). The antifungal and anti-aflatoxigenic activities of the ZnO nanostructures were further investigated using a highly toxigenic strain of Aspergillus flavus Link under in vitro and in situ conditions. The results showed that the A. flavus isolate was inhibited to various extents by different concentrations of ZnO nanostructures, but the best inhibitions occurred at 1.25, 2.5, and 5 mM in the culture media. At these concentrations, suppression of aflatoxin biosynthesis (99.7%) was also observed. Moreover, a reasonable reduction in the aflatoxin content (69%) was observed in maize grains treated with the lowest ZnO concentration that exhibited the strongest inhibitory activity in the liquid media. SEM micrographs clearly indicate multiple degenerative alterations in fungal morphology after treatment with ZnO such as damage of the tubular filaments, loss of hyphae shape, as well as hyphae rupture. These results suggest that flower-shaped ZnO nanostructures exhibit strong antifungal and anti-aflatoxigenic activity with potential applications in the agro-food system.
Collapse
|
12
|
Sudheesh KV, Joseph MM, Philips DS, Samanta A, Kumar Maiti K, Ajayaghosh A. pH-Controlled Nanoparticles Formation and Tracking of Lysosomal Zinc Ions in Cancer Cells by Fluorescent Carbazole-Bipyridine Conjugates. ChemistrySelect 2018. [DOI: 10.1002/slct.201703131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Karivachery V. Sudheesh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Manu M. Joseph
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Divya S. Philips
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Ayappanpillai Ajayaghosh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| |
Collapse
|
13
|
Rani V, Verma Y, Rana K, Rana SVS. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact 2017; 295:84-92. [PMID: 29024620 DOI: 10.1016/j.cbi.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Dimethylnitrosamine (DMN) is a potent hepatotoxic, carcinogenic and mutagenic compound. It induces massive liver cell necrosis and death in experimental animals. Several drugs have been tested in the past for their protective behavior against DMN toxicity. However, it is for the first time that therapeutic intervention of ZnONPs (zinc oxide nanoparticles) has been studied against its toxicity. Present results show that a post treatment of ZnONPs (50 mg/kg) to DMN (2 μl/100 g body weight) treated rats reduces lipid peroxidation, oxidative stress and fibrosis in the liver. It diminishes serum ALT (alanine transaminases), AST (aspartate transaminases) and LDH (lactate dehydrogenase) showing improvement in liver function. Reduced values of proinflammatory cytokines viz. TNF-α and IL-12 also support its protective effects. Histopathological observations also indicate improvement in liver cell morphology. It is postulated that ZnONPs offer protection through selective toxicity to proliferating tissue including adenomatous islands formed in the liver. Zinc metallothionein (Zn-MT) induced by ZnONPs may also contribute in the amelioration of DMN induced toxic effects. Diminution of oxidative stress by ZnONPs remains to be the key mechanism involved in its protective effects. However, toxicity of ZnONPs in the liver needs to be monitored simultaneously.
Collapse
Affiliation(s)
- Varsha Rani
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Yeshvandra Verma
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Kavita Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Suresh Vir Singh Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India.
| |
Collapse
|
14
|
Heng S, Reineck P, Vidanapathirana AK, Pullen BJ, Drumm DW, Ritter LJ, Schwarz N, Bonder CS, Psaltis PJ, Thompson JG, Gibson BC, Nicholls SJ, Abell AD. Rationally Designed Probe for Reversible Sensing of Zinc and Application in Cells. ACS OMEGA 2017; 2:6201-6210. [PMID: 30023765 PMCID: PMC6044982 DOI: 10.1021/acsomega.7b00923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/08/2017] [Indexed: 05/19/2023]
Abstract
Biologically compatible fluorescent ion sensors, particularly those that are reversible, represent a key tool for answering a range of fundamental biological questions. We report a rationally designed probe with a 6'-fluoro spiropyran scaffold (5) for the reversible sensing of zinc (Zn2+) in cells. The 6'-fluoro substituent overcomes several limitations normally associated with spiropyran-based sensors to provide an improved signal-to-background ratio and faster photoswitching times in aqueous solution. In vitro studies were performed with 5 and the 6'-nitro analogues (6) in HEK 293 and endothelial cells. The new spiropyran (5) can detect exogenous Zn2+ inside both cell types and without affecting the proliferation of endothelial cells. Studies were also performed on dying HEK 293 cells, with results demonstrating the ability of the key compound to detect endogenous Zn2+ efflux from cells undergoing apoptosis. Biocompatibility and photoswitching of 5 were demonstrated within endothelial cells but not with 6, suggesting the future applicability of sensor 5 to study intracellular Zn2+ efflux in these systems.
Collapse
Affiliation(s)
- Sabrina Heng
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
- E-mail:
| | - Philipp Reineck
- CNBP, School of Science, RMIT
University, Melbourne, Victoria 3001, Australia
| | - Achini K. Vidanapathirana
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Benjamin J. Pullen
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Daniel W. Drumm
- CNBP, School of Science, RMIT
University, Melbourne, Victoria 3001, Australia
| | - Lesley J. Ritter
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Nisha Schwarz
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Claudine S. Bonder
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Peter J. Psaltis
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Jeremy G. Thompson
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Brant C. Gibson
- CNBP, School of Science, RMIT
University, Melbourne, Victoria 3001, Australia
| | - Stephen J. Nicholls
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| | - Andrew D. Abell
- ARC
Center of Excellence for Nanoscale BioPhotonics (CNBP), Institute
for Photonics and Advanced Sensing (IPAS), Department of Chemistry, CNBP, Heart Health
Theme, South Australian Health and Medical Research Institute and
Adelaide Medicine School, CNBP, IPAS, The Robinson Research Institute, School
of Medicine, and Centre for Cancer Biology, University of South Australia and SA Pathology
& Adelaide Medical School, The University
of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
15
|
Bacchetta R, Santo N, Marelli M, Nosengo G, Tremolada P. Chronic toxicity effects of ZnSO 4 and ZnO nanoparticles in Daphnia magna. ENVIRONMENTAL RESEARCH 2017; 152:128-140. [PMID: 27771567 DOI: 10.1016/j.envres.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The chronic toxicity of ZnSO4 and ZnO nanoparticles has been studied in Daphnia magna also considering the life cycle parameters beyond the standard 21-day exposure time. Specimens have been individually followed until the natural end of their life, and some of them sampled for microscopic analyses at 48h, 9 and 21 days. Despite the low level of exposure (0.3mg Zn/L), ultrastructural analyses of the midgut epithelial cells revealed efficient internalization of nanoparticles between 48h and 9d, and translocation to other tissues as well. At 21d, the most affected fields have been recorded for both compounds; in particular samples exposed to ZnO nanoparticles showed swelling of mitochondria, while those exposed to ZnSO4 had a great number of autophagy vacuoles. The life cycle parameters resulted altered as well, with a significant inhibition of reproduction in both groups, when compared to controls. After the 21-day exposure, some interesting results were obtained: animals, previously exposed to nanoZnO at low concentrations, showed a complete recovery of the full reproduction potential, while those previously exposed to ZnSO4 presented a dose-dependent and compound-specific reduction in lifespan. Based on the results from the present research and the effects of the same chemicals at higher doses, it can be concluded that the soluble form plays a key role in ZnO nanoparticle cytotoxicity, and that the nanoparticulate form is able to locally increase the amount of Zn inside the cell, even within the ovary. It's worth noting that ZnO nanoparticles have been internalized despite the very low concentration used: this raises concern about the possible environmental implications which may derive from their use, and which in turn must be carefully considered.
Collapse
Affiliation(s)
- Renato Bacchetta
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy.
| | - Nadia Santo
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| | - Marcello Marelli
- CNR-ISTM - Istituto di Scienze e Tecnologie Molecolari, Via C. Golgi, 19, I-20133 Milan, Italy
| | - Greta Nosengo
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| | - Paolo Tremolada
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
16
|
Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P. Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. ENVIRONMENTAL RESEARCH 2016; 148:376-385. [PMID: 27131075 DOI: 10.1016/j.envres.2016.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
The role of soluble zinc has been determined in Daphnia magna by a morphological approach, integrating a previous paper in which the ultrastructural damages to gut epithelial cells have been studied after ZnO nanoparticles exposure. In the present paper, the toxicity and morphological effects of soluble zinc from ZnSO4 have been determined in a 48-h acute exposure test. Daphnids have been exposed to six nominal zinc concentrations (0.075, 0.15, 0.3, 0.6, 1.2, and 2.4mg Zn/L) and then fixed for microscopic analyses. Data from the acute toxicity tests gave an EC50 value of 0.99mg/L and showed that no immobilization appeared up to 0.3mg Zn/L. Ultrastructural analyses of samples from the two highest concentrations showed large vacuolar structures, swelling of mitochondria, multilamellar bodies, and a great number of autophagy vacuoles. These findings have been compared to those from our previous study, and similarities and/or differences discussed. Based on the overall results it can be concluded that dissolved zinc ions played a key role in ZnO nanoparticle toxicity and that the morphological approach is an extremely useful tool for comparing toxicological effects as well. A possible common toxic mechanism of soluble zinc and ZnO nanoparticles was also proposed.
Collapse
Affiliation(s)
- Renato Bacchetta
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy.
| | - Barbara Maran
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| | - Marcello Marelli
- CNR - Istituto di Scienze e Tecnologie Molecolari, Via C. Golgi, 19, I-20133 Milan, Italy
| | - Nadia Santo
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| | - Paolo Tremolada
- Department of Life Sciences, Università degli Studi di Milano, Via G. Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
17
|
Liao W, Lai T, Chen L, Fu J, Sreenivasan ST, Yu Z, Ren J. Synthesis and Characterization of a Walnut Peptides-Zinc Complex and Its Antiproliferative Activity against Human Breast Carcinoma Cells through the Induction of Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1509-1519. [PMID: 26878665 DOI: 10.1021/acs.jafc.5b04924] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The walnut peptides and zinc ions were combined to generate a walnut peptides-zinc complex (WP1-Zn) with enhanced antiproliferative ability as well as reduced toxicity. The result indicated that Zn ions were successfully combined with WP1 through Zn-N and Zn-O covalent bonds. WP1-Zn compounds exhibited strong antiproliferative ability against the selected human cell lines, especially MCF-7 cells, whose survival rate reduced to 20.02% after exposure to 300 μg/mL of WP1-Zn for 48 h. WP1-Zn inhibited MCF-7 cell proliferation through inducing cell apoptosis and cell cycle arrest. The results indicated that WP1-Zn induced MCF-7 cell apoptosis via the ROS triggered mitochondrial-mediated pathway and cell surface receptor-mediated pathway. Our work is the first attempt to elucidate the synergic effect of novel walnut peptides and Zn and with the hope of better understanding the antiproliferative action of bioactive peptides and a zinc complex and support the potential application of WP1-Zn as a functional food ingredient or complementary medicine.
Collapse
Affiliation(s)
- Wenzhen Liao
- Department of Food Science and Technology, South China University of Technology , Wushan Road 381, Guangzhou 510640, China
| | - Ting Lai
- Department of Food Science and Technology, South China University of Technology , Wushan Road 381, Guangzhou 510640, China
| | - Luying Chen
- Department of Food Science and Technology, South China University of Technology , Wushan Road 381, Guangzhou 510640, China
| | - Junning Fu
- Department of Food Science and Engineering, Jinan University , Guangzhou 510623, China
| | - Sreeprasad T Sreenivasan
- Department of Civil and Environmental Engineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Zhiqiang Yu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou, Guangdong 510515, China
| | - Jiaoyan Ren
- Department of Food Science and Technology, South China University of Technology , Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|
18
|
Hara H, Taniguchi M, Kobayashi M, Kamiya T, Adachi T. Plasma-activated medium-induced intracellular zinc liberation causes death of SH-SY5Y cells. Arch Biochem Biophys 2015; 584:51-60. [DOI: 10.1016/j.abb.2015.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 01/29/2023]
|
19
|
Patel H, Chen J, Kavdia M. Induced peroxidase and cytoprotective enzyme expressions support adaptation of HUVECs to sustain subsequent H2O2 exposure. Microvasc Res 2015; 103:1-10. [PMID: 26409120 DOI: 10.1016/j.mvr.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/07/2023]
Abstract
H2O2 mediates autocrine and paracrine signaling in the vasculature and can propagate endothelial dysfunction. However, it is not clear how endothelial cells withstand H2O2 exposure and promote H2O2-induced vascular remodeling. To understand the innate ability of endothelial cells for sustaining excess H2O2 exposure, we investigated the genotypic and functional regulation of redox systems in primary HUVECs following an H2O2 treatment. Primary HUVECs were exposed to transient H2O2 exposure and consistent H2O2 exposure. Following H2O2 treatments for 24, 48 and 72 h, we measured O2(-) production, mitochondrial membrane polarization (MMP), and gene expressions of pro-oxidative enzymes, peroxidase enzymes, and cytoprotective intermediates. Our results showed that the 24 h H2O2 exposure significantly increased O2(-) levels, hyperpolarized MMP, and downregulated CAT, GPX1, TXNRD1, NFE2L2, ASK1, and ATF2 gene expression in HUVECs. At 72 h, HUVECs in both treatment conditions were shown to adapt to reduce O2(-) levels and normalize MMP. An upregulation of GPX1, TXNRD1, and HMOX1 gene expression and a recovery of NFE2L2 and PRDX1 gene expression to control levels were observed in both consistent and transient treatments at 48 and 72 h. The response of endothelial cells to excess levels of H2O2 involves a complex interaction amongst O2(-) levels, mitochondrial membrane polarization and anti- and pro-oxidant gene regulation. As a part of this response, HUVECs induce cytoprotective mechanisms including the expression of peroxidase and antioxidant enzymes along with the downregulation of pro-apoptotic genes. This adaptation assists HUVECs to withstand subsequent exposures to H2O2.
Collapse
Affiliation(s)
- Hemang Patel
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| | - Juan Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
20
|
Suman TY, Radhika Rajasree SR, Kirubagaran R. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:23-30. [PMID: 25483368 DOI: 10.1016/j.ecoenv.2014.11.015] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM).
Collapse
Affiliation(s)
- T Y Suman
- Center for Ocean Research (NIOT-SU Collaborative Research Centre), Sathyabama University, Chennai 600119, Tamil Nadu, India
| | - S R Radhika Rajasree
- Center for Ocean Research (NIOT-SU Collaborative Research Centre), Sathyabama University, Chennai 600119, Tamil Nadu, India.
| | - R Kirubagaran
- Marine Biotechnology, ESOO-National Institute of Ocean Technology, OSTI, Pallikaranai, Chennai 600100, India
| |
Collapse
|
21
|
Sun X, Kumar S, Sharma S, Aggarwal S, Lu Q, Gross C, Rafikova O, Lee SG, Dasarathy S, Hou Y, Meadows ML, Han W, Su Y, Fineman JR, Black SM. Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. Am J Respir Cell Mol Biol 2014; 50:1084-95. [PMID: 24392990 DOI: 10.1165/rcmb.2013-0187oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies have indicated that, during the development of pulmonary hypertension (PH), there is a switch from oxidative phosphorylation to glycolysis in the pulmonary endothelium. However, the mechanisms underlying this phenomenon have not been elucidated. Endothelin (ET)-1, an endothelial-derived vasoconstrictor peptide, is increased in PH, and has been shown to play an important role in the oxidative stress associated with PH. Thus, in this study, we investigated whether there was a potential link between increases in ET-1 and mitochondrial remodeling. Our data indicate that ET-1 induces the redistribution of endothelial nitric oxide synthase (eNOS) from the plasma membrane to the mitochondria in pulmonary arterial endothelial cells, and that this was dependent on eNOS uncoupling. We also found that ET-1 disturbed carnitine metabolism, resulting in the attenuation of mitochondrial bioenergetics. However, ATP levels were unchanged due to a compensatory increase in glycolysis. Further mechanistic investigations demonstrated that ET-1 mediated the redistribution of eNOS via the phosphorylation of eNOS at Thr495 by protein kinase C δ. In addition, the glycolytic switch appeared to be dependent on mitochondrial-derived reactive oxygen species that led to the activation of hypoxia-inducible factor signaling. Finally, the cell culture data were confirmed in vivo using the monocrotaline rat model of PH. Thus, we conclude that ET-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the redistribution of uncoupled eNOS to the mitochondria, and that preventing this event may be an approach for the treatment of PH.
Collapse
Affiliation(s)
- Xutong Sun
- 1 Pulmonary Disease Program, Vascular Biology Center, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sankavaram K, Chong L, Bruno RS, Freake HC. Zinc Status Alters Growth and Oxidative Stress Responses in Rat Hepatoma Cells. Nutr Cancer 2013; 66:104-16. [DOI: 10.1080/01635581.2014.851713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Sharma S, Aramburo A, Rafikov R, Sun X, Kumar S, Oishi PE, Datar SA, Raff G, Xoinis K, Kalkan G, Fratz S, Fineman JR, Black SM. L-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr Res 2013; 74:39-47. [PMID: 23628882 PMCID: PMC3709010 DOI: 10.1038/pr.2013.71] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND In our model of a congenital heart defect (CHD) with increased pulmonary blood flow (PBF; shunt), we have recently shown a disruption in carnitine homeostasis, associated with mitochondrial dysfunction and decreased endothelial nitric oxide synthase (eNOS)/heat shock protein (Hsp)90 interactions that contribute to eNOS uncoupling, increased superoxide levels, and decreased bioavailable nitric oxide (NO). Therefore, we undertook this study to test the hypothesis that L-carnitine therapy would maintain mitochondrial function and NO signaling. METHODS Thirteen fetal lambs underwent in utero placement of an aortopulmonary graft. Immediately after delivery, lambs received daily treatment with oral L-carnitine or its vehicle. RESULTS L-Carnitine-treated lambs had decreased levels of acylcarnitine and a reduced acylcarnitine:free carnitine ratio as compared with vehicle-treated shunt lambs. These changes correlated with increased carnitine acetyl transferase (CrAT) protein and enzyme activity and decreased levels of nitrated CrAT. The lactate:pyruvate ratio was also decreased in L-carnitine-treated lambs. Hsp70 protein levels were significantly decreased, and this correlated with increases in eNOS/Hsp90 interactions, NOS activity, and NOx levels, and a significant decrease in eNOS-derived superoxide. Furthermore, acetylcholine significantly decreased left pulmonary vascular resistance only in L-carnitine-treated lambs. CONCLUSION L-Carnitine therapy may improve the endothelial dysfunction noted in children with CHDs and has important clinical implications that warrant further investigation.
Collapse
Affiliation(s)
- Shruti Sharma
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Angela Aramburo
- Department of Pediatrics, University of California, San Francisco CA,Department of Pediatrics, University Autonomous Barcelona, Spain
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Xutong Sun
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Sanjiv Kumar
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| | - Peter E. Oishi
- Department of Pediatrics, University of California, San Francisco CA,Cardiovascular Research Institute, University of California, San Francisco CA
| | - Sanjeev A. Datar
- Department of Pediatrics, University of California, San Francisco CA
| | - Gary Raff
- Department of Cardiothoracic Surgery, University of California, Davis CA
| | - Kon Xoinis
- Department of Pediatrics, University of California, San Francisco CA
| | - Gohkan Kalkan
- Department of Pediatrics, University of California, San Francisco CA
| | - Sohrab Fratz
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California, San Francisco CA,Cardiovascular Research Institute, University of California, San Francisco CA
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta GA 30912
| |
Collapse
|
24
|
Sun X, Sharma S, Fratz S, Kumar S, Rafikov R, Aggarwal S, Rafikova O, Lu Q, Burns T, Dasarathy S, Wright J, Schreiber C, Radman M, Fineman JR, Black SM. Disruption of endothelial cell mitochondrial bioenergetics in lambs with increased pulmonary blood flow. Antioxid Redox Signal 2013; 18:1739-52. [PMID: 23244702 PMCID: PMC3619212 DOI: 10.1089/ars.2012.4806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS The mitochondrial dysfunction in our lamb model of congenital heart disease with increased pulmonary blood flow (PBF) (Shunt) is associated with disrupted carnitine metabolism. Our recent studies have also shown that asymmetric dimethylarginine (ADMA) levels are increased in Shunt lambs and ADMA increases the nitration of mitochondrial proteins in lamb pulmonary arterial endothelial cells (PAEC) in a nitric oxide synthase (NOS)-dependent manner. Thus, we determined whether there was a mechanistic link between endothelial nitric oxide synthase (eNOS), ADMA, and the disruption of carnitine homeostasis in PAEC. RESULTS Exposure of PAEC to ADMA induced the redistribution of eNOS to the mitochondria, resulting in an increase in carnitine acetyl transferase (CrAT) nitration and decreased CrAT activity. The resulting increase in acyl-carnitine levels resulted in mitochondrial dysfunction and the disruption of mitochondrial bioenergetics. Since the addition of L-arginine prevented these pathologic changes, we examined the effect of L-arginine supplementation on carnitine homeostasis, mitochondrial function, and nitric oxide (NO) signaling in Shunt lambs. We found that the treatment of Shunt lambs with L-arginine prevented the ADMA-mediated mitochondrial redistribution of eNOS, the nitration-mediated inhibition of CrAT, and maintained carnitine homeostasis. In turn, adenosine-5'-triphosphate levels and eNOS/heat shock protein 90 interactions were preserved, and this decreased NOS uncoupling and enhanced NO generation. INNOVATION Our data link alterations in cellular L-arginine metabolism with the disruption of mitochondrial bioenergetics and implicate altered carnitine homeostasis as a key player in this process. CONCLUSION L-arginine supplementation may be a useful therapy to prevent the mitochondrial dysfunction involved in the pulmonary vascular alterations secondary to increased PBF.
Collapse
Affiliation(s)
- Xutong Sun
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee WM, An YJ. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. CHEMOSPHERE 2013; 91:536-44. [PMID: 23357865 DOI: 10.1016/j.chemosphere.2012.12.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 11/28/2012] [Accepted: 12/08/2012] [Indexed: 05/23/2023]
Abstract
Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights.
Collapse
Affiliation(s)
- Woo-Mi Lee
- Department of Environmental Science, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
26
|
Rafikova O, Rafikov R, Kumar S, Sharma S, Aggarwal S, Schneider F, Jonigk D, Black SM, Tofovic SP. Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonary hypertension. Free Radic Biol Med 2013; 56:28-43. [PMID: 23200808 PMCID: PMC3749888 DOI: 10.1016/j.freeradbiomed.2012.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/17/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.
Collapse
Affiliation(s)
- Olga Rafikova
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Sanjiv Kumar
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Saurabh Aggarwal
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Frank Schneider
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Stevan P. Tofovic
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
27
|
Abstract
After iron, zinc is the most abundant essential trace metal. Intracellular zinc ([Zn]i) is maintained across a wide range of cells and species in a tight quota (100 to 500 μM) by a dynamic process of transport, intracellular vesicular storage, and binding to a large number of proteins (estimated at 3-10% of human proteome). As such, zinc is an integral component of numerous metalloenzymes, structural proteins, and transcription factors. It is generally assumed that a vanishingly small component of [Zn]i, referred to as free or labile zinc, and operationally defined as the pool sensitive to chelation (by agents such as N, N, N’, N’-tetrakis [2-pyridylmethyl] ethylenediamine [TPEN]) and capable of detection by a variety of chemical and genetic sensors, participates in signal transduction pathways. Zinc deficiencies, per se, can arise from acquired (malnutrition, alcoholism) or genetic (mutations in molecules affecting zinc homeostasis, the informative and first example being acrodermatitis enteropathica) factors or as a component of various diseases (e.g., sickle cell disease, cystic fibrosis, sepsis). Hypozincemia has profound effects on developing humans, and all facets of physiological function (neuronal, endocrine, immunological) are affected, although considerably less is known regarding cardiovascular pathophysiology. In this review, we provide an update on current knowledge of molecular and cellular aspects of zinc homeostasis and then focus on implications of zinc signaling in pulmonary endothelium as it relates to programmed cell death, altered contractility, and septic and aseptic injury to this segment of the lung.
Collapse
Affiliation(s)
- Kalidasan Thambiayya
- Department of Bioengineering, University of Pittsburgh and University of Pittsburgh School of Medicine and Graduate School Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
28
|
Single and Combined Cytotoxicity Research of Propiconazole and Nano-zinc Oxide on the NIH/3T3 Cell. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Abstract
BACKGROUND Pulmonary vascular function is impaired with increased pulmonary blood flow (PBF). We hypothesized that a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist would mitigate this effect. METHODS An aorta-to-pulmonary-artery shunt was placed in 11 fetal lambs. Lambs received the PPAR-γ agonist rosiglitazone (RG, 3 mg/kg/d, n = 6) or vehicle (n = 5) for 4 wk. Lung tissue from five normal 4-wk-old lambs was used for comparisons. RESULTS At 4 wk, pulmonary artery pressure (PAP) and vascular resistance (PVR) decreased with inhaled nitric oxide (NO) in RG- and vehicle-treated shunt lambs. PAP and PVR decreased with acetylcholine (Ach) in RG-treated, but not vehicle-treated, shunt lambs. In vehicle-treated shunt lambs, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, rac1, superoxide, and 3-nitrotyrosine (3-NT) levels were increased, and Ser1177 endothelial NO synthase (eNOS) protein was decreased as compared with normal lambs. In RG-treated shunt lambs, NOx, Ser1177 eNOS protein, and eNOS activity were increased, and NADPH activity, rac1, superoxide levels, and 3-NT levels were decreased, as compared with vehicle-treated shunt lambs. PPAR-γ protein expression was lower in vehicle-treated shunt lambs than in normal and RG-treated shunt lambs. CONCLUSION The PPAR-γ agonist RG prevents the loss of agonist-induced endothelium-dependent pulmonary vascular relaxation in lambs with increased PBF, in part, due to decreased oxidative stress and/or increased NO production.
Collapse
|
30
|
Sharma S, Sun X, Rafikov R, Kumar S, Hou Y, Oishi PE, Datar SA, Raff G, Fineman JR, Black SM. PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow. PLoS One 2012; 7:e41555. [PMID: 22962578 PMCID: PMC3433474 DOI: 10.1371/journal.pone.0041555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022] Open
Abstract
Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.
Collapse
Affiliation(s)
- Shruti Sharma
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yin Y, Lin Q, Sun H, Chen D, Wu Q, Chen X, Li S. Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells. NANOSCALE RESEARCH LETTERS 2012; 7:439. [PMID: 22873432 PMCID: PMC3434107 DOI: 10.1186/1556-276x-7-439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/02/2012] [Indexed: 05/11/2023]
Abstract
The alteration in intracellular Zn2+ homeostasis is attributed to the generation of intracellular reactive oxygen species, which subsequently results in oxidative damage of organelles and cell apoptosis. In this work, the neurotoxic effects of ZnO hierarchical architectures (nanoparticles and microspheres, the prism-like and flower-like structures) were evaluated through the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay using RSC96 Schwann cells as the model. Cell apoptosis and cell cycle were detected using flow cytometry. The concentration of Zn2+ in the culture media was monitored using atomic absorption spectrometry. The results show that ZnO nanoparticles and microspheres displayed significant cytotoxic effects on RSC96 Schwann cells in dose- and time-dependent manners, whereas no or low cytotoxic effect was observed when the cells were treated with the prism-like and flower-like ZnO. A remarkable cell apoptosis and G2/M cell cycle arrest were observed when RSC96 Schwann cells were exposed to ZnO nanoparticles and microspheres at a dose of 80 μg/mL for 12 h. The time-dependent increase of Zn2+ concentration in the culture media suggests that the cytotoxic effects were associated with the decomposition of ZnO hierarchical architecture and the subsequent release of Zn2+. These results provide new insights into the cytotoxic effects of complex ZnO architectures, which could be prominently dominated by nanoscale building blocks.
Collapse
Affiliation(s)
- Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Qiang Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Haiming Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Dan Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Qingzhi Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Xiaohui Chen
- Department of Prosthetic, School of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
32
|
Sharma S, Sun X, Kumar S, Rafikov R, Aramburo A, Kalkan G, Tian J, Rehmani I, Kallarackal S, Fineman JR, Black SM. Preserving mitochondrial function prevents the proteasomal degradation of GTP cyclohydrolase I. Free Radic Biol Med 2012; 53:216-29. [PMID: 22583703 PMCID: PMC3527085 DOI: 10.1016/j.freeradbiomed.2012.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 12/30/2022]
Abstract
The development of pulmonary hypertension is a common accompaniment of congenital heart disease (CHD) with increased pulmonary blood flow. Our recent evidence suggests that asymmetric dimethylarginine (ADMA)-induced mitochondrial dysfunction causes endothelial nitric oxide synthase (eNOS) uncoupling secondary to a proteasome-dependent degradation of GTP cyclohydrolase I (GCH1) that results in a decrease in the NOS cofactor tetrahydrobiopterin (BH(4)). Decreases in NO signaling are thought to be an early hallmark of endothelial dysfunction. As l-carnitine plays an important role in maintaining mitochondrial function, in this study we examined the protective mechanisms and the therapeutic potential of l-carnitine on NO signaling in pulmonary arterial endothelial cells and in a lamb model of CHD and increased pulmonary blood flow (Shunt). Acetyl-l-carnitine attenuated the ADMA-mediated proteasomal degradation of GCH1. This preservation was associated with a decrease in the association of GCH1 with Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) and a decrease in its ubiquitination. This in turn prevented the decrease in BH(4) levels induced by ADMA and preserved NO signaling. Treatment of Shunt lambs with l-carnitine also reduced GCH1/CHIP interactions, attenuated the ubiquitination and degradation of GCH1, and increased BH(4) levels compared to vehicle-treated Shunt lambs. The increases in BH(4) were associated with decreased NOS uncoupling and enhanced NO generation. Thus, we conclude that L-carnitine may have a therapeutic potential in the treatment of pulmonary hypertension in children with CHD with increased pulmonary blood flow.
Collapse
Affiliation(s)
- Shruti Sharma
- Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 2012; 4:676-94. [PMID: 22852057 PMCID: PMC3407988 DOI: 10.3390/nu4070676] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination.
Collapse
|
34
|
Zhang J, Song W, Guo J, Zhang J, Sun Z, Ding F, Gao M. Toxic effect of different ZnO particles on mouse alveolar macrophages. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:148-155. [PMID: 22521135 DOI: 10.1016/j.jhazmat.2012.03.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
To study the toxicity mechanism of ZnO nanoparticles on mouse macrophages, the toxic effect of different ZnO nanoparticles on mouse alveolar macrophages (MH-S) was investigated in this study. The results showed that the 24h IC(50) of four ZnO particles were 48.53, 47.37, 45.43 and 26.74 μg/ml for bulk ZnO, 100 nm, 30 nm and 10-30 nm ZnO particles, respectively. At the concentration of 10 μg/ml and below, dissolved zinc ions induced metallothionein synthesis, enhanced cellular resistance to oxidative stress. ZnO particles mainly induced cell apoptosis. When the concentration of ZnO particles was 20 μg/ml and above, excessive zinc destroyed mitochondrial function and cell membrane, caused cell necrosis. Dissolved zinc ions first cause toxicity in MH-S cells. However, the toxic effect of dissolved zinc ions may exist a threshold on mouse macrophages, inducing about 50% cell death. The toxic difference of different ZnO particles mainly depended on the effect of nondissolved ZnO particles.
Collapse
Affiliation(s)
- Jinyang Zhang
- College of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Guo J, Song W, Ding F, Zhang J, Sun Z. Study on cytotoxicity and structure-activity relationship of HL-7702 cell exposed to naphthoquinones. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:408-413. [PMID: 22387353 DOI: 10.1016/j.etap.2012.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/19/2011] [Accepted: 01/20/2012] [Indexed: 05/31/2023]
Abstract
The acute cytotoxicities of six naphthoquinone compounds, including Atovaquone, Buparvaquone, Menadione, 2-acetoxy-1,4-naphthoquinone and 2-ethoxy-1,4-naphthoquinone, to HL-7702 cells were determined. The results showed that the toxicities of these naphthoquinones were characterized by a steep response pattern except for 2-hydroxy-1,4-naphthoquinone. Meanwhile, the cellular injuries were unrecoverable. Several molecular descriptors, such as the octanol-water partition coefficients (LogP), diameter (Dia) and topological index (TIndx), played an important role in the toxicity of naphthoquinones to HL-7702 cell. Our results provide a foundation for further investigation using 3D-QSAR and HQSAR to evaluate the aquatic ecological risk and the possible mechanisms of toxicity of naphthoquinones.
Collapse
Affiliation(s)
- Jing Guo
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Xiqing District, Tianjin, China
| | | | | | | | | |
Collapse
|
36
|
Lu Q, Rau TF, Harris V, Johnson M, Poulsen DJ, Black SM. Increased p38 mitogen-activated protein kinase signaling is involved in the oxidative stress associated with oxygen and glucose deprivation in neonatal hippocampal slice cultures. Eur J Neurosci 2011; 34:1093-101. [PMID: 21939459 DOI: 10.1111/j.1460-9568.2011.07786.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pathological basis of neonatal hypoxia-ischemia (HI) brain damage is characterized by neuronal cell loss. Oxidative stress is thought to be one of the main causes of HI-induced neuronal cell death. The p38 mitogen-activated protein kinase (MAPK) is activated under conditions of cell stress. However, its pathogenic role in regulating the oxidative stress associated with HI injury in the brain is not well understood. Thus, this study was conducted to examine the role of p38 MAPK signaling in neonatal HI brain injury using neonatal rat hippocampal slice cultures exposed to oxygen/glucose deprivation (OGD). Our results indicate that OGD led to a transient increase in p38 MAPK activation that preceded increases in superoxide generation and neuronal death. This increase in neuronal cell death correlated with an increase in the activation of caspase-3 and the appearance of apoptotic neuronal cells. Pre-treatment of slice cultures with the p38 MAPK inhibitor, SB203580, or the expression of an antisense p38 MAPK construct only in neuronal cells, through a Synapsin I-1-driven adeno-associated virus vector, inhibited p38 MAPK activity and exerted a neuroprotective effect as demonstrated by decreases in OGD-mediated oxidative stress, caspase activation and neuronal cell death. Thus, we conclude that the activation of p38 MAPK in neuronal cells plays a key role in the oxidative stress and neuronal cell death associated with OGD.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 2011; 210:271-84. [PMID: 21642378 PMCID: PMC3326601 DOI: 10.1530/joe-11-0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rather than being a constitutive enzyme as was first suggested, endothelial nitric oxide synthase (eNOS) is dynamically regulated at the transcriptional, posttranscriptional, and posttranslational levels. This review will focus on how changes in eNOS function are conferred by various posttranslational modifications. The latest knowledge regarding eNOS targeting to the plasma membrane will be discussed as the role of protein phosphorylation as a modulator of catalytic activity. Furthermore, new data are presented that provide novel insights into how disruption of the eNOS dimer prevents eNOS uncoupling and the production of superoxide under conditions of elevated oxidative stress and identifies a novel regulatory region we have termed the 'flexible arm'.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center: CB-3211B, Georgia Health Sciences University, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Thambiayya K, Wasserloos KJ, Huang Z, Kagan VE, St Croix CM, Pitt BR. LPS-induced decrease in intracellular labile zinc, [Zn]i, contributes to apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L624-32. [PMID: 21239534 DOI: 10.1152/ajplung.00376.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A role in signal transduction for a vanishingly small labile pool of intracellular zinc ([Zn](i)) has been inferred by the sensitivity of various physiological pathways to zinc chelators such as N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and/or associations with changes in nonprotein-bound zinc-sensitive fluorophores. Although we (44) reported that LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC) was exacerbated by TPEN, 1) we did not detect acute (30 min) changes in [Zn](i), and 2) it is unclear from other reports whether LPS increases or decreases [Zn](i) and whether elevations or decreases in [Zn](i) are associated with cell death and/or apoptosis. In the present study, we used both chemical (FluoZin-3 via live cell epifluorescence microscopy and fluorescence-activated cell sorting) and genetic (luciferase activity of a chimeric reporter encoding zinc-sensitive metal-response element and changes in steady-state mRNA of zinc importer, SLC39A14 or ZIP14) techniques to show that LPS caused a delayed time-dependent (2-4 h) decrease in [Zn](i) in SPAEC. A contributory role of decreases in [Zn](i) in LPS-induced apoptosis (as determined by caspase-3/7 activation, annexin-V binding, and cytochrome c release) in SPAECs was revealed by mimicking the effect of LPS with the zinc chelator, TPEN, and inhibiting LPS- (or TPEN)-induced apoptosis with exogenous zinc. Collectively, these are the first data demonstrating a signaling role for decrease in [Zn](i) in pulmonary endothelial cells and suggest that endogenous levels of labile zinc may affect sensitivity of pulmonary endothelium to the important and complex proapoptotic stimulus of LPS.
Collapse
Affiliation(s)
- Kalidasan Thambiayya
- Department of Bioengineering, University of Pittsburgh and Universityof Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
39
|
Martorano LM, Stork CJ, Li YV. UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes. J Cosmet Dermatol 2010; 9:276-86. [DOI: 10.1111/j.1473-2165.2010.00521.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal 2010; 13:1549-73. [PMID: 20568953 DOI: 10.1089/ars.2010.3111] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.
Collapse
Affiliation(s)
- Meika Foster
- Discipline of Nutrition and Metabolism, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
41
|
Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 2010; 199:389-97. [PMID: 20934491 DOI: 10.1016/j.toxlet.2010.10.003] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 01/22/2023]
Abstract
With large-scale production and wide application of nanoscale ZnO, its health hazard has attracted extensive worldwide attention. In this study, cytotoxicity of different sized and shaped ZnO nanoparticles in mouse macrophage Ana-1 was investigated. And contribution of dissolved Zn(2+) and ROS in toxicity of ZnO particles was analyzed. The results indicated that ZnO particles manifested dose-dependent toxic effect on Ana-1 cells without size-dependence, and the particles shape may impact cytotoxicity of ZnO particles. When the concentration of dissolved Zn(2+) tended to equilibrium in the complete cell medium, the zinc ion concentration was approximately 10 μg/ml, inducing about 50% cell death, which was close to the cytotoxicity of ZnCl(2) (IC(50)=13.33 μg Zn/ml). The Zn(2+) concentration had significant correlations with cell viability and LDH level induced by the supernatant of ZnO particle suspensions (incubation at 37°C for 24h). Thus, the dissolved Zn(2+) played the main role in toxic effect of ZnO particles. Moreover, ROS generation assays demonstrated that ZnO particles produced intrinsically a small quantity of ROS, intracellular ROS was mainly produced after ZnO particles or the dissolved Zn(2+) entered into the cells. Although intracellular ROS had significant correlations with cell viability and LDH induced by ZnO particles, intracellular ROS may not be a major factor in cytotoxicity of ZnO nanoparticles, but the cytotoxic response.
Collapse
|
42
|
Conway DE, Lee S, Eskin SG, Shah AK, Jo H, McIntire LV. Endothelial metallothionein expression and intracellular free zinc levels are regulated by shear stress. Am J Physiol Cell Physiol 2010; 299:C1461-7. [PMID: 20861469 DOI: 10.1152/ajpcell.00570.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We examined the effects of fluid shear stress on metallothionein (MT) gene and protein expression and intracellular free zinc in mouse aorta and in human umbilical vein endothelial cells (HUVECs). Immunostaining of the endothelial surface of mouse aorta revealed increased expression of MT protein in the lesser curvature of the aorta relative to the descending thoracic aorta. HUVECs were exposed to high steady shear stress (15 dyn/cm(2)), low steady shear stress (1 dyn/cm(2)), or reversing shear stress (mean of 1 dyn/cm(2), 1 Hz) for 24 h. Gene expression of three MT-1 isoforms, MT-2A, and zinc transporter-1 was upregulated by low steady shear stress and reversing shear stress. HUVECs exposed to 15 dyn/cm(2) had increased levels of free zinc compared with cells under other shear stress regimes and static conditions. The increase in free zinc was partially blocked with an inhibitor of nitric oxide synthesis, suggesting a role for shear stress-induced endothelial nitric oxide synthase activity. Cells subjected to reversing shear stress in zinc-supplemented media (50 μM ZnSO(4)) had increased intracellular free zinc, reduced surface intercellular adhesion molecule-1 expression, and reduced monocyte adhesion compared with cells exposed to reversing shear stress in normal media. The sensitivity of intracellular free zinc to differences in shear stress suggests that intracellular zinc levels are important in the regulation of the endothelium and in the progression of vascular disease.
Collapse
Affiliation(s)
- Daniel E Conway
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332-0535, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 2010; 182:1398-409. [PMID: 20639441 DOI: 10.1164/rccm.201002-0185oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Although inhalation of zinc oxide (ZnO) nanoparticles (NPs) is known to cause systemic disease (i.e., metal fume fever), little is known about mechanisms underlying injury to alveolar epithelium. OBJECTIVES Investigate ZnO NP-induced injury to alveolar epithelium by exposing primary cultured rat alveolar epithelial cell monolayers (RAECMs) to ZnO NPs. METHODS RAECMs were exposed apically to ZnO NPs or, in some experiments, to culture fluid containing ZnCl₂ or free Zn released from ZnO NPs. Transepithelial electrical resistance (R(T)) and equivalent short-circuit current (I(EQ)) were assessed as functions of concentration and time. Morphologic changes, lactate dehydrogenase release, cell membrane integrity, intracellular reactive oxygen species (ROS), and mitochondrial activity were measured. MEASUREMENTS AND MAIN RESULTS Apical exposure to 176 μg/ml ZnO NPs decreased R(T) and I(EQ) of RAECMs by 100% over 24 hours, whereas exposure to 11 μg/ml ZnO NPs had little effect. Changes in R(T) and I(EQ) caused by 176 μg/ml ZnO NPs were irreversible. ZnO NP effects on R(T) yielded half-maximal concentrations of approximately 20 μg/ml. Apical exposure for 24 hours to 176 μg/ml ZnO NPs induced decreases in mitochondrial activity and increases in lactate dehydrogenase release, permeability to fluorescein sulfonic acid, increased intracellular ROS, and translocation of ZnO NPs from apical to basolateral fluid (most likely across injured cells and/or damaged paracellular pathways). CONCLUSIONS ZnO NPs cause severe injury to RAECMs in a dose- and time-dependent manner, mediated, at least in part, by free Zn released from ZnO NPs, mitochondrial dysfunction, and increased intracellular ROS.
Collapse
Affiliation(s)
- Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kumar S, Sun X, Wiseman DA, Tian J, Umapathy NS, Verin AD, Black SM. Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of Sp1 activity. DNA Cell Biol 2010; 28:119-29. [PMID: 19105596 DOI: 10.1089/dna.2008.0775] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that endothelial nitric oxide synthase (eNOS) promoter activity is decreased in endothelial cells in response to the addition of hydrogen peroxide (H(2)O(2)), and this involves, at least in part, the inhibition of AP-1 activity. Thus, the objective of this study was to determine if other cis-element(s) and transcription factor(s) are involved in the oxidant-mediated downregulation of eNOS. Our initial experiments indicated that although H(2)O(2) treatment increased eNOS mRNA levels in ovine pulmonary arterial endothelial cells (OPAECs), there was a significant decrease in the promoter activity of an eNOS promoter construct containing 840 bp of upstream sequence. However, a truncated promoter construct that lacked the AP-1 element (650 bp) was also inhibited by H(2)O(2). A similar effect was observed when the 650 bp human eNOS promoter construct was transfected into human PAECs. We also found that although exposure of the cells to PEG-catalase prevented the inhibitory effect on eNOS promoter activity, the hydroxyl radical scavenger, deferoxamine myslate, did not. Nor could we identify an increase in hydroxyl radical levels in cells exposed to H(2)O(2). Exposure of PAECs caused a significant increase in labile zinc levels in response to H(2)O(2). As the eNOS promoter has a cis-element for Sp1 binding, we evaluated the role of Sp1 in response to H(2)O(2). As previously reported, mutation of the Sp1 consensus lead to the complete loss of eNOS promoter activity, confirming the key role of Sp1 in regulating basal eNOS promoter activity. In addition, we found, using electrophoretic mobility and supershift assays, that H(2)O(2) decreased Sp1 binding. Finally, using chromatin immunoprecipitation analysis, we found a significant decrease in Sp1 binding to the eNOS promoter in vivo in response to treatment with H(2)O(2). Together, these data suggest that the inhibition of Sp1 activity, possibly through loss of zinc in the protein, plays a role in the H(2)O(2)-induced inhibition of eNOS promoter activity.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hsu JH, Oishi P, Wiseman DA, Hou Y, Chikovani O, Datar S, Sajti E, Johengen MJ, Harmon C, Black SM, Fineman JR. Nitric oxide alterations following acute ductal constriction in the fetal lamb: a role for superoxide. Am J Physiol Lung Cell Mol Physiol 2010; 298:L880-7. [PMID: 20363848 DOI: 10.1152/ajplung.00384.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial abrupt increase in pulmonary blood flow (PBF), which is followed by a significant reduction in PBF to baseline values over the ensuing 2-4 h. We have previously demonstrated that this potent vasoconstricting response is due, in part, to an endothelin-1 (ET-1)-mediated decrease in nitric oxide synthase (NOS) activity. In addition, in vitro data demonstrate that ET-1 increases superoxide levels in pulmonary arterial smooth muscle cells and that oxidative stress alters NOS activity. Therefore, the objectives of this study were to determine the potential role of superoxide in the alterations of hemodynamics and NOS activity following acute ductal constriction in the late-gestation fetal lamb. Eighteen anesthetized near-term fetal lambs were instrumented, and a lung biopsy was performed. After a 48-h recovery, acute constriction of the DA was performed by inflating a vascular occluder. Polyethylene glycol-superoxide dismutase (PEG-SOD; 1,000-1,500 units/kg, n = 7) or PEG-alone (vehicle control group, n = 5) was injected into the pulmonary artery before ductal constriction. Six animals had a sham operation. In PEG-alone-treated lambs, acute ductal constriction rapidly decreased pulmonary vascular resistance (PVR) by 88%. However, by 4 h, PVR returned to preconstriction baseline. This vasoconstriction was associated with an increase in lung superoxide levels (82%), a decrease in total NOS activity (50%), and an increase in P-eNOS-Thr495 (52%) (P < 0.05). PEG-SOD prevented the increase of superoxide after ductal constriction, attenuated the vasoconstriction, preserved NOS activity, and increased P-eNOS Ser1177 (307%, P < 0.05). Sham procedure induced no changes. These data suggest that an acute decrease in NOS activity that is mediated, in part, by increased superoxide levels, and alterations in the phosphorylation status of the endothelial NOS isoform, underlie the pulmonary vascular response to acute ductal constriction.
Collapse
Affiliation(s)
- Jong-Hau Hsu
- Department of Pediatrics, University of California, San Francisco, California 94143-0106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dranka BP, Hill BG, Darley-Usmar VM. Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radic Biol Med 2010; 48:905-14. [PMID: 20093177 PMCID: PMC2860730 DOI: 10.1016/j.freeradbiomed.2010.01.015] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/10/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
The endothelium is not considered to be a major energy-requiring organ, but nevertheless endothelial cells have an extensive mitochondrial network. This suggests that mitochondrial function may be important in response to stress and signaling in these cells. In this study, we used extracellular flux analysis to measure mitochondrial function in adherent bovine aortic endothelial cells (BAEC). Under basal conditions, BAEC use only approximately 35% of their maximal respiratory capacity. We calculate that this represents an intermediate respiratory state between States 3 and 4, which we define as State(apparent) equal to 3.64. Interestingly, the apparent respiratory control ratio (maximal mitochondrial oxygen consumption/non-ADP-linked respiration) in these cells is on the order of 23, which is substantially higher than that which is frequently obtained with isolated mitochondria. These results suggest that mitochondria in endothelial cells are highly coupled and possess a considerable bioenergetic reserve. Because endothelial cells are exposed to both reactive oxygen (ROS) and reactive nitrogen species in the course of vascular disease, we hypothesized that this reserve capacity is important in responding to oxidative stress. To test this, we exposed BAEC to NO or ROS alone or in combination. We found that exposure to nontoxic concentrations of NO or low levels of hydrogen peroxide generated from 2,3-dimethoxy-1,4-napthoquinone (DMNQ) had little impact on basal mitochondrial function but both treatments reversibly decreased mitochondrial reserve capacity. However, combined NO and DMNQ treatment resulted in an irreversible loss of reserve capacity and was associated with cell death. These data are consistent with a critical role for the mitochondrial reserve capacity in endothelial cells in responding to oxidative stress.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
47
|
The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation--potential role for a reduction in reactive oxygen species generation. Crit Care Med 2010; 38:871-8. [PMID: 20081530 DOI: 10.1097/ccm.0b013e3181cdf725] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required. DESIGN Prospective, randomized laboratory investigation. SETTING University-affiliated laboratory. SUBJECTS Adult female rats. INTERVENTIONS Tuberoinfundibular peptide, mimicking the lectin-like domain of tumor necrosis factor, mutant TIP peptide, N,N'-diacetylchitobiose/TIP peptide, and amiloride/TIP peptide were instilled intratracheally in the left lung immediately before the isotransplantation was performed. An additional group received an intravenous TIP peptide treatment, 1.5 mins before transplantation. Studies using isolated rat type II alveolar epithelial cell monolayers and ovine pulmonary endothelial cells were also performed. MEASUREMENTS AND MAIN RESULTS Intratracheal pretreatment of the transplantable left lung with the TIP peptide, but not with an inactive mutant TIP peptide, resulted in significantly improved oxygenation 24 hrs after transplantation. This treatment led to a significantly reduced neutrophil content in the lavage fluid. Both the effects on oxygenation and neutrophil infiltration were inhibited by the epithelial sodium channel blocker amiloride. The TIP peptide blunted reactive oxygen species production in pulmonary artery endothelial cells under hypoxia and reoxygenation and reduced reactive oxygen species content in the transplanted rat lungs in vivo. Ussing chamber experiments using monolayers of primary type II rat pneumocytes indicated that the primary site of action of the peptide was on the apical side of these cells. CONCLUSIONS These data demonstrate that the TIP peptide significantly improves lung function after lung transplantation in the rat, in part, by reducing neutrophil content and reactive oxygen species generation. These studies suggest that the TIP peptide is a potential therapeutic agent against the ischemia reperfusion injury associated with lung transplantation.
Collapse
|
48
|
Wiseman DA, Sharma S, Black SM. Elevated zinc induces endothelial apoptosis via disruption of glutathione metabolism: role of the ADP translocator. Biometals 2009; 23:19-30. [PMID: 19768661 DOI: 10.1007/s10534-009-9263-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 08/13/2009] [Indexed: 11/28/2022]
Abstract
Zinc is the second-most abundant transition metal within cells and an essential micronutrient. Although adequate zinc is essential for cellular function, intracellular free zinc (Zn(2+)) is tightly controlled, as sustained increases in free Zn(2+) levels can directly contribute to apoptotic endothelial cell death. Moreover, exposure of endothelial cells to acute nitrosative and/or oxidative stress induces a rapid rise of Zn(2+) with mitochondrial dysfunction and the initiation of apoptosis. This apoptotic induction can be mimicked through addition of exogenous ZnCl(2) and mitigated by zinc-chelation strategies, indicating Zn(2+)-dependent mechanisms in this process. However, the molecular mechanisms of Zn(2+)-mediated mitochondrial dysfunction are unknown. Here we report that free Zn(2+) disrupts cellular redox status through inhibition of glutathione reductase, and induces apoptosis by redox-mediated inhibition of the mitochondrial adenine nucleotide transporter (ANT). Inhibition of ANT causes increased mitochondrial oxidation, loss of ADP uptake, mitochondrial translocation of bax, and apoptosis. Interestingly, pre-incubation with glutathione ethyl ester protects endothelial cells from these observed effects. We conclude that key mechanisms of Zn(2+)-mediated apoptotic induction include disruption of cellular glutathione homeostasis leading to ANT inhibition and decreases in mitochondrial ATP synthesis. These pathways could represent novel therapeutic targets during acute oxidative or nitrosative stress in cells and tissues.
Collapse
Affiliation(s)
- Dean A Wiseman
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd CB-3210, Augusta, GA 30912-2500, USA
| | | | | |
Collapse
|
49
|
Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater 2009; 5:1211-22. [PMID: 19042164 DOI: 10.1016/j.actbio.2008.10.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
This paper reports a physico-chemical study devoted to reactivity towards hydroxo-carbonate apatite (HCA) formation of bioactive glass 45S5 (H glass; commercially known as Bioglass) and of two preparations of zinc-doped 45S5-derived systems (HZ5, HZ20), immersed in Tris(hydroxymethyl)aminomethane (Tris) and Dulbecco's modified Eagle's medium (DMEM) buffer solutions. The activity/toxicity of the glasses was also tested using endothelial cells (EC). Zn caused a drastic reduction in the overall leaching activity of glasses and, at high Zn concentration (HZ20), the formation of HCA on the glass surface was thoroughly inhibited. The presence of Zn also decreased the increment of pH after glass immersion in both Tris and DMEM solution. EC are known to be very sensitive to pH changes and, for this reason, the rapid increase in pH brought about by H glass dissolution is likely to affect cell adhesion and spreading, whereas the high zinc release from HZ20 causes a drastic reduction in cell proliferation after a long contact time (approximately 1 week). This study shows that only HZ5 glass containing 5 wt.% Zn presents at the same time: reduced solubility, bioactivity (monitored by HCA formation) and conditions allowing EC growth over a 6-day period.
Collapse
|
50
|
Linares GR, Xing W, Govoni KE, Chen ST, Mohan S. Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress. Bone 2009; 44:795-804. [PMID: 19442627 PMCID: PMC4683083 DOI: 10.1016/j.bone.2009.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/19/2008] [Accepted: 01/05/2009] [Indexed: 11/17/2022]
Abstract
There is now increasing evidence which suggests an important role for reactive oxygen species (ROS) in the pathogenesis of osteoporosis. However, little is known on the molecular components of the oxidative stress pathway or their functions in bone. In this study, we evaluated the role and mechanism of action of glutaredoxin (Grx) 5, a protein that is highly expressed in bone. Osteoblasts were transfected with Grx5 siRNA and treated with hydrogen peroxide (H(2)O(2)). Grx5 siRNA treatment increased apoptosis while Grx5 overexpression protected MC3T3-E1 cells against H(2)O(2) induced apoptosis and ROS formation. Grx5 deficiency results in impaired biogenesis of Fe-S cluster in yeast. Accordingly, activity of mitochondrial aconitase, whose activity is dependent on Fe-S cluster, decreased in Grx5 siRNA treated cells. Since reduced formation of Fe-S cluster would lead to increased level of free iron, a competitive inhibitor of manganese superoxide dismutase (MnSOD), we measured MnSOD activity in Grx5 deficient osteoblasts and found MnSOD activity was significantly reduced. The consequence of long term inhibition of Grx5 on osteoblast apoptosis was evaluated using lentiviral shRNA technology. Grx5 shRNA cells exhibited higher caspase activity and cardiolipin oxidation in the presence of H(2)O(2). MnSOD activity was rescued by the addition of MnCl(2) to Grx5 shRNA osteoblasts in the presence of H(2)O(2). Our findings are consistent with the hypothesis that Grx5 is an important determinant of osteoblast apoptosis and acts via a molecular pathway that involves regulation of ROS production, cardiolipin oxidation, caspase activity, Fe-S cluster formation, and MnSOD activity.
Collapse
Affiliation(s)
- Gabriel R Linares
- Musculoskeletal Disease Center, Jerry L Pettis Memorial Veterans Affairs Medical Center, Loma Linda, CA 92357, USA
| | | | | | | | | |
Collapse
|