1
|
Ehrhardt M, Schreiber S, Duderstadt Y, Braun‐Dullaeus R, Borucki K, Brigadski T, Müller NG, Leßmann V, Müller P. Circadian rhythm of brain-derived neurotrophic factor in serum and plasma. Exp Physiol 2024; 109:1755-1767. [PMID: 39105714 PMCID: PMC11442779 DOI: 10.1113/ep091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements. We aimed to investigate the circadian rhythm of BDNF by collecting multiple peripheral venous blood samples from young, healthy male participants at 12 different time points over 24 h. In addition, vital parameters, cortisol and insulin like growth factor 1 (IGF1) were measured to explore potential regulatory mechanisms, interfering variables and their correlations with BDNF concentration. The findings revealed that plasma BDNF did not exhibit any significant fluctuations over 24 h, suggesting the absence of a circadian rhythm. However, serum BDNF levels decreased during sleep. Furthermore, serum BDNF showed a positive correlation with heart rate but a negative correlation with IGF1. No significant correlation was observed between cortisol and BDNF or IGF1. Although plasma BDNF suggests steady-state conditions, the decline of serum BDNF during the nocturnal period could be attributed to physical inactivity and associated with reduced haemodynamic blood flow (heart rate reduction during sleep). The type of sample collection (peripheral venous cannula vs. blood sampling using a butterfly system) does not significantly affect the measured BDNF levels. The sample collection during the day did not significantly affect BDNF analysis, emphasizing the importance of considering activity levels rather than timing when designing standardized protocols for BDNF assessments.
Collapse
Affiliation(s)
- Maren Ehrhardt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Division of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of Neurology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Yves Duderstadt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Institute of Sport ScienceOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Katrin Borucki
- Institute of Clinical Chemistry and PathobiochemistryOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Tanja Brigadski
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Department of Informatics and Microsystems TechnologyUniversity of Applied Sciences KaiserslauternZweibrückenGermany
| | - Notger G. Müller
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Degenerative and Chronic Diseases, Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| | - Volkmar Leßmann
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
- Center for Behavioural Brain Sciences (CBBS)MagdeburgGermany
| | - Patrick Müller
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
| |
Collapse
|
2
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Jo S, Kim MS, Kim HY, Kim S, Kam H, Choi H, Shin DH. Amentoflavone, a potent natural matrix metalloproteinase 2 inhibitor. Nat Prod Res 2023:1-8. [PMID: 38112430 DOI: 10.1080/14786419.2023.2294108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Gelatinase A (MMP-2) has been studied and proven to play a vital role in the intrusion and metastasis of cancer. Flavonoids influence on molecular and cellular functions of MMP-2 and thus a systematic investigation of flavonoids against the metalloproteolytic activity of MMP-2 has been performed in this study. A fluorescence resonance energy transfer method was used to investigate the inhibitory activities of various flavonoids. Flavone, flavonol and isobavachalcone derivatives showed their inhibitory activity against MMP-2. Surprisingly, the most effective inhibitor was Amentoflavone and its blocking function was superior to other flavonoids. Its IC50 value was 0.689 μM. An induced-fit docking study was carried out to survey its extraordinary activity. The binding mode of Amentoflavone is quite similar to that of (2 ∼ {S})-2-[2-[4-(4-methoxyphenyl) phenyl] sulfanylphenyl] pentanedioic acid complexed with MMP-9. Amentoflavone interacts with the functional zinc and catalytic residue, Glu202. Therefore, the docking study reasonably confirmed the strong inhibitory activity of Amentoflavone.
Collapse
Affiliation(s)
- Seri Jo
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Mi-Sun Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Hwa-Young Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Suwon Kim
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Heejin Kam
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Haein Choi
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy and Graduates School of Pharmaceutical Sciences, Ewha W. University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Liu QQ, Tian CJ, Li N, Chen ZC, Guo YL, Cheng DJ, Tang XY, Zhang XY. Brain-derived neurotrophic factor promotes airway smooth muscle cell proliferation in asthma through regulation of transient receptor potential channel-mediated autophagy. Mol Immunol 2023; 158:22-34. [PMID: 37094390 DOI: 10.1016/j.molimm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Increased proliferation of airway smooth muscle cells (ASMCs) is a key feature of airway remodeling in asthma. This study aims to determine whether brain-derived neurotrophic factor (BDNF) regulates ASMC proliferation and airway remodeling via the transient receptor potential channels (TRPCs)/autophagy axis. METHODS Human ASMCs were isolated and passively sensitized with human asthmatic serum. Protein levels of BDNF and its receptor TrkB, TRPC1/3/6, autophagy markers, intracellular Ca2+ concentration ([Ca2+]i), LC3 immunofluorescence, cell proliferation, cell cycle population were examined. Wistar rats were sensitized with OVA to establish asthma models. RESULTS In asthmatic serum-sensitized human ASMCs, BDNF overexpression or recombinant BDNF (rhBDNF) increased TrkB/TRPC1/3/6 axis, [Ca2+]i, autophagy level, cell proliferation, cell number in the S+G2/M phase and decreased cell number in the G0/G1 phase, whereas BDNF knockdown exerted the opposite effects. Furthermore, TRPC channel blocker SKF96365 and TRPC1/3/6 knockdown reversed the effects of the rhBDNF-mediated induction of [Ca2+]i, autophagy level, cell proliferation and cell number in the S+G2/M phase. Moreover, the autophagy inhibitor (3-MA) rescued the rhBDNF-mediated induction of cell proliferation and cell number in the S+G2/M phase. Further in vivo assays revealed that BDNF altered the pathology of airway remodeling, promoted the infiltration of inflammatory cells, promoted the proliferation of ASMCs, and upregulated the protein levels of TrkB, TRPC1/3/6, and autophagy markers in asthma model rats. CONCLUSION We conclude that BDNF promotes ASMCs proliferation in asthma through TRPC-mediated autophagy induction.
Collapse
Affiliation(s)
- Qian-Qian Liu
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Henan University, China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, China; Department of Respiratory Disease and Intensive Care, People's Hospital of Zhengzhou University, China.
| |
Collapse
|
5
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Tan X, Zhao L, Tang Y. The Function of BDNF and Its Receptor in the Male Genitourinary System and Its Potential Clinical Application. Curr Issues Mol Biol 2022; 45:110-121. [PMID: 36661494 PMCID: PMC9856797 DOI: 10.3390/cimb45010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF), as a member of the nerve growth factor family, has been mentioned more and more frequently in recent literature reports. Among them, content about the male genitourinary system is also increasing. Objective and Rationale: BDNF plays an important role in the male genitourinary system. At the same time, the literature in this field is constantly increasing. Therefore, we systematically summarized the literature in order to more intuitively show the function of BDNF and its receptor in the male genitourinary system and its potential clinical application. Search Methods: An electronic search of, e.g., PubMed, scholar.google and Scopus, for articles relating to BDNF and its receptor in the male genitourinary system. Outcomes: In the male genitourinary system, BDNF and its receptors TrkB and p75 participate in a series of normal physiological activities, such as the maturation and morphogenesis of testes and epididymis and maintenance of isolated sperm motility. Similarly, an imbalance of the circulating concentration of BDNF also mediates the pathophysiological process of many diseases, such as prostate cancer, benign prostatic hyperplasia, male infertility, diabetes erectile dysfunction, penile sclerosis, and bladder fibrosis. As a consequence, we conclude that BDNF and its receptor are key regulatory proteins in the male genitourinary system, which can be used as potential therapeutic targets and markers for disease diagnosis.
Collapse
Affiliation(s)
- Xiaoli Tan
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 510275, China
| |
Collapse
|
7
|
Aghali A, Khalfaoui L, Lagnado AB, Drake LY, Teske JJ, Pabelick CM, Passos JF, Prakash YS. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma. Am J Physiol Lung Cell Mol Physiol 2022; 323:L558-L568. [PMID: 36166734 PMCID: PMC9639764 DOI: 10.1152/ajplung.00146.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Senescent cells can drive age-related tissue dysfunction partially via a senescence-associated secretory phenotype (SASP) involving proinflammatory and profibrotic factors. Cellular senescence has been associated with a structural and functional decline during normal lung aging and age-related diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Asthma in the elderly (AIE) represents a major healthcare burden. AIE is associated with bronchial airway hyperresponsiveness and remodeling, which involves increased cell proliferation and higher rates of fibrosis, and resistant to standard therapy. Airway smooth muscle (ASM) cells play a major role in asthma such as remodeling via modulation of inflammation and the extracellular matrix (ECM) environment. Whether senescent ASM cells accumulate in AIE and contribute to airway structural or functional changes is unknown. Lung tissues from elderly persons with asthma showed greater airway fibrosis compared with age-matched elderly persons with nonasthma and young age controls. Lung tissue or isolated ASM cells from elderly persons with asthma showed increased expression of multiple senescent markers including phospho-p53, p21, telomere-associated foci (TAF), as well as multiple SASP components. Senescence and SASP components were also increased with aging per se. These data highlight the presence of cellular senescence in AIE that may contribute to airway remodeling.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony B. Lagnado
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Neuroimmunology and Allergic Disease. ALLERGIES 2022. [DOI: 10.3390/allergies2030008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The prevalence of allergic diseases is rising globally, inducing heavy quality of life and economic burdens. Allergic reactions are mediated by the complex bi-directional cross-talk between immune and nervous systems that we are only beginning to understand. Here, we discuss our current understanding of the molecular mechanisms of how this cross-talk occurs in the skin, gut, and lungs. An improved understanding of the communication between the immune and nervous system may lead to the development of novel therapies for allergic diseases.
Collapse
|
9
|
Mayer CA, Roos B, Teske J, Wells N, Martin RJ, Chang W, Pabelick CM, Prakash YS, MacFarlane PM. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatr Res 2022; 91:1391-1398. [PMID: 33958714 PMCID: PMC8571113 DOI: 10.1038/s41390-021-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jacob Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Wenhan Chang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Singh A, Singh J, Rattan S. Evidence for the presence and release of BDNF in the neuronal and non-neuronal structures of the internal anal sphincter. Neurogastroenterol Motil 2022; 34:e14099. [PMID: 33624396 PMCID: PMC9558559 DOI: 10.1111/nmo.14099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Data on the neuromodulatory effects of brain-derived neurotrophic factor (BDNF) in the gastrointestinal tract were recently reported, but there are still no data on the presence, distribution, and release of BDNF in the gastrointestinal tract, including the internal anal sphincter (IAS). METHODS We examined the presence and distribution of BDNF and its receptor TrkB in the different IAS structures (neuronal and non-neuronal) via immunohistochemical and immunocytochemical analyses. We also monitored the release of BDNF in an IAS muscle bath (consisting of smooth muscle cells [SMCs], myenteric plexus, and submucosal plexus) before and after different agonists, and electrical field stimulation in the absence and presence of neurotoxin tetrodotoxin. KEY RESULTS BDNF/TrkB was found to be present in all layers of the IAS, especially the smooth muscle, mucosa, myenteric plexus, and submucosal plexus. Detailed analyses revealed a significant colocalization between BDNF and TrkB in different structures, especially in the smooth muscle, the SMCs, and both plexuses. Data further showed higher levels of BDNF in the cytosol and that of TrkB toward the periphery of the SMCs. CONCLUSIONS & INFERENCES These studies showed that BDNF/TrkB was present not only in the enteric nervous system (ENS), but also in the SMCs. For the neuromodulatory effects, BDNF is released locally from the ENS ((myenteric (10.01 ± 0.23 pg/ml) and submucosal plexus (9.05 ± 0.51 pg/ml)) and the SMCs (18.63 ± 1.63 pg/ml). Collectively, these findings have pathophysiological and therapeutic implications regarding the role of BDNF/TrkB in the IAS-associated rectoanal motility disorders.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| | - Jagmohan Singh
- Department of Pharmacology and Experimental Therapeutics, Jefferson Alumni Hall, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Room #320 College, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
11
|
Shi XZ. Mechano-Regulation of Gene Expression in the Gut: Implications in Pathophysiology and Therapeutic Approaches in Obstructive, Inflammatory, and Functional Bowel Disorders. COMPREHENSIVE PHARMACOLOGY 2022:164-185. [DOI: 10.1016/b978-0-12-820472-6.00168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Geesala R, Lin YM, Zhang K, Shi XZ. Targeting Mechano-Transcription Process as Therapeutic Intervention in Gastrointestinal Disorders. Front Pharmacol 2021; 12:809350. [PMID: 34992543 PMCID: PMC8724579 DOI: 10.3389/fphar.2021.809350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions. Mechano-transcription of inflammatory molecules, pain mediators, pro-fibrotic and growth factors has been shown to play a key role in the development of motility dysfunction, visceral hypersensitivity, inflammation, and fibrosis in the gut. In particular, mechanical stress-induced cyclooxygenase-2 (COX-2) and certain pro-inflammatory mediators in gut smooth muscle cells are responsible for motility dysfunction and inflammatory process. Mechano-transcription of pain mediators such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) may lead to visceral hypersensitivity. Emerging evidence suggests that mechanical stress in the gut also leads to up-regulation of certain proliferative and pro-fibrotic mediators such as connective tissue growth factor (CTGF) and osteopontin (OPN), which may contribute to fibrostenotic Crohn's disease. In this review, we will discuss the pathophysiological significance of mechanical stress-induced expression of pro-inflammatory molecules, pain mediators, pro-fibrotic and growth factors in obstructive, inflammatory, and functional bowel disorders. We will also evaluate potential therapeutic targets of mechano-transcription process for the management of these disorders.
Collapse
|
13
|
Guo Z, Liu L, Li S, Xu B, Xu Y, Li H. Effect of BDNF on airway inflammation in a rat model of COPD. Exp Ther Med 2021; 22:1116. [PMID: 34504570 PMCID: PMC8383767 DOI: 10.3892/etm.2021.10550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The present study aimed to investigate the effect of brain-derived neurotrophic factor (BDNF) on lung function and airway inflammation in a rat model of COPD. A rat model of COPD was established in this study, and anti-BDNF antibody was injected to observe the effect of BDNF on pulmonary function and airway inflammation. Lung function and hematoxylin and eosin staining analyses were performed. BDNF in the airway was examined using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Levels of oxidant stress and inflammatory cytokines were measured. After long-term heavy cigarette exposure, pulmonary inflammation and emphysema were observed, while lung function had deteriorated in the COPD, COPD + anti-BDNF and COPD + normal saline groups. Levels of BDNF expression, malondialdehyde, tumor necrosis factor-α and interleukin-6 were increased in rats with COPD compared with control rats, while levels of superoxide dismutase and glutathione peroxidase were decreased. Anti-BDNF intervention improved airway inflammation. To conclude, anti-BDNF intervention could alleviate inflammation and improve any imbalance between oxidation and antioxidation in the airway.
Collapse
Affiliation(s)
- Zhengli Guo
- Medical College, Soochow University, Suzhou, Jiangsu 215031, P.R. China.,Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Lei Liu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shasha Li
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Bingqing Xu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Yihui Xu
- Department of Geriatrics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| |
Collapse
|
14
|
Wicher SA, Roos BB, Teske JJ, Fang YH, Pabelick C, Prakash YS. Aging increases senescence, calcium signaling, and extracellular matrix deposition in human airway smooth muscle. PLoS One 2021; 16:e0254710. [PMID: 34324543 PMCID: PMC8321097 DOI: 10.1371/journal.pone.0254710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Lung function declines as people age and their lungs become stiffer. With an increasing elderly population, understanding mechanisms that contribute to these structural and functional changes in the aging lung is important. Part of the aging process is characterized by thicker, more fibrotic airways, and senile emphysema caused by changes in lung parenchyma. There is also senescence, which occurs throughout the body with aging. Here, using human airway smooth muscle (ASM) cells from patients in different age groups, we explored senescence pathways and changes in intracellular calcium signaling and extracellular matrix (ECM) deposition to elucidate potential mechanisms by which aging leads to thicker and stiffer lungs. Senescent markers p21, γH2AX, and β-gal, and some senescence-associated secretory proteins (SASP) increased with aging, as shown by staining and biochemical analyses. Agonist-induced intracellular Ca2+ responses, measured using fura-2 loaded cells and fluorescence imaging, increased with age. However, biochemical analysis showed that expression of the following markers decreased with age: M3 muscarinic receptor, TRPC3, Orai1, STIM1, SERCA2, MMP2 and MMP9. In contrast, collagen III, and fibronectin deposition increased with age. These data show that senescence increases in the aging airways that is associated with a stiffer but surprisingly greater intracellular calcium signaling as a marker for contractility. ASM senescence may enhance fibrosis in a feed forward loop promoting remodeling and altered calcium storage and buffering.
Collapse
Affiliation(s)
- Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Christina Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
15
|
Bhallamudi S, Roos BB, Teske JJ, Wicher SA, McConico A, M Pabelick C, Sathish V, Prakash YS. Glial-derived neurotrophic factor in human airway smooth muscle. J Cell Physiol 2021; 236:8184-8196. [PMID: 34170009 DOI: 10.1002/jcp.30489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/18/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea McConico
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Rajasekar N, Sivanantham A, Kar A, Mukhopadhyay S, Mahapatra SK, Paramasivam SG, Rajasekaran S. Anti-asthmatic effects of tannic acid from Chinese natural gall nuts in a mouse model of allergic asthma. Int Immunopharmacol 2021; 98:107847. [PMID: 34126339 DOI: 10.1016/j.intimp.2021.107847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways, which is characterized by infiltration of inflammatory cells, airway hyperresponsiveness (AHR), and airway remodeling. This study aimed to explore the role and mechanism of tannic acid (TA), a naturally occurring plant-derived polyphenol, in murine asthma model. BALB/c mice were given ovalbumin (OVA) to establish an allergic asthma model. The results revealed that TA treatment significantly decreased OVA-induced AHR, inflammatory cells infiltration, and the expression of various inflammatory mediators (Th2 and Th1 cytokines, eotaxin, and total IgE). Additionally, TA treatment also attenuated increases in mucins (Muc5ac and Muc5b) expression, mucus production in airway goblet cells, mast cells infiltration, and airway remodeling induced by OVA exposure. Furthermore, OVA-induced NF-κB (nuclear factor- kappa B) activation and cell adhesion molecules expression in the lungs was suppressed by TA treatment. In conclusion, TA effectively attenuated AHR, inflammatory response, and airway remodeling in OVA-challenged asthmatic mice. Therefore, TA may be a potential therapeutic option against allergic asthma in clinical settings.
Collapse
Affiliation(s)
- Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Amrita Kar
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Sramana Mukhopadhyay
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Santanu Kar Mahapatra
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | | | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
17
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
18
|
Wang J, Li T, Cai H, Jin L, Li R, Shan L, Cai W, Jiang J. Protective effects of total flavonoids from Qu Zhi Qiao (fruit of Citrus paradisi cv. Changshanhuyou) on OVA-induced allergic airway inflammation and remodeling through MAPKs and Smad2/3 signaling pathway. Biomed Pharmacother 2021; 138:111421. [PMID: 33752061 DOI: 10.1016/j.biopha.2021.111421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Allergic asthma is one of the inflammatory diseases, which has become a major public health problem. Qu zhi qiao (QZQ), a dry and immature fruit of Citrus paradisi cv. Changshanhuyou, has various flavonoids with pharmacological properties. However, there is a knowledge gap on the pharmacological properties of QZQ on allergic asthma. Therefore, here, we explored the efficacy and mechanism of total flavonoids from QZQ (TFCH) on allergic asthma. We extracted and purified TFCH and conducted animal experiments using an Ovalbumin (OVA)-induced mice model. Bronchoalveolar lavage fluid and Swiss-Giemsa staining were used to count different inflammatory cells in allergic asthma mice. We conducted histopathology and immunohistochemistry to evaluate the changes in the lungs of allergic asthma mice. Moreover, we used ELISA assays to analyze chemokines and inflammatory cytokines. Furthermore, western blot analyses were conducted to elucidate the mechanism of TFCH on allergic asthma. We established that TFCH has anti-inflammatory effects and inhibits airway remodeling, providing a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Jianping Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China; Songyang County People's Hospital, Lishui 323400, China
| | - Ting Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haiying Cai
- Shaoxing people's Hospital, Shaoxing 312000, China
| | - Liangyan Jin
- Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Run Li
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Letian Shan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| | - Wei Cai
- Department of Chinese Materia Medica, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Jianping Jiang
- Zhejiang You-du Biotech Limited Company, Quzhou 324200, China; Department of Pharmacy, School of Medicine, Zhejiang University City College, 310015 China.
| |
Collapse
|
19
|
Roesler AM, Ravix J, Bartman CM, Patel BS, Schiliro M, Roos B, Nesbitt L, Pabelick CM, Martin RJ, MacFarlane PM, Prakash YS. Calcium-Sensing Receptor Contributes to Hyperoxia Effects on Human Fetal Airway Smooth Muscle. Front Physiol 2021; 12:585895. [PMID: 33790802 PMCID: PMC8006428 DOI: 10.3389/fphys.2021.585895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brijeshkumar S Patel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Richard J Martin
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Hang PZ, Zhu H, Li PF, Liu J, Ge FQ, Zhao J, Du ZM. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel) 2021; 11:life11010070. [PMID: 33477900 PMCID: PMC7833389 DOI: 10.3390/life11010070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most abundantneurotrophins in the central nervous system. Numerous studies suggestthat BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlightsthat the BDNF/TrkB pathway is expressed in the cardiovascular system andclosely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkBsignalingand address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Pei-Feng Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Jie Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Jing Zhao
- Medical Research Center, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| | - Zhi-Min Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| |
Collapse
|
21
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
Hao Y, Xiong R, Gong X. Memantine, NMDA Receptor Antagonist, Attenuates ox-LDL-Induced Inflammation and Oxidative Stress via Activation of BDNF/TrkB Signaling Pathway in HUVECs. Inflammation 2020; 44:659-670. [PMID: 33174139 DOI: 10.1007/s10753-020-01365-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic cardiovascular disease and contributes to pathogenesis of most myocardial infarction and ischemic stroke. Additionally, N-methyl-D-aspartate (NMDA) receptor plays a crucial role in myocardial infarction and ischemic strokes. The aim of our study was to investigate the underlying mechanisms of memantine (MEM), the blocker of NMDA receptors, in the development of atherosclerosis. In our study, human umbilical vascular endothelial cells (HUVECs) were stimulated with low-density lipoprotein (ox-LDL) to establish an atherosclerotic cell model. Cell Counting Kit-8 (CCK-8) assay and TUNEL staining were performed to detect the cell activity and apoptosis of HUVECs, respectively. The levels of inflammatory cytokines and malondialdehyde and the activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and caspase-1 were quantified with commercial assay kits. Finally, qRT-PCR assay and western blot analysis were carried out to determine the mRNA and protein expressions of inflammation-related genes in HUVECs. The results of the present study suggested that ox-LDL stimulation induced decreased viability of HUVECs, excessive inflammation, and oxidative stress, while these effects were counteracted by MEM treatment. Interestingly, MEM triggered the activation of BDNF/TrkB signaling pathway in HUVECs, and K252a, the inhibitor of the BDNF/TrkB pathway, abolished the suppressive effect of MEM on ox-LDL-induced inflammation, oxidative stress, and apoptosis in HUVECs. Overall, MEM attenuated ox-LDL-induced inflammation, oxidative stress, and apoptosis via activation of BDNF/TrkB signaling pathway in HUVECs, indicating that MEM may be defined as a novel and effective agent for atherosclerosis treatment.
Collapse
Affiliation(s)
- Ying Hao
- Department of Cardiology, Shanghai East Hospital, Tongji University, 1800 Yuntai Rd, Shanghai, 200126, People's Republic of China.
| | - Rui Xiong
- Department of Cornea, Affiliated Eye Hospital of Nanchang University, 463 Bayi Avenue, Nanchang City, 330006, Jiangxi Province, People's Republic of China.
| | - Xue Gong
- Department of Cardiology, DeltaHealth Hospital, Shanghai, 201702, People's Republic of China
| |
Collapse
|
23
|
Sreter KB, Popovic-Grle S, Lampalo M, Konjevod M, Tudor L, Nikolac Perkovic M, Jukic I, Bingulac-Popovic J, Safic Stanic H, Markeljevic J, Pivac N, Svob Strac D. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/ TrkB Gene Polymorphisms in Croatian Adults with Asthma. J Pers Med 2020; 10:E189. [PMID: 33114368 PMCID: PMC7712770 DOI: 10.3390/jpm10040189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B (TrkB) receptor might contribute to normal lung functioning and immune responses; however, their role in asthma remains unclear. Plasma BDNF concentrations, as well as BDNF and NTRK2 (TrkB gene) polymorphisms, were investigated in 120 asthma patients and 120 healthy individuals using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. The genotype and allele frequencies of BDNF Val66Met (rs6265) and NTRK2 rs1439050 polymorphisms did not differ between healthy individuals and asthma patients, nor between patients grouped according to severity or different asthma phenotypes. Although plasma BDNF concentrations were higher among healthy subjects carrying the BDNF Val66Met GG genotype compared to the A allele carriers, such differences were not detected in asthma patients, suggesting the influences of other factors. Plasma BDNF concentration was not affected by NTRK2 rs1439050 polymorphism. Asthma patients had higher plasma BDNF concentrations than control subjects; however, no differences were found between patients subdivided according to asthma severity, or Type-2, allergic, and eosinophilic asthma. Higher plasma BDNF levels were observed in asthma patients with aspirin sensitivity and aspirin-exacerbated respiratory disease. These results suggest that plasma BDNF may serve as a potential peripheral biomarker for asthma, particularly asthma with aspirin sensitivity.
Collapse
Affiliation(s)
- Katherina B. Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Bingulac-Popovic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Hana Safic Stanic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| |
Collapse
|
24
|
Bartman CM, Schiliro M, Helan M, Prakash YS, Linden D, Pabelick C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J 2020; 34:12991-13004. [PMID: 32777143 PMCID: PMC7857779 DOI: 10.1096/fj.202001180r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.
Collapse
Affiliation(s)
| | - Marta Schiliro
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Martin Helan
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Intensive Care, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - David Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Xu T, Pan L, Li L, Hu S, Zhou H, Yang C, Yang J, Li H, Liu Y, Meng X, Li J. MicroRNA-708 modulates Hepatic Stellate Cells activation and enhances extracellular matrix accumulation via direct targeting TMEM88. J Cell Mol Med 2020; 24:7127-7140. [PMID: 32463570 PMCID: PMC7339227 DOI: 10.1111/jcmm.15119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Transmembrane protein 88 (TMEM88) is a potential 2-transmembrane-type protein that interacts with the PDZ domain of Dishevelled-1 (DVL-1), a crucial component of Wnt signalling pathway through its C-terminal Val-Trp-Val (VWV) motif in Xenopus embryo cells. Since the significant function of β-catenin in liver fibrosis, it is urgent to study the TMEM88 mechanism in liver fibrosis. The current research was for evaluating the function of TMEM88 in the process of the liver fibrosis and clarifying the inherent mechanism. The study found that TMEM88 is decreased in human fibrotic liver tissues. Functionally, TMEM88 significantly reduced the expression levels of α-smooth muscle actin (α-SMA) and collagen type I (Col.I) and repressed extracellular matrix (ECM) accumulation by restoring the balance between matrix metalloproteinases (MMPs) and TIMPs (tissue inhibitor of metalloproteinases). TMEM88 inhibited HSCs proliferation and evaluated the apoptosis of activated LX-2 cells by regulating Wnt3a, Wnt2b and β-catenin of Wnt/β-catenin signalling pathway. Moreover, we demonstrated that miR-708 particularly targeted TMEM88 3'-UTR regions and down-regulated the expression level of TMEM88 in TGF-β1-stimulated LX-2 cells. MiR-708 promoted the generation of ECM and cell activation in activated LX-2 cells. These results determined that miR-708 could promote HSCs activation and enhance ECM accumulation via direct targeting TMEM88 by Wnt/β-catenin signalling pathway. This will provide a potential target for future research in the process of liver fibrosis.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Linxin Pan
- The School of Life Science, Anhui Medical University, Hefei, China
| | - Liangyun Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Shuang Hu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Chenchen Yang
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Affiliated Psychological Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Junfa Yang
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Haodong Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yuming Liu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Ting NC, Huang WC, Chen LC, Yang SH, Kuo ML. Descurainia sophia Ameliorates Eosinophil Infiltration and Airway Hyperresponsiveness by Reducing Th2 Cytokine Production in Asthmatic Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1507-1522. [PMID: 31752525 DOI: 10.1142/s0192415x19500770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Chinese medicine, Descurainia sophia is used to treat cough by removing the phlegm in asthma and inflammatory airway disease, but the mechanism is not clear. In this study, we evaluated whether D. sophia water extract (DSWE) can alleviate airway inflammation and airway hyperresponsiveness (AHR) in the lungs of a murine asthma model. Female BALB/c mice were divided into five groups: normal controls, ovalbumin (OVA)-sensitized asthmatic mice, and OVA-sensitized mice treated with DSWE (2, 4, 8 g/day) by intraperitoneal injection. After sacrificing the mice, serum was collected to detect OVA-specific antibodies by ELISA, as well as bronchoalveolar lavage fluid (BALF) to detect cytokine levels. We also detected gene expression and histopathologically evaluated the lungs of asthmatic mice. DSWE reduced AHR, goblet cell hyperplasia, eosinophil infiltration, and collagen aggregation in the lungs of asthmatic mice. DSWE also suppressed the gene expression of Th2-associated cytokines and chemokines in lung tissue and inhibited serum OVA-IgE and Th2-associated cytokine levels in the BALF of OVA-sensitized mice. Our findings suggest that DSWE is a powerful immunomodulator for ameliorated allergic reactions by suppressing Th2 cytokine expression in asthmatic mice.
Collapse
Affiliation(s)
- Nai-Chun Ting
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan City 33303, Taiwan
| | - Li-Chen Chen
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Chinese Internal Medicine Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Guishan District, Taoyuan City 33303, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Graduate Institute of Health Industry Technology Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Rd., Guishan District, Taoyuan City 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan District, Taoyuan City 33303, Taiwan
| |
Collapse
|
27
|
Singh A, Mohanty I, Singh J, Rattan S. BDNF augments rat internal anal sphincter smooth muscle tone via RhoA/ROCK signaling and nonadrenergic noncholinergic relaxation via increased NO release. Am J Physiol Gastrointest Liver Physiol 2020; 318:G23-G33. [PMID: 31682160 PMCID: PMC6985850 DOI: 10.1152/ajpgi.00247.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Presently, there are no studies examining the neuromodulatory effects of brain-derived neurotropic factor (BDNF) on the basal internal anal sphincter (IAS) tone and nonadrenergic noncholinergic (NANC) relaxation. To examine this, we determined the neuromuscular effects of BDNF on basal IAS smooth muscle tone and the smooth muscle cells (SMCs) and the effects of NANC nerve stimulation before and after high-affinity receptor tyrosine kinase receptor B (TrkB) antagonist K252a. We also investigated the mechanisms underlying BDNF-augmented increase in the IAS tone and NANC relaxation. We found that BDNF-increased IAS tone and SMC contractility were TTX resistant and attenuated by K252a. TrkB-specific agonist 7,8-dihydroxyflavone, similar to BDNF, also produced a concentration-dependent increase in the basal tone, whereas TrkB inhibitors K252a and ANA-12 produced a decrease in the tone. In addition, BDNF produced leftward shifts in the concentration-response curves with U46619 and ANG II (but not with bethanechol and K+ depolarization), and these shifts were reversed by K252a. Effects of Y27632 and Western blot data indicated that the BDNF-induced increase in IAS tone was mediated via RhoA/ROCK. BDNF-augmented NANC relaxation by electrical field stimulation was found to be mediated via the nitric oxide (NO)/soluble guanylate cyclase (sGC) pathway rather than via increased sensitivity to NO. In conclusion, the net effect of BDNF was that it caused an increase in the basal IAS tone via RhoA/ROCK signaling. BDNF also augmented NANC relaxation via NO/sGC. These findings may have relevance to the role of BDNF in the pathophysiology and therapeutic targeting of the IAS-associated rectoanal motility disorders.NEW & NOTEWORTHY These studies for the first time to our knowledge demonstrate that increased levels of brain-derived neurotrophic factor (BDNF; conceivably released from smooth muscle cells and/or the enteric neurons) has two major effects. First, BDNF augments the internal anal sphincter (IAS) tone via tyrosine kinase receptor B/thromboxane A2-receptor, angiotensin II receptor type 1/RhoA/ROCK signaling; and second, it increases nonadrenergic noncholinergic relaxation via nitric oxide/soluble guanylate cyclase. These studies may have relevance in therapeutic targeting in the anorectal motility disorders associated with the IAS.
Collapse
Affiliation(s)
- Arjun Singh
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ipsita Mohanty
- 2Department of Pharmacology, Drexel University, Philadelphia, Pennsylvania
| | - Jagmohan Singh
- 3Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- 1Department of Medicine, Division of Gastroenterology & Hepatology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Ambhore NS, Kalidhindi RSR, Pabelick CM, Hawse JR, Prakash YS, Sathish V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway. FASEB J 2019; 33:13935-13950. [PMID: 31638834 DOI: 10.1096/fj.201901340r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Altered airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition in airways are characteristic features of remodeling in asthma. Increased ECM production modulates ASM cell proliferation and leads to airway remodeling. Our previous studies showed that ASM from patients with asthma exhibited increased expression of estrogen receptor (ER)-β, which upon activation down-regulated ASM proliferation, implicating an important role for estrogen signaling in airway physiology. There is no current information on the effect of differential ER activation on ECM production. In this study, we evaluated the effect of ER-α vs. ER-β activation on ECM production, deposition, and underlying pathways. Primary human ASM cells isolated from asthmatics and nonasthmatics were treated with E2, an ER-α agonist [propylpyrazoletriol (PPT)], and an ER-β agonist [WAY-200070 (WAY)] with TNF-α or platelet-derived growth factor (PDGF) followed by evaluation of ECM production and deposition. Expression of proteins and genes corresponding to ECM were measured using Western blotting and quantitative RT-PCR with subsequent matrix metalloproteinase (MMP) activity. Molecular mechanisms of ER activation in regulating ECM were evaluated by luciferase reporter assays for activator protein 1 (AP-1) and NF-κB. TNF-α or PDGF significantly (P < 0.001) increased ECM deposition and MMP activity in human ASM cells, which was significantly reduced with WAY treatment but not with PPT. Furthermore, TNF-α- or PDGF-induced ECM gene expression in ASM cells was significantly reduced with WAY (P < 0.001). Moreover, WAY significantly down-regulated the activation of NF-κB (P < 0.001) and AP-1 (P < 0.01, P < 0.05) in ASM cells from asthmatics and nonasthmatics. Overall, we demonstrate differential ER signaling in controlling ECM production and deposition. Activation of ER-β diminishes ECM deposition via suppressing the NF-κB pathway activity and might serve as a novel target to blunt airway remodeling.-Ambhore, N. S., Kalidhindi, R. S. R., Pabelick, C. M., Hawse, J. R., Prakash, Y. S., Sathish, V. Differential estrogen-receptor activation regulates extracellular matrix deposition in human airway smooth muscle remodeling via NF-κB pathway.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA; and
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
29
|
Liu Q, Wang R, Wang C, Li Y, Li A. The protective role of Schwann cells in bladder smooth muscle cell fibrosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3799-3806. [PMID: 31933768 PMCID: PMC6949742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Bladder fibrosis is characterized by collagen deposition within bladder walls. Neurogenic lesions are an important contributor to this balder dysfunction. Schwann cells are a kind of glial cell in the peripheral nervous system. However, the role of the cells in bladder fibrosis has received little attention among researchers. Female SD rats were employed in this study to establish a fibrosis model using denervation. Histologically, the fibrosis was evaluated using H&E staining and Masson's staining. CTGF expression was evaluated using immunohistochemistry. Subsequently, the role of Schwann cells in fibrosis was evaluated using a co-culture with bladder smooth cells and exposure to CTGF. After denervation, the bladder fibrosis was observed in a time-dependent manner, and this was accompanied by an increase in CTGF and a decrease in BDNF. After exposure to CTGF, α-SMA, and collagen I and III were significantly increased in the bladder smooth muscle cells. These were significantly inhibited after co-culture with Schwann cells. Furthermore, a significant increase in BDNF was observed in the co-culture. Schwann cells significantly ameliorated the fibrosis of the bladder smooth muscle cells, and this might be associated with the secretion of BDNF.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pediatric Surgery, Qilu Hospital of Shandong UniversityJinan, Shandong, China
- Department of Pediatric Surgery, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Ruoyi Wang
- Department of Pediatric Surgery, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Chuntian Wang
- Department of Pediatric Surgery, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Yanan Li
- Department of Pediatric Surgery, The Second Hospital of Shandong UniversityJinan, Shandong, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong UniversityJinan, Shandong, China
| |
Collapse
|
30
|
Takahashi Y, Kobayashi T, D'Alessandro-Gabazza CN, Toda M, Fujiwara K, Okano T, Fujimoto H, Asayama K, Takeshita A, Yasuma T, Nishihama K, Inoue R, Qin L, Takei Y, Taguchi O, Gabazza EC. Protective Role of Matrix Metalloproteinase-2 in Allergic Bronchial Asthma. Front Immunol 2019; 10:1795. [PMID: 31428095 PMCID: PMC6687911 DOI: 10.3389/fimmu.2019.01795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation, reversible obstruction, and hyperresponsiveness of the airways are characteristic findings of bronchial asthma. Several evidence has demonstrated the involvement of matrix metalloproteinase-2 in allergic airway inflammation. Matrix metalloproteinase-2 may promote aberrant tissue remodeling in late stages of allergic airway inflammation. However, whether matrix metalloproteinase-2 is detrimental or protective in early stages of allergic airway inflammation remains unclear. To evaluate this here we compared the severity of allergic bronchial asthma between mice overexpressing human matrix metalloproteinase-2 and wild type mice. After sensitization and challenge with an allergen, mice overexpressing the human matrix metalloproteinase-2 showed a significant reduction in airway hyperresponsiveness and in the expression of Th2 cytokines and IgE compared to their wild type counterparts. An inhibitor of matrix metalloproteinases abolished this beneficial effect of human matrix metalloproteinase-2 overexpression. Allergen-sensitized and challenged human matrix metalloproteinase-2 transgenic mice had enhanced percentage of M1 macrophages with increased expression of inducible nitric oxide synthase and STAT1 activation in the lungs compared to their wild type counterparts. There was no difference in the percentage of regulatory T cells between mouse groups. The results of this study showed that matrix metalloproteinase-2 is protective in allergic bronchial asthma by promoting polarization of macrophages to M1 phenotype.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kentaro Fujiwara
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kentaro Asayama
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryo Inoue
- Central Institute for Experimental Animals, Kawasaki-ku, Japan
| | - Liqiang Qin
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Lihai, China
| | - Yoshiyuki Takei
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Osamu Taguchi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
31
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
32
|
Kasam RK, Reddy GB, Jegga AG, Madala SK. Dysregulation of Mesenchymal Cell Survival Pathways in Severe Fibrotic Lung Disease: The Effect of Nintedanib Therapy. Front Pharmacol 2019; 10:532. [PMID: 31156440 PMCID: PMC6533541 DOI: 10.3389/fphar.2019.00532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Impaired apoptotic clearance of myofibroblasts can result in the continuous expansion of scar tissue during the persistent injury in the lung. However, the molecular and cellular mechanisms underlying the apoptotic clearance of multiple mesenchymal cells including fibrocytes, fibroblasts and myofibroblasts in severe fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) remain largely unknown. We analyzed the apoptotic pathways activated in mesenchymal cells of IPF and in a mouse model of TGFα-induced pulmonary fibrosis. We found that fibrocytes and myofibroblasts in fibrotic lung lesions have acquired resistance to Fas-induced apoptosis, and an FDA-approved anti-fibrotic agent, nintedanib, effectively induced apoptotic cell death in both. In support, comparative gene expression analyses suggest that apoptosis-linked gene networks similarly dysregulated in both IPF and a mouse model of TGFα-induced pulmonary fibrosis. TGFα mice treated with nintedanib show increased active caspase 3-positive cells in fibrotic lesions and reduced fibroproliferation and collagen production. Further, the long-term nintedanib therapy attenuated fibrocyte accumulation, collagen deposition, and lung function decline during TGFα-induced pulmonary fibrosis. These results highlight the importance of inhibiting survival pathways and other pro-fibrotic processes in the various types of mesenchymal cells and suggest that the TGFα mouse model is relevant for testing of anti-fibrotic drugs either alone or in combination with nintedanib.
Collapse
Affiliation(s)
- Rajesh K Kasam
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, India
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Satish K Madala
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
33
|
Britt RD, Thompson MA, Wicher SA, Manlove LJ, Roesler A, Fang YH, Roos C, Smith L, Miller JD, Pabelick CM, Prakash YS. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J 2019; 33:3024-3034. [PMID: 30351991 PMCID: PMC6338659 DOI: 10.1096/fj.201801002r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael A. Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Logan J. Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Anne Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Yun-Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carolyn Roos
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Leslie Smith
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| |
Collapse
|
34
|
Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: A network pharmacology study. Sci Rep 2018; 8:17362. [PMID: 30478434 PMCID: PMC6255815 DOI: 10.1038/s41598-018-35791-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/10/2018] [Indexed: 01/12/2023] Open
Abstract
Maxing Ganshi Decoction (MXGSD) is used widely for asthma over thousands of years, but its underlying pharmacological mechanisms remain unclear. In this study, systematic and comprehensive network pharmacology was utilized for the first time to reveal the potential pharmacological mechanisms of MXGSD on asthma. Specifically, we collected 141 bioactive components from the 600 components in MXGSD, which shared 52 targets common to asthma-related ones. In-depth network analysis of these 52 common targets indicated that asthma might be a manifestation of systemic neuro-immuno-inflammatory dysfunction in the respiratory system, and MXGSD could treat asthma through relieving airway inflammation, improving airway remodeling, and increasing drug responsiveness. After further cluster and enrichment analysis of the protein-protein interaction network of MXGSD bioactive component targets and asthma-related targets, we found that the neurotrophin signaling pathway, estrogen signaling pathway, PI3K-Akt signaling pathway, and ErbB signaling pathway might serve as the key points and principal pathways of MXGSD gene therapy for asthma from a systemic and holistic perspective, and also provides a novel idea for the development of new drugs for asthma.
Collapse
|
35
|
Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, Sathish V. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 2018; 476:37-47. [PMID: 29680290 PMCID: PMC6120801 DOI: 10.1016/j.mce.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|