1
|
Ito T, Zhang E, Omori A, Kabwe J, Kawai M, Maruyama J, Okada A, Yokochi A, Sawada H, Mitani Y, Maruyama K. Model difference in the effect of cilostazol on the development of experimental pulmonary hypertension in rats. BMC Pulm Med 2021; 21:377. [PMID: 34801000 PMCID: PMC8605570 DOI: 10.1186/s12890-021-01710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats. METHODS Fifty-one male Sprague-Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. The mean pulmonary artery pressure (mPAP), the right ventricle weight-to-left ventricle + septum weight ratio (RV/LV + S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed. Levels of the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB proteins in lung tissue were measured using Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed. RESULTS mPAP [35.1 ± 1.7 mmHg (MCT) (n = 9) vs. 16.6 ± 0.7 (control) (n = 9) (P < 0.05); 29.1 ± 1.5 mmHg (CH) (n = 10) vs. 17.5 ± 0.5 (control) (n = 10) (P < 0.05)], RV/LV + S [0.40 ± 0.01 (MCT) (n = 18) vs. 0.24 ± 0.01 (control) (n = 10) (P < 0.05); 0.41 ± 0.03 (CH) (n = 13) vs. 0.27 ± 0.06 (control) (n = 10) (P < 0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1 ± 1.1 mmHg (n = 11) (P < 0.05), RV/LV + S 0.30 ± 0.01 (n = 14) (P < 0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and increased in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats. CONCLUSIONS We found model differences in the effect of CLZ on PH development. CLZ might exert a preventive effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might depend on the PH etiology.
Collapse
Affiliation(s)
- Toshikazu Ito
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Fuzhou Children's Hospital of Fujian Province Affiliated with Fujian Medical University, 145-817-Middle Road, Gulou, Fuzhou, 350005, Fujian, China
| | - Ayaka Omori
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Jane Kabwe
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masako Kawai
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Amphone Okada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
2
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
3
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
4
|
Klinke A, Berghausen E, Friedrichs K, Molz S, Lau D, Remane L, Berlin M, Kaltwasser C, Adam M, Mehrkens D, Mollenhauer M, Manchanda K, Ravekes T, Heresi GA, Aytekin M, Dweik RA, Hennigs JK, Kubala L, Michaëlsson E, Rosenkranz S, Rudolph TK, Hazen SL, Klose H, Schermuly RT, Rudolph V, Baldus S. Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase. JCI Insight 2018; 3:97530. [PMID: 29875311 PMCID: PMC6124430 DOI: 10.1172/jci.insight.97530] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/19/2018] [Indexed: 01/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with limited therapeutic options and dismal prognosis. Despite its etiologic heterogeneity, the underlying unifying pathophysiology is characterized by increased vascular tone and adverse remodeling of the pulmonary circulation. Myeloperoxidase (MPO), an enzyme abundantly expressed in neutrophils, has potent vasoconstrictive and profibrotic properties, thus qualifying as a potential contributor to this disease. Here, we sought to investigate whether MPO is causally linked to the pathophysiology of PAH. Investigation of 2 independent clinical cohorts revealed that MPO plasma levels were elevated in subjects with PAH and predicted adverse outcome. Experimental analyses showed that, upon hypoxia, right ventricular pressure was less increased in Mpo-/- than in WT mice. The hypoxia-induced activation of the Rho-kinase pathway, a critical subcellular signaling pathway yielding vasoconstriction and structural vascular remodeling, was blunted in Mpo-/- mice. Mice subjected to i.v. infusion of MPO revealed activation of Rho-kinase and increased right ventricular pressure, which was prevented by coinfusion of the Rho-kinase inhibitor Y-27632. In the Sugen5416/hypoxia rat model, PAH was attenuated by the MPO inhibitor AZM198. The current data demonstrate a tight mechanistic link between MPO, the activation of Rho-kinase, and adverse pulmonary vascular function, thus pointing toward a potentially novel avenue of treatment.
Collapse
Affiliation(s)
- Anna Klinke
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering (CBCE), St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Eva Berghausen
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Kai Friedrichs
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Simon Molz
- University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Lau
- University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Remane
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Matthias Berlin
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Charlotte Kaltwasser
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Matti Adam
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Kashish Manchanda
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Thorben Ravekes
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | | | - Metin Aytekin
- Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Raed A. Dweik
- Pulmonary and Critical Care Medicine, Respiratory Institute, and
| | - Jan K. Hennigs
- Cardiovascular Institute, Stanford University, School of Medicine, Stanford, California, USA
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Kubala
- International Clinical Research Center, Centre of Biomolecular and Cellular Engineering (CBCE), St. Anne’s University Hospital Brno, Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic
| | - Erik Michaëlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephan Rosenkranz
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Tanja K. Rudolph
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralph T. Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Volker Rudolph
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Center, Department of Cardiology
- Center for Molecular Medicine Cologne CMMC, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Pandey D, Nomura Y, Rossberg MC, Hori D, Bhatta A, Keceli G, Leucker T, Santhanam L, Shimoda LA, Berkowitz D, Romer L. Hypoxia Triggers SENP1 (Sentrin-Specific Protease 1) Modulation of KLF15 (Kruppel-Like Factor 15) and Transcriptional Regulation of Arg2 (Arginase 2) in Pulmonary Endothelium. Arterioscler Thromb Vasc Biol 2018; 38:913-926. [PMID: 29472234 DOI: 10.1161/atvbaha.117.310660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE KLF15 (Kruppel-like factor 15) has recently been shown to suppress activation of proinflammatory processes that contribute to atherogenesis in vascular smooth muscle, however, the role of KLF15 in vascular endothelial function is unknown. Arginase mediates inflammatory vasculopathy and vascular injury in pulmonary hypertension. Here, we tested the hypothesis that KLF15 is a critical regulator of hypoxia-induced Arg2 (arginase 2) transcription in human pulmonary microvascular endothelial cells (HPMEC). APPROACH AND RESULTS Quiescent HPMEC express ample amounts of full-length KLF15. HPMECs exposed to 24 hours of hypoxia exhibited a marked decrease in KLF15 protein levels and a reciprocal increase in Arg2 protein and mRNA. Chromatin immunoprecipitation indicated direct binding of KLF15 to the Arg2 promoter, which was relieved with HPMEC exposure to hypoxia. Furthermore, overexpression of KLF15 in HPMEC reversed hypoxia-induced augmentation of Arg2 abundance and arginase activity and rescued nitric oxide (NO) production. Ectopic KLF15 also reversed hypoxia-induced endothelium-mediated vasodilatation in isolated rat pulmonary artery rings. Mechanisms by which hypoxia regulates KLF15 abundance, stability, and compartmentalization to the nucleus in HPMEC were then investigated. Hypoxia triggered deSUMOylation of KLF15 by SENP1 (sentrin-specific protease 1), and translocation of KLF15 from nucleus to cytoplasm. CONCLUSIONS KLF15 is a critical regulator of pulmonary endothelial homeostasis via repression of endothelial Arg2 expression. KLF15 abundance and nuclear compartmentalization are regulated by SUMOylation/deSUMOylation-a hypoxia-sensitive process that is controlled by SENP1. Strategies including overexpression of KLF15 or inhibition of SENP1 may represent novel therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Deepesh Pandey
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD.
| | - Yohei Nomura
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Max C Rossberg
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Daijiro Hori
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Anil Bhatta
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Gizem Keceli
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Thorsten Leucker
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Lakshmi Santhanam
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Larissa A Shimoda
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Dan Berkowitz
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| | - Lewis Romer
- From the Departments of Anesthesiology and Critical Care Medicine (D.P., Y.N., M.C.R., D.H., A.B., L.S., D.B., L.R.), Cell Biology (L.R.), Biomedical Engineering (D.B., L.R.), and Pediatrics, and the Center for Cell Dynamics (L.R.), Division of Cardiology (G.K., T.L.), and Division of Pulmonary and Critical Care Medicine, Department of Medicine (L.A.S.), Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
6
|
Sheak JR, Weise-Cross L, deKay RJ, Walker BR, Jernigan NL, Resta TC. Enhanced NO-dependent pulmonary vasodilation limits increased vasoconstrictor sensitivity in neonatal chronic hypoxia. Am J Physiol Heart Circ Physiol 2017; 313:H828-H838. [PMID: 28733445 DOI: 10.1152/ajpheart.00123.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
Augmented vasoconstrictor reactivity is thought to play an important role in the development of chronic hypoxia (CH)-induced neonatal pulmonary hypertension. However, whether this response to CH results from pulmonary endothelial dysfunction and reduced nitric oxide (NO)-mediated vasodilation is not well understood. We hypothesized that neonatal CH enhances basal tone and pulmonary vasoconstrictor sensitivity by limiting NO-dependent pulmonary vasodilation. To test this hypothesis, we assessed the effects of the NO synthase (NOS) inhibitor Nω-nitro-l-arginine (l-NNA) on baseline pulmonary vascular resistance (PVR) and vasoconstrictor sensitivity to the thromboxane mimetic U-46619 in saline-perfused lungs (in situ) from 2-wk-old control and CH (12-day exposure, 0.5 atm) Sprague-Dawley rats. Basal tone was defined as that reversed by exogenous NO (spermine NONOate). CH neonates displayed elevated right ventricular systolic pressure (in vivo) and right ventricular hypertrophy, indicative of pulmonary hypertension. Perfused lungs from CH rats demonstrated greater baseline PVR, basal tone, and U-46619-mediated vasoconstriction compared with control rats in the absence of l-NNA. l-NNA markedly increased baseline PVR and reactivity to U-46619 in lungs from CH neonates, further augmenting vasoconstrictor sensitivity compared with control lungs. Exposure to CH also enhanced NO-dependent vasodilation to arginine vasopressin, pulmonary expression of NOS III [endothelial NOS (eNOS)], and eNOS phosphorylation at activation residue Ser1177 However, CH did not alter lung nitrotyrosine levels, a posttranslational modification reflecting [Formula: see text] scavenging of NO. We conclude that, in contrast to our hypothesis, enhanced basal tone and agonist-induced vasoconstriction after neonatal CH is limited by increased NO-dependent pulmonary vasodilation resulting from greater eNOS expression and phosphorylation at activation residue Ser1177NEW & NOTEWORTHY This research is the first to demonstrate enhanced nitric oxide-dependent vasodilation that limits increased vasoconstrictor reactivity in neonatal pulmonary hypertension. These results suggest that augmented vasoconstriction in this setting reflects changes in smooth muscle reactivity rather than a reduction in nitric oxide-dependent pulmonary vasodilation.
Collapse
Affiliation(s)
- Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ray J deKay
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
7
|
Rankin AM, Galbreath KE, Teeter KC. Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 2017. [DOI: 10.1093/jmammal/gyx059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Melatonin Attenuates Pulmonary Hypertension in Chronically Hypoxic Rats. Int J Mol Sci 2017; 18:ijms18061125. [PMID: 28538666 PMCID: PMC5485949 DOI: 10.3390/ijms18061125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022] Open
Abstract
Chronic hypoxia induces pulmonary hypertension and vascular remodeling, which are clinically relevant to patients with chronic obstructive pulmonary disease (COPD) associated with a decreased level of nitric oxide (NO). Oxidative stress and inflammation play important roles in the pathophysiological processes in COPD. We examined the hypothesis that daily administration of melatonin (10 mg/kg) mitigates the pulmonary hypertension and vascular remodeling in chronically hypoxic rats. The right ventricular systolic pressure (RVSP) and the thickness of pulmonary arteriolar wall were measured from normoxic control, vehicle- and melatonin-treated hypoxic rats exposed to 10% O2 for 14 days. Levels of markers for oxidative stress (malondialdhyde) and inflammation (tumor necrosis factor-α (TNFα), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2)) and the expressions of total endothelial NO synthase (eNOS) and phosphorylated eNOS at serine1177 (ser1177) were determined in the lung tissue. We found that the RVSP and the thickness of the arteriolar wall were significantly increased in the vehicle-treated hypoxic animals with elevated levels of malondialdhyde and mRNA expressions of the inflammatory mediators, when compared with the normoxic control. In addition, the phosphorylated eNOS (ser1177) level was significantly decreased, despite an increased eNOS expression in the vehicle-treated hypoxic group. Melatonin treatment significantly attenuated the levels of RVSP, thickness of the arteriolar wall, oxidative and inflammatory markers in the hypoxic animals with a marked increase in the eNOS phosphorylation in the lung. These results suggest that melatonin attenuates pulmonary hypertension by antagonizing the oxidative injury and restoration of NO production.
Collapse
|
9
|
Tiron ameliorates oxidative stress and inflammation in a murine model of airway remodeling. Int Immunopharmacol 2016; 39:172-180. [PMID: 27485290 DOI: 10.1016/j.intimp.2016.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Airway remodeling includes lung structural changes that have a role in the irreversibility of pulmonary dysfunction shown in chronic bronchial asthmatics. The current experiment investigated the effect of the mitochondrial antioxidant, tiron in comparison with dexamethasone (DEXA) on airway remodeling in chronic asthma. Sensitized BALB/c mice were challenged with ovalbumin (OVA) aerosol for 8weeks, OVA sensitized-challenged mice were treated with either DEXA or tiron, respectively. After that, lung tissue and bronchoaveolar lavage fluid (BALF) were used for measurement of different biological markers. Lungs were examined for histopathological changes and immunohistochemistry. Upon comparing with vehicle treated animals, trion or DEXA treatment significantly reduced eosinophils, lymphocytes, neutrophils and macrophages count in the BALF. Both drugs significantly alleviated chronic OVA-induced oxidative stress as illustrated by decreased pulmonary malondialdenhyde (MDA) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Asthmatic mice exhibited elevated levels of NOx, IL-13 and TGF-β1 that were reduced by DEXA and tiron. Histopathological changes and increased immunoreactivity of nuclear factor-Kappa B (NF-κ B) in OVA-challenged mice were minimized by tiron and DEXA treatment. In conclusion, in this model of chronic asthma DEXA and tiron ameliorated airway remodeling and inflammation in experimental chronic asthma with no difference between the effect of tiron and DEXA. Tiron has a potential role as adjuvant treatment in chronic asthma.
Collapse
|
10
|
Yun EJ, Lorizio W, Seedorf G, Abman SH, Vu TH. VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol 2015; 310:L287-98. [PMID: 26566904 DOI: 10.1152/ajplung.00229.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022] Open
Abstract
Prevention or treatment of lung diseases caused by the failure to form, or destruction of, existing alveoli, as observed in infants with bronchopulmonary dysplasia and adults with emphysema, requires understanding of the molecular mechanisms of alveolar development. In addition to its critical role in gas exchange, the pulmonary circulation also contributes to alveolar morphogenesis and maintenance by the production of paracrine factors, termed "angiocrines," that impact the development of surrounding tissue. To identify lung angiocrines that contribute to alveolar formation, we disrupted pulmonary vascular development by conditional inactivation of the Vegf-A gene during alveologenesis. This resulted in decreased pulmonary capillary and alveolar development and altered lung elastin and retinoic acid (RA) expression. We determined that RA is produced by pulmonary endothelial cells and regulates pulmonary angiogenesis and elastin synthesis by induction of VEGF-A and fibroblast growth factor (FGF)-18, respectively. Inhibition of RA synthesis in newborn mice decreased FGF-18 and elastin expression and impaired alveolarization. Treatment with RA and vitamin A partially reversed the impaired vascular and alveolar development induced by VEGF inhibition. Thus we identified RA as a lung angiocrine that regulates alveolarization through autocrine regulation of endothelial development and paracrine regulation of elastin synthesis via induction of FGF-18 in mesenchymal cells.
Collapse
Affiliation(s)
- Eun Jun Yun
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Walter Lorizio
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Gregory Seedorf
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Steven H Abman
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Thiennu H Vu
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| |
Collapse
|
11
|
Francis BN, Hale A, Channon KM, Wilkins MR, Zhao L. Effects of tetrahydrobiopterin oral treatment in hypoxia-induced pulmonary hypertension in rat. Pulm Circ 2015; 4:462-70. [PMID: 25621160 DOI: 10.1086/677361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) plays a major role in maintaining pulmonary vascular homeostasis. Tetrahydrobiopterin (BH4), an essential cofactor that stabilizes the dimerization of eNOS and balances nitric oxide (NO) and superoxide production, may have therapeutic potential in pulmonary hypertension. In the isolated perfused lung, we demonstrated a direct effect of exogenous administration of BH4 on pulmonary NO production, leading to acute vasorelaxation during the plateau phase of hypoxia-induced pulmonary vasoconstriction. In the chronic hypoxia-induced pulmonary hypertension rat model, chronic BH4 oral administration attenuated the pressor response to hypoxia (mean pulmonary artery pressure ± standard error of the mean, 31.8 ± 0.5 mmHg at 100 mg/kg/day; placebo group, 36.3 ± 0.6 mmHg; P < 0.05). During telemetric monitoring, right ventricular systolic pressure was reduced by approximately 50% after 1 week of BH4 treatment at 100 mg/kg/day. BH4 at 100 mg/kg/day reduced right ventricular hypertrophy (from 0.55 ± 0.01 to 0.50 ± 0.01; P < 0.05) and pulmonary vascular muscularization (from 79.2% ± 2% to 65.2% ± 3%; P < 0.01). BH4 treatment enhanced lung eNOS activity and reduced superoxide production, with a net increase in cyclic guanosine monophosphate levels. BH4 is effective in attenuating pulmonary hypertension in the hypoxic rat model when given as a rescue therapy.
Collapse
Affiliation(s)
- Bahaa N Francis
- Centre for Pharmacology and Therapeutics, Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ashley Hale
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Keith M Channon
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin R Wilkins
- Centre for Pharmacology and Therapeutics, Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Lan Zhao
- Centre for Pharmacology and Therapeutics, Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
12
|
Papapetropoulos A, Hobbs AJ, Topouzis S. Extending the translational potential of targeting NO/cGMP-regulated pathways in the CVS. Br J Pharmacol 2015; 172:1397-414. [PMID: 25302549 DOI: 10.1111/bph.12980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 09/08/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of NO as both an endogenous signalling molecule and as a mediator of the cardiovascular effects of organic nitrates was acknowledged in 1998 by the Nobel Prize in Physiology/Medicine. The characterization of its downstream signalling, mediated through stimulation of soluble GC (sGC) and cGMP generation, initiated significant translational interest, but until recently this was almost exclusively embodied by the use of PDE5 inhibitors in erectile dysfunction. Since then, research progress in two areas has contributed to an impressive expansion of the therapeutic targeting of the NO-sGC-cGMP axis: first, an increased understanding of the molecular events operating within this complex pathway and second, a better insight into its dys-regulation and uncoupling in human disease. Already-approved PDE5 inhibitors and novel, first-in-class molecules, which up-regulate the activity of sGC independently of NO and/or of the enzyme's haem prosthetic group, are undergoing clinical evaluation to treat pulmonary hypertension and myocardial failure. These molecules, as well as combinations or second-generation compounds, are also being assessed in additional experimental disease models and in patients in a wide spectrum of novel indications, such as endotoxic shock, diabetic cardiomyopathy and Becker's muscular dystrophy. There is well-founded optimism that the modulation of the NO-sGC-cGMP pathway will sustain the development of an increasing number of successful clinical candidates for years to come.
Collapse
|
13
|
Wandall-Frostholm C, Skaarup LM, Sadda V, Nielsen G, Hedegaard ER, Mogensen S, Köhler R, Simonsen U. Pulmonary hypertension in wild type mice and animals with genetic deficit in KCa2.3 and KCa3.1 channels. PLoS One 2014; 9:e97687. [PMID: 24858807 PMCID: PMC4032241 DOI: 10.1371/journal.pone.0097687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/22/2014] [Indexed: 11/18/2022] Open
Abstract
Objective In vascular biology, endothelial KCa2.3 and KCa3.1 channels contribute to arterial blood pressure regulation by producing membrane hyperpolarization and smooth muscle relaxation. The role of KCa2.3 and KCa3.1 channels in the pulmonary circulation is not fully established. Using mice with genetically encoded deficit of KCa2.3 and KCa3.1 channels, this study investigated the effect of loss of the channels in hypoxia-induced pulmonary hypertension. Approach and Result Male wild type and KCa3.1−/−/KCa2.3T/T(+DOX) mice were exposed to chronic hypoxia for four weeks to induce pulmonary hypertension. The degree of pulmonary hypertension was evaluated by right ventricular pressure and assessment of right ventricular hypertrophy. Segments of pulmonary arteries were mounted in a wire myograph for functional studies and morphometric studies were performed on lung sections. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, increased lung weight, and increased hematocrit levels in either genotype. The KCa3.1−/−/KCa2.3T/T(+DOX) mice developed structural alterations in the heart with increased right ventricular wall thickness as well as in pulmonary vessels with increased lumen size in partially- and fully-muscularized vessels and decreased wall area, not seen in wild type mice. Exposure to chronic hypoxia up-regulated the gene expression of the KCa2.3 channel by twofold in wild type mice and increased by 2.5-fold the relaxation evoked by the KCa2.3 and KCa3.1 channel activator NS309, whereas the acetylcholine-induced relaxation - sensitive to the combination of KCa2.3 and KCa3.1 channel blockers, apamin and charybdotoxin - was reduced by 2.5-fold in chronic hypoxic mice of either genotype. Conclusion Despite the deficits of the KCa2.3 and KCa3.1 channels failed to change hypoxia-induced pulmonary hypertension, the up-regulation of KCa2.3-gene expression and increased NS309-induced relaxation in wild-type mice point to a novel mechanism to counteract pulmonary hypertension and to a potential therapeutic utility of KCa2.3/KCa3.1 activators for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Veeranjaneyulu Sadda
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Gorm Nielsen
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ralf Köhler
- Institute for Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Aragon Institute of Health Sciences I+CS and ARAID, Zaragoza, Spain
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Xie L, Zhang X, Qi D, Guo X, Pang B, Du Y, Zou X, Guo S, Zhao X. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau. Nitric Oxide 2014; 38:38-44. [DOI: 10.1016/j.niox.2014.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 02/19/2014] [Accepted: 02/27/2014] [Indexed: 12/28/2022]
|
15
|
Acker SN, Seedorf GJ, Abman SH, Nozik-Grayck E, Partrick DA, Gien J. Pulmonary artery endothelial cell dysfunction and decreased populations of highly proliferative endothelial cells in experimental congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L943-52. [PMID: 24124189 PMCID: PMC3882539 DOI: 10.1152/ajplung.00226.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023] Open
Abstract
Decreased lung vascular growth and pulmonary hypertension contribute to poor outcomes in congenital diaphragmatic hernia (CDH). Mechanisms that impair angiogenesis in CDH are poorly understood. We hypothesize that decreased vessel growth in CDH is caused by pulmonary artery endothelial cell (PAEC) dysfunction with loss of a highly proliferative population of PAECs (HP-PAEC). PAECs were harvested from near-term fetal sheep that underwent surgical disruption of the diaphragm at 60-70 days gestational age. Highly proliferative potential was measured via single cell assay. PAEC function was assessed by assays of growth and tube formation and response to known proangiogenic stimuli, vascular endothelial growth factor (VEGF), and nitric oxide (NO). Western blot analysis was used to measure content of angiogenic proteins, and superoxide production was assessed. By single cell assay, the proportion of HP-PAEC with growth of >1,000 cells was markedly reduced in the CDH PAEC, from 29% (controls) to 1% (CDH) (P < 0.0001). Compared with controls, CDH PAEC growth and tube formation were decreased by 31% (P = 0.012) and 54% (P < 0.001), respectively. VEGF and NO treatments increased CDH PAEC growth and tube formation. VEGF and VEGF-R2 proteins were increased in CDH PAEC; however, eNOS and extracellular superoxide dismutase proteins were decreased by 29 and 88%, respectively. We conclude that surgically induced CDH in fetal sheep causes endothelial dysfunction and marked reduction of the HP-PAEC population. We speculate that this CDH PAEC phenotype contributes to impaired vascular growth in CDH.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/cytology
- Endothelial Cells/metabolism
- Endothelium, Vascular/metabolism
- Female
- Hernia, Diaphragmatic/metabolism
- Hernia, Diaphragmatic/pathology
- Hernia, Diaphragmatic/physiopathology
- Hernias, Diaphragmatic, Congenital
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Neovascularization, Physiologic/drug effects
- Nitric Oxide/metabolism
- Pulmonary Artery/metabolism
- Sheep
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Shannon N Acker
- Univ. of Colorado School of Medicine, 12631 E. 17th Ave., C302, Aurora, CO 80045.
| | | | | | | | | | | |
Collapse
|
16
|
Dubois M, Delannoy E, Duluc L, Closs E, Li H, Toussaint C, Gadeau AP, Gödecke A, Freund-Michel V, Courtois A, Marthan R, Savineau JP, Muller B. Biopterin metabolism and eNOS expression during hypoxic pulmonary hypertension in mice. PLoS One 2013; 8:e82594. [PMID: 24312428 PMCID: PMC3842263 DOI: 10.1371/journal.pone.0082594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.
Collapse
Affiliation(s)
- Mathilde Dubois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Estelle Delannoy
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Lucie Duluc
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Ellen Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Véronique Freund-Michel
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Arnaud Courtois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Jean-Pierre Savineau
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Bernard Muller
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
17
|
Jiang DM, Han J, Zhu JH, Fu GS, Zhou BQ. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension. PLoS One 2013; 8:e79215. [PMID: 24260171 PMCID: PMC3832480 DOI: 10.1371/journal.pone.0079215] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/19/2013] [Indexed: 11/27/2022] Open
Abstract
Background Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH). Some paracrine factors secreted by bone marrow–derived endothelial progenitor cells (BMEPCs) have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT)-induced PAH via producing vasoprotective substances in a paracrine fashion. Methods and Results Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2) expression, prostacyclin (PGI2) and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS) and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. Conclusions Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.
Collapse
Affiliation(s)
- Dong-Mei Jiang
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jun-Hui Zhu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Guo-Sheng Fu
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bin-Quan Zhou
- Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
18
|
Farkas L, Kolb M. Vascular repair and regeneration as a therapeutic target for pulmonary arterial hypertension. ACTA ACUST UNITED AC 2013; 85:355-64. [PMID: 23594605 DOI: 10.1159/000350177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The last decade has seen substantial changes in our understanding of the pathobiology of pulmonary arterial hypertension (PAH), a severe and devastating disease without curative treatment. It is now accepted that injury to the endothelial cells of the pulmonary arteries is central for the subsequent development of lumen-obliterative lung vascular lesions. A variety of circulating and lung-resident progenitor and stem cells likely contribute to vascular integrity, and evidence for the presence of cells expressing stem and progenitor cell markers is found inside and in the immediate vicinity of pulmonary vascular lesions in PAH. The currently available vasodilator therapies mainly target enhanced vasoconstriction in the lung circulation and help to maintain or improve right ventricular function, but do not treat pulmonary vascular remodeling, the underlying cause of the disease. Vascular gene therapy and cell therapy with progenitor and stem cells is a progressing field in the context of the development of novel treatment options for PAH, but the majority of the studies are currently performed at the level of preclinical studies in animal models. The current review provides an overview of the current knowledge on cell- and gene therapy-based approaches for vascular repair and regeneration in PAH.
Collapse
Affiliation(s)
- Laszlo Farkas
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, Victoria Johnson Center for Obstructive Lung Disease, Virginia Commonwealth University, Richmond, VA 23298-0456, USA. lfarkas @ vcu.edu
| | | |
Collapse
|
19
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
20
|
Norton CE, Jernigan NL, Kanagy NL, Walker BR, Resta TC. Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species. J Appl Physiol (1985) 2011; 111:980-8. [PMID: 21757577 DOI: 10.1152/japplphysiol.01286.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension. IH causes oxidative stress that may limit bioavailability of the endothelium-derived vasodilator nitric oxide (NO) and thus contribute to this hypertensive response. We therefore hypothesized that increased vascular superoxide anion (O(2)(-)) generation reduces NO-dependent pulmonary vasodilation following IH. To test this hypothesis, we examined effects of the O(2)(-) scavenger tiron on vasodilatory responses to the endothelium-dependent vasodilator ionomycin and the NO donor S-nitroso-N-acetylpenicillamine in isolated lungs from hypocapnic-IH (H-IH; 3 min cycles of 5% O(2)/air flush, 7 h/day, 4 wk), eucapnic-IH (E-IH; cycles of 5% O(2), 5% CO(2)/air flush), and sham-treated (air/air cycled) rats. Next, we assessed effects of endogenous O(2)(-) on NO- and cGMP-dependent vasoreactivity and measured O(2)(-) levels using the fluorescent indicator dihydroethidium (DHE) in isolated, endothelium-disrupted small pulmonary arteries from each group. Both E-IH and H-IH augmented NO-dependent vasodilation; however, enhanced vascular smooth muscle (VSM) reactivity to NO following H-IH was masked by an effect of endogenous O(2)(-). Furthermore, H-IH and E-IH similarly increased VSM sensitivity to cGMP, but this response was independent of either O(2)(-) generation or altered arterial protein kinase G expression. Finally, both H-IH and E-IH increased arterial O(2)(-) levels, although this response was more pronounced following H-IH, and H-IH exposure resulted in greater protein tyrosine nitration indicative of increased NO scavenging by O(2)(-). We conclude that IH increases pulmonary VSM sensitivity to NO and cGMP. Furthermore, endogenous O(2)(-) limits NO-dependent vasodilation following H-IH through an apparent reduction in bioavailable NO.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA.
| | | | | | | | | |
Collapse
|
21
|
Koo HS, Kim KC, Hong YM. Gene expressions of nitric oxide synthase and matrix metalloproteinase-2 in monocrotaline-induced pulmonary hypertension in rats after bosentan treatment. Korean Circ J 2011; 41:83-90. [PMID: 21430993 PMCID: PMC3053565 DOI: 10.4070/kcj.2011.41.2.83] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/21/2010] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives Nitric oxide (NO) is a major endothelium dependent vasomediator and growth inhibitor. NO synthesis is catalyzed by endothelial nitric oxide synthase (eNOS), and NO can also produce peroxynitrite, which activates matrix metalloproteinases (MMPs). The purpose of this study was to determine the gene expression of eNOS and MMP-2 in the lungs of a rat model of pulmonary hypertension after bosentan treatment. Materials and Methods Six-week-old male Sprague-Dawley rats were treated as follows: control group, subcutaneous (sc) injection of saline; monocrotaline (MCT) group, sc injection of MCT (60 mg/kg); and bosentan group, sc injection of MCT (60 mg/kg) plus 20 mg/day bosentan orally. The rats were sacrificed after 1, 5, 7, 14 and 28 days. Results The right ventricle/(left ventricle+septum) ratio significantly increased in the MCT group compared to the control group on day 14 and 28. The expression of eNOS messenger ribonucleic acid was significantly increased in the MCT group compared to the control group on day 28. MMP-2 gene expression was significantly increased in the MCT-treated rats compared to the control group on day 5 and 28. Following bosentan treatment to reduce pulmonary hypertension, the expression levels of MMP-2 gene were significantly decreased on day 7 and 28. eNOS and tissue inhibitor of MMPs genes were also significantly decreased on day 28 after bosentan treatment. Conclusion These results suggest that elevated eNOS expression may be responsible for MMP-2 activation. The causal relationship between eNOS and MMP-2 and their role in pulmonary hypertension require further investigations.
Collapse
Affiliation(s)
- Hee Sun Koo
- Department of Pediatrics, School of Medicine, Ewha Womans University, Seoul, Korea
| | | | | |
Collapse
|
22
|
Beleslin-Čokić BB, Cokić VP, Wang L, Piknova B, Teng R, Schechter AN, Noguchi CT. Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells. Cytokine 2011; 54:129-35. [PMID: 21324713 DOI: 10.1016/j.cyto.2011.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 12/22/2010] [Accepted: 01/20/2011] [Indexed: 01/26/2023]
Abstract
Acute lung exposure to low oxygen results in pulmonary vasoconstriction and redistribution of blood flow. We used human microvascular endothelial cells from lung (HMVEC-L) to study the acute response to oxygen stress. We observed that hypoxia and erythropoietin (EPO) increased erythropoietin receptor (EPOR) gene expression and protein level in HMVEC-L. In addition, EPO dose- and time-dependently stimulated nitric oxide (NO) production. This NO stimulation was evident despite hypoxia induced reduction of endothelial NO synthase (eNOS) gene expression. Western blot of phospho-eNOS (serine1177) and eNOS and was significantly induced by hypoxia but not after EPO treatment. However, iNOS increased at hypoxia and with EPO stimulation compared to normal oxygen tension. In accordance with our previous results of NO induction by EPO at low oxygen tension in human umbilical vein endothelial cells and bone marrow endothelial cells, these results provide further evidence in HMVEC-L for EPO regulation of NO production to modify the effects of hypoxia and cause compensatory vasoconstriction.
Collapse
Affiliation(s)
- Bojana B Beleslin-Čokić
- Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
23
|
Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res 2010; 89:542-52. [PMID: 21177703 DOI: 10.1093/cvr/cvq370] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an insidious disease of the small pulmonary arteries that is progressive in nature and results in right heart strain/hypertrophy and eventually failure. The aetiologies may vary but several common pathophysiological changes result in this phenotype, including vasoconstriction, thrombosis, and vascular proliferation. Data suggest that nitric oxide (NO) signalling is vasoprotective in the setting of PAH. The classic arginine-NO synthase (NOS)-NO signalling pathway may represent an adaptive response that is eventually dysregulated during disease progression. Dysregulation occurs secondary to NOS enzyme down-regulation, enzymatic uncoupling, and arginine catabolism by vascular and red cell arginases and by direct NO inactivation via catabolic reactions with superoxide or cell-free plasma haemoglobin (in the case of haemolytic disease). The anion nitrite, which has recently been recognized as a source of NO that circumvents the arginine-NOS pathway, may serve as an additional adaptive signalling pathway that is now appreciated to have a vasoregulatory role in the pulmonary and systemic vasculature. Inhaled nebulized sodium nitrite is a relatively potent pulmonary vasodilator in the setting of hypoxia and is also anti-proliferative in multiple experimental models of pulmonary hypertension. Multiple nitrite reductases have been shown to be relevant in the conversion of nitrite to metabolically active NO, including deoxy-haemoglobin and myoglobin in the circulation and heart, respectively, and xanthine oxidoreductase in the lung parenchyma.
Collapse
Affiliation(s)
- Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, NW 607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
24
|
Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K. Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J 2010; 74:1696-703. [PMID: 20606328 DOI: 10.1253/circj.cj-10-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND An earlier study showed that all-trans-retinoic acid (ATRA) prevents the development of monocrotalin-induced pulmonary hypertension (PH). The purpose of the present study was to determine the effect of ATRA on another model of chronic hypoxia-induced PH. METHODS AND RESULTS Male Sprague-Dawley rats were given 30 mg/kg ATRA or vehicle only by gavage once daily for 14 days during hypobaric hypoxic exposure. Chronic hypoxic exposure induced PH, right ventricular hypertrophy (RVH), and hypertensive pulmonary vascular changes. Quantitative morphometry of the pulmonary arteries showed that ATRA treatment significantly reduced the percentage of muscularized arteries in peripheral pulmonary arteries only with an external diameter between 15 and 50 microm. ATRA treatment also significantly reduced the medial wall thickness in small muscular arteries only with an external diameter between 50 and 100 microm. Unfortunately, these reductions did not accompany the lowering of pulmonary artery pressure nor decrease in RVH. Chronic hypoxia-induced PH rats with ATRA had a loss in body weight. Chronic hypoxia increased the expression of endothelial nitric oxide synthase in the lung on western blotting and immunohistochemistry, in which ATRA treatment had no effect. CONCLUSIONS The administration of ATRA might not have a therapeutic role in preventing the development of chronic hypoxia-induced PH, because of body weight loss and the subtle preventable effects of vascular changes.
Collapse
Affiliation(s)
- Erquan Zhang
- Anesthesiology and Critical Care Medicine, Physiology, Pediatrics, Mie University School of Medicine, Tsu and Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats. J Anesth 2010; 24:432-40. [PMID: 20300779 DOI: 10.1007/s00540-010-0912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). METHODS A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. RESULTS Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. CONCLUSIONS cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.
Collapse
|
26
|
Weissmann N, Hackemack S, Dahal BK, Pullamsetti SS, Savai R, Mittal M, Fuchs B, Medebach T, Dumitrascu R, Eickels MV, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT. The soluble guanylate cyclase activator HMR1766 reverses hypoxia-induced experimental pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol 2009; 297:L658-65. [PMID: 19617308 DOI: 10.1152/ajplung.00189.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe pulmonary hypertension (PH) is a disabling disease with high mortality, characterized by pulmonary vascular remodeling and right heart hypertrophy. In mice with PH induced by chronic hypoxia, we examined the acute and chronic effects of the soluble guanylate cyclase (sGC) activator HMR1766 on hemodynamics and pulmonary vascular remodeling. In isolated perfused mouse lungs from control animals, HMR1766 dose-dependently inhibited the pressor response of acute hypoxia. This dose-response curve was shifted leftward when the effects of HMR1766 were investigated in isolated lungs from chronic hypoxic animals for 21 days at 10% oxygen. Mice exposed for 21 or 35 days to chronic hypoxia developed PH, right heart hypertrophy, and pulmonary vascular remodeling. Treatment with HMR1766 (10 mg x kg(-1) x day(-1)), after full establishment of PH from day 21 to day 35, significantly reduced PH, as measured continuously by telemetry. In addition, right ventricular (RV) hypertrophy and structural remodeling of the lung vasculature were reduced. Pharmacological activation of oxidized sGC partially reverses hemodynamic and structural changes in chronic hypoxia-induced experimental PH.
Collapse
Affiliation(s)
- Norbert Weissmann
- Univ. of Giessen Lung Center Medical Clinic II/V, Klinikstr. 36, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase-alpha1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 2009; 297:L475-86. [PMID: 19592461 DOI: 10.1152/ajplung.00060.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an important role in smooth muscle relaxation and phenotypic regulation. However, the transcriptional regulation of sGC gene expression is largely unknown. It has been shown that sGC expression increases in pulmonary arteries from chronic hypoxia-induced pulmonary hypertensive animals. Since the transcription factor NFATc3 is required for the upregulation of the smooth muscle hypertrophic/differentiation marker alpha-actin in pulmonary artery smooth muscle cells from chronically hypoxic mice, we hypothesized that NFATc3 is required for the regulation of sGC-alpha1 expression during chronic hypoxia. Exposure to chronic hypoxia for 2 days induced a decrease in sGC-alpha1 expression in mouse pulmonary arteries. This reduction was independent of NFATc3 but mediated by nuclear accumulation of the mRNA-stabilizing protein human antigen R (HuR). Consistent with our hypothesis, chronic hypoxia (21 days) upregulated pulmonary artery sGC-alpha1 expression, bringing it back to the level of the normoxic controls. This response was prevented in NFATc3 knockout and cyclosporin (calcineurin/NFATc inhibitor)-treated mice. Furthermore, we identified effective binding sites for NFATc in the mouse sGC-alpha1 promoter. Activation of NFATc3 increased sGC-alpha1 promoter activity in human embryonic derived kidney cells, rat aortic-derived smooth muscle cells, and human pulmonary artery smooth muscle cells. Our results suggest that NFATc3 and HuR are important regulators of sGC-alpha1 expression in pulmonary vascular smooth muscle cells during chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sergio de Frutos
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
28
|
Changes in pulmonary blood flow distribution in monocrotaline compared with hypoxia-induced models of pulmonary hypertension: assessed using synchrotron radiation. J Hypertens 2009; 27:1410-9. [DOI: 10.1097/hjh.0b013e32832af6a1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Tsai EJ, Kass DA. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol Ther 2009; 122:216-38. [PMID: 19306895 PMCID: PMC2709600 DOI: 10.1016/j.pharmthera.2009.02.009] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 02/07/2023]
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade - cGMP synthesis, effector activation, or catabolism - have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies.
Collapse
Affiliation(s)
- Emily J Tsai
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
30
|
Abstract
The beneficial effects of statins, the most widely prescribed class of drugs in the world, are now recognized to extend well beyond their lipid-lowering properties. Through a combination of both distinct and interdependent effects on endothelial cell (EC) Rho GTPase regulation, NAPDH oxidase activity, NO bioavailability, and differential gene expression, statins confer significant protection of the vasculature. Abundant in vitro data, in addition to myriad reports relying on a range of animal models, now firmly support the idea that these drugs may serve as novel and effective therapeutic agents in a variety of disease states characterized by vascular dysfunction.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Section of Pulmonary and Critical Care Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
31
|
Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 2008; 49:134-40. [PMID: 18692595 DOI: 10.1016/j.vph.2008.06.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA
| | | | | |
Collapse
|
32
|
Peyter AC, Muehlethaler V, Liaudet L, Marino M, Di Bernardo S, Diaceri G, Tolsa JF. Muscarinic receptor M1 and phosphodiesterase 1 are key determinants in pulmonary vascular dysfunction following perinatal hypoxia in mice. Am J Physiol Lung Cell Mol Physiol 2008; 295:L201-13. [PMID: 18469116 DOI: 10.1152/ajplung.00264.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perinatal adverse events such as limitation of nutrients or oxygen supply are associated with the occurrence of diseases in adulthood, like cardiovascular diseases and diabetes. We investigated the long-term effects of perinatal hypoxia on the lung circulation, with particular attention to the nitric oxide (NO)/cGMP pathway. Mice were placed under hypoxia in utero 5 days before delivery and for 5 days after birth. Pups were then bred in normoxia until adulthood. Adults born in hypoxia displayed an altered regulation of pulmonary vascular tone with higher right ventricular pressure in normoxia and increased sensitivity to acute hypoxia compared with controls. Perinatal hypoxia dramatically decreased endothelium-dependent relaxation induced by ACh in adult pulmonary arteries (PAs) but did not influence NO-mediated endothelium-independent relaxation. The M(3) muscarinic receptor was implicated in the relaxing action of ACh and M(1) muscarinic receptor (M(1)AChR) in its vasoconstrictive effects. Pirenzepine or telenzepine, two preferential inhibitors of M(1)AChR, abolished the adverse effects of perinatal hypoxia on ACh-induced relaxation. M(1)AChR mRNA expression was increased in lungs and PAs of mice born in hypoxia. The phosphodiesterase 1 (PDE1) inhibitor vinpocetine also reversed the decrease in ACh-induced relaxation following perinatal hypoxia, suggesting that M(1)AChR-mediated alteration of ACh-induced relaxation is due to the activation of calcium-dependent PDE1. Therefore, perinatal hypoxia leads to an altered pulmonary circulation in adulthood with vascular dysfunction characterized by impaired endothelium-dependent relaxation and M(1)AChR plays a predominant role. This raises the possibility that muscarinic receptors could be key determinants in pulmonary vascular diseases in relation to "perinatal imprinting."
Collapse
Affiliation(s)
- Anne-Christine Peyter
- Neonatal Research Laboratory, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Snow JB, Kitzis V, Norton CE, Torres SN, Johnson KD, Kanagy NL, Walker BR, Resta TC. Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity. J Appl Physiol (1985) 2007; 104:110-8. [PMID: 17947499 DOI: 10.1152/japplphysiol.00698.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension (PH) and right heart failure, similar to chronic sustained hypoxia (CH). Supplemental CO(2), however, attenuates hypoxic PH. We therefore hypothesized that, similar to CH, IH elicits PH and associated increases in arterial endothelial nitric oxide synthase (eNOS) expression, ionomycin-dependent vasodilation, and receptor-mediated pulmonary vasoconstriction. We further hypothesized that supplemental CO(2) inhibits these responses to IH. To test these hypotheses, we measured eNOS expression by Western blot in intrapulmonary arteries from CH (2 wk, 0.5 atm), hypocapnic IH (H-IH) (3 min cycles of 5% O(2)/air flush, 7 h/day, 2 wk), and eucapnic IH (E-IH) (3 min cycles of 5% O(2), 5% CO(2)/air flush, 7 h/day, 2 wk) rats and their respective controls. Furthermore, vasodilatory responses to the calcium ionophore ionomycin and vasoconstrictor responses to the thromboxane mimetic U-46619 were measured in isolated saline-perfused lungs from each group. Hematocrit, arterial wall thickness, and right ventricle-to-total ventricle weight ratios were additionally assessed as indexes of polycythemia, arterial remodeling, and PH, respectively. Consistent with our hypotheses, E-IH resulted in attenuated polycythemia, arterial remodeling, RV hypertrophy, and eNOS upregulation compared with H-IH. However, in contrast to CH, neither H-IH nor E-IH increased ionomycin-dependent vasodilation. Furthermore, H-IH and E-IH similarly augmented U-46619-induced pulmonary vasoconstriction but to a lesser degree than CH. We conclude that maintenance of eucapnia decreases IH-induced PH and upregulation of arterial eNOS. In contrast, increases in pulmonary vasoconstrictor reactivity following H-IH are unaltered by exposure to supplemental CO(2).
Collapse
Affiliation(s)
- Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gien J, Seedorf GJ, Balasubramaniam V, Markham N, Abman SH. Intrauterine pulmonary hypertension impairs angiogenesis in vitro: role of vascular endothelial growth factor nitric oxide signaling. Am J Respir Crit Care Med 2007; 176:1146-53. [PMID: 17823355 PMCID: PMC2176095 DOI: 10.1164/rccm.200705-750oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Mechanisms that impair angiogenesis in neonatal persistent pulmonary hypertension (PPHN) are poorly understood. OBJECTIVES To determine if PPHN alters fetal pulmonary artery endothelial cell (PAEC) phenotype and impairs growth and angiogenesis in vitro, and if altered vascular endothelial growth factor-nitric oxide (VEGF-NO) signaling contributes to this abnormal phenotype. METHODS Proximal PAECs were harvested from fetal sheep that had undergone partial ligation of the ductus arteriosus in utero (PPHN) and age-matched control animals. Growth and tube formation +/- VEGF and NO stimulation and inhibition were studied in normal and PPHN PAECs. Western blot analysis was performed for VEGF, VEGF receptor-2 (VEGF-R2), and endothelial NO synthase (eNOS) protein content. NO production with VEGF administration was measured in normal and PPHN PAECs. MEASUREMENTS AND MAIN RESULTS PPHN PAECs demonstrate decreased growth and tube formation in vitro. VEGF and eNOS protein expression were decreased in PPHN PAECs, whereas VEGF-R2 protein expression was not different. VEGF and NO increased PPHN PAEC growth and tube formation to values achieved in normal PAECs. VEGF inhibition decreased growth and tube formation in normal and PPHN PAECs. NOS inhibition decreased growth in normal and PPHN PAECs, but tube formation was only reduced in normal PAECs. NO reversed the inhibitory effects of VEGF-R2 inhibition on tube formation in normal and PPHN PAECs. VEGF increased NO production in normal and PPHN PAECs. CONCLUSIONS PPHN in utero causes sustained impairment of PAEC phenotype in vitro, with reduced PAEC growth and tube formation and down-regulation of VEGF and eNOS protein. VEGF and NO enhanced growth and tube formation of PPHN PAECs.
Collapse
Affiliation(s)
- Jason Gien
- Section of Neonatology, Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Homeostasis in the pulmonary vasculature is maintained by the actions of vasoactive compounds, including nitric oxide (NO). NO is critical for normal development of the pulmonary vasculature and continues to mediate normal vasoregulation in adulthood. Loss of NO bioavailability is one component of the endothelial dysfunction and vascular pathology found in pulmonary hypertension (PH). A broad research effort continues to expand our understanding of the control of NO production and NO signaling and has generated novel theories on the importance of pulmonary NO production in the control of the systemic vasculature. This understanding has led to exciting developments in our ability to treat PH, including inhaled NO and phosphodiesterase inhibitors, and to several promising directions for future therapies using nitric oxide-donor compounds, stimulators of soluble guanylate cyclase, progenitor cells expressing NO synthase (NOS), and NOS gene manipulation.
Collapse
Affiliation(s)
- Matthew P Coggins
- Cardiology Division, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | |
Collapse
|
36
|
Jiang BH, Maruyama J, Yokochi A, Mitani Y, Maruyama K. A novel inhibitor of inducible nitric oxide synthase, ONO-1714, does not ameliorate hypoxia-induced pulmonary hypertension in rats. Lung 2007; 185:303-308. [PMID: 17721804 DOI: 10.1007/s00408-007-9024-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/24/2007] [Indexed: 11/30/2022]
Abstract
A recent study showed that long-term administration of the inducible nitric oxide synthase (iNOS) inhibitor L-NIL reduced the development of pulmonary hypertension. The purpose of the present study was to identify the effect of an another iNOS inhibitor, ONO-1714, on the development of pulmonary hypertensive vascular changes in chronic hypoxic pulmonary hypertension in rats. ONO-1714 was administered to rats exposed to hypobaric hypoxia (air at 380 mmHg) for 10 days. Muscularization of normally nonmuscular peripheral arteries and medial hypertrophy of normally muscular arteries were assessed by light microscopy. iNOS mRNA and protein levels of the lung were assessed in normal and hypoxic rats. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, and hypertensive pulmonary vascular changes. Although an acute single injection of ONO-1714 induced a significant increase in mean pulmonary artery pressure in chronic hypoxic pulmonary hypertensive rats, the increase was slight and transient. There were no significant differences among rats with and without long-term administration of ONO-1714 in pulmonary artery pressure, right ventricular hypertrophy, medial wall thickness of muscular arteries, and the percentage of muscularized arteries at the alveolar wall and duct levels. Although there was a significantly increased expression of iNOS as assessed with the reverse-transcription polymerase chain reaction in rats that were exposed to 10 days of hypobaric hypoxia, we could not detect a significant level of iNOS protein by Western blotting. ONO-1714 does not have a therapeutic role in preventing the development of chronic hypoxic pulmonary hypertension.
Collapse
MESH Headings
- Amidines/pharmacology
- Amidines/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Blood Pressure/drug effects
- Blotting, Western
- Body Weight/drug effects
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Hematocrit
- Heterocyclic Compounds, 2-Ring/pharmacology
- Heterocyclic Compounds, 2-Ring/therapeutic use
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/pathology
- Hypoxia/physiopathology
- Lung/blood supply
- Lung/drug effects
- Lung/enzymology
- Lung/pathology
- Male
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
Affiliation(s)
- Bao Hua Jiang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Junko Maruyama
- Department of Physiology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
37
|
Rodríguez-Juárez F, Aguirre E, Cadenas S. Relative sensitivity of soluble guanylate cyclase and mitochondrial respiration to endogenous nitric oxide at physiological oxygen concentration. Biochem J 2007; 405:223-31. [PMID: 17441787 PMCID: PMC1904527 DOI: 10.1042/bj20070033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.
Collapse
Affiliation(s)
- Félix Rodríguez-Juárez
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Enara Aguirre
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Susana Cadenas
- CNIC (Centro Nacional de Investigaciones Cardiovasculares), Biology of Nitric Oxide Laboratory, Melchor Fernández Almagro 3, 28029 Madrid, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Thirunavukkarasu M, Juhasz B, Zhan L, Menon VP, Tosaki A, Otani H, Maulik N. VEGFR1 (Flt-1+/-) gene knockout leads to the disruption of VEGF-mediated signaling through the nitric oxide/heme oxygenase pathway in ischemic preconditioned myocardium. Free Radic Biol Med 2007; 42:1487-95. [PMID: 17448895 PMCID: PMC1924469 DOI: 10.1016/j.freeradbiomed.2007.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/19/2007] [Accepted: 02/07/2007] [Indexed: 11/22/2022]
Abstract
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.
Collapse
Affiliation(s)
- Mahesh Thirunavukkarasu
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Medical Center, Farmington, CT, USA
| | - Bela Juhasz
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Medical Center, Farmington, CT, USA
| | - Lijun Zhan
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Medical Center, Farmington, CT, USA
| | | | - Arpad Tosaki
- Department of Physiology, University of Debrasen, Hungary
| | - Hajime Otani
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, School of Medicine, Osaka, Japan
| | - Nilanjana Maulik
- Department of Surgery, Molecular Cardiology and Angiogenesis Laboratory, University of Connecticut Medical Center, Farmington, CT, USA
| |
Collapse
|
39
|
Walsh MP, Marshall JM. The role of adenosine in the early respiratory and cardiovascular changes evoked by chronic hypoxia in the rat. J Physiol 2006; 575:277-89. [PMID: 16690710 PMCID: PMC1819418 DOI: 10.1113/jphysiol.2006.108779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Experiments were performed on anaesthetized normoxic (N) rats and chronically hypoxic rats that had been exposed to 12% O2 for 1, 3 or 7 days (1, 3 or 7CH rats). The adenosine A1 receptor antagonist DPCPX did not affect the resting hyperventilation of 1-7CH rats breathing 12% O2 and increased resting heart rate (HR) in 1CH rats only. DPCPX partially restored the decreased baseline arterial pressure (ABP) and increased femoral vascular conductance (FVC) of 1 and 3CH rats, but had no effect in N or 7CH rats. DPCPX also attenuated the decrease in arterial blood pressure (ABP) and increase in FVC evoked by acute hypoxia in N and 1-7CH rats. The non-selective adenosine receptor antagonist 8-SPT had no further effect on baselines or cardiovascular responses to acute hypoxia, but attenuated the hypoxia-evoked increase in respiratory frequency in 1-7CH rats. In N, and 1 and 3CH rats, the inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine had no effect on baselines or increases in FVC evoked by acetylcholine. We propose: (i) that tonically released adenosine acting on A1 receptors reduces HR in 1CH rats and stimulates endothelial NOS in 1 and 3CH rats to decrease ABP and increase FVC, the remaining NO-dependent tonic vasodilatation being independent of iNOS activity; (ii) that in 7CH rats, tonic adenosine release has waned; (iii) that in 1-7CH rats, adenosine released by acute hypoxia stimulates A1 but not A2 receptors to produce muscle vasodilatation, and stimulates carotid body A2 receptors to increase respiration.
Collapse
Affiliation(s)
- Martin P Walsh
- Department of Physiology, The Medical School, Birmingham B15 2TT, UK
| | | |
Collapse
|
40
|
Walsh MP, Marshall JM. The early effects of chronic hypoxia on the cardiovascular system in the rat: role of nitric oxide. J Physiol 2006; 575:263-75. [PMID: 16690711 PMCID: PMC1819421 DOI: 10.1113/jphysiol.2006.108753] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Experiments were performed under Saffan anaesthesia on normoxic (N) rats and on chronically hypoxic rats exposed to 12% O2 for 1, 3 or 7 days (1, 3 or 7CH rats): N rats routinely breathed 21% O2 and CH rats 12% O2. The 1, 3 and 7CH rats showed resting hyperventilation relative to N rats, but baseline heart rate (HR) was unchanged and arterial blood pressure (ABP) was lowered. Femoral vascular conductance (FVC) was increased in 1 and 3CH rats, but not 7CH rats. When 1-7CH rats were acutely switched to breathing 21% O2 for 5 min, ABP increased and FVC decreased, consistent with removal of a hypoxic dilator stimulus that is waning in 7CH rats. We propose that this is because the increase in haematocrit and vascular remodelling in skeletal muscle help restore the O2 supply. The increases in FVC evoked by acute hypoxia (8% O2 for 5 min) and by infusion for 5 min of alpha-calcitonin gene-related peptide (alpha-CGRP), which are NO-dependent, were particularly accentuated in 1CH, relative to N rats. The NO synthesis inhibitor L-NAME increased ABP, decreased HR and greatly reduced FVC, and attenuated increases in FVC evoked by acute hypoxia and alpha-CGRP, such that baselines and responses were similar in N and 1-7CH rats. We propose that in the first few days of chronic hypoxia there is tonic NO-dependent vasodilatation in skeletal muscle that is associated with accentuated dilator responsiveness to acute hypoxia and dilator substances that are NO -dependent.
Collapse
Affiliation(s)
- Martin P Walsh
- Department of Physiology, The Medical School, Birmingham B15 2TT, UK
| | | |
Collapse
|
41
|
Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 2006; 46:235-76. [PMID: 16402905 DOI: 10.1146/annurev.pharmtox.44.101802.121844] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) is a small, diffusible, lipophilic free radical gas that mediates significant and diverse signaling functions in nearly every organ system in the body. The endothelial isoform of nitric oxide synthase (eNOS) is a key source of NO found in the cardiovascular system. This review summarizes the pharmacology of NO and the cellular regulation of endothelial NOS (eNOS). The molecular intricacies of the chemistry of NO and the enzymology of NOSs are discussed, followed by a review of the biological activities of NO. This information is then used to develop a more global picture of the pharmacological control of NO synthesis by NOSs in both physiologic conditions and pathophysiologic states.
Collapse
Affiliation(s)
- David M Dudzinski
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Jernigan NL, Broughton BRS, Walker BR, Resta TC. Impaired NO-dependent inhibition of store- and receptor-operated calcium entry in pulmonary vascular smooth muscle after chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2005; 290:L517-25. [PMID: 16243900 DOI: 10.1152/ajplung.00308.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently demonstrated that chronic hypoxia (CH) attenuates nitric oxide (NO)-mediated decreases in pulmonary vascular smooth muscle (VSM) intracellular free calcium concentration ([Ca2+]i) and promotes NO-dependent VSM Ca2+ desensitization. The objective of the current study was to identify potential mechanisms by which CH interferes with regulation of [Ca2+]i by NO. We hypothesized that CH impairs NO-mediated inhibition of store-operated (capacitative) Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) in pulmonary VSM. To test this hypothesis, we examined effects of the NO donor, spermine NONOate, on SOCE resulting from depletion of intracellular Ca2+ stores with cyclopiazonic acid, and on UTP-induced ROCE in isolated, endothelium-denuded, pressurized pulmonary arteries (213 +/- 8 microm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca2+]i. We found that the change in [Ca2+]i associated with SOCE and ROCE was significantly reduced in vessels from CH animals. Furthermore, spermine NONOate diminished SOCE and ROCE in vessels from control, but not CH animals. We conclude that NO-mediated inhibition of SOCE and ROCE is impaired after CH-induced pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Bronchodilator Agents/pharmacology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium-Transporting ATPases/antagonists & inhibitors
- Chronic Disease
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Indoles/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Nitrogen Oxides/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Rats
- Rats, Sprague-Dawley
- Spermine/analogs & derivatives
- Spermine/pharmacology
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Nikki L Jernigan
- Vascular Physiology Group, Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, MSC 08-4750, 1 Univ. of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | | | |
Collapse
|
43
|
Hampl V, Bíbová J, Banasová A, Uhlík J, Miková D, Hnilicková O, Lachmanová V, Herget J. Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2005; 290:L11-20. [PMID: 16113050 DOI: 10.1152/ajplung.00023.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenesis of hypoxic pulmonary hypertension is initiated by oxidative injury to the pulmonary vascular wall. Because nitric oxide (NO) can contribute to oxidative stress and because the inducible isoform of NO synthase (iNOS) is often upregulated in association with tissue injury, we hypothesized that iNOS-derived NO participates in the pulmonary vascular wall injury at the onset of hypoxic pulmonary hypertension. An effective and selective dose of an iNOS inhibitor, L-N6-(1-iminoethyl)lysine (L-NIL), for chronic peroral treatment was first determined (8 mg/l in drinking water) by measuring exhaled NO concentration and systemic arterial pressure after LPS injection under ketamine+xylazine anesthesia. A separate batch of rats was then exposed to hypoxia (10% O2) and given L-NIL or a nonselective inhibitor of all NO synthases, N(G)-nitro-L-arginine methyl ester (L-NAME, 500 mg/l), in drinking water. Both inhibitors, applied just before and during 1-wk hypoxia, equally reduced pulmonary arterial pressure (PAP) measured under ketamine+xylazine anesthesia. If hypoxia continued for 2 more wk after L-NIL treatment was discontinued, PAP was still lower than in untreated hypoxic controls. Immunostaining of lung vessels showed negligible iNOS presence in control rats, striking iNOS expression after 4 days of hypoxia, and return of iNOS immunostaining toward normally low levels after 20 days of hypoxia. Lung NO production, measured as NO concentration in exhaled air, was markedly elevated as early as on the first day of hypoxia. We conclude that transient iNOS induction in the pulmonary vascular wall at the beginning of chronic hypoxia participates in the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Václav Hampl
- Department of Physiology, Charles University Second Medical School, Plzenska 130/221, 150 00 Prague 5, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Littler CM, Wehling CA, Wick MJ, Fagan KA, Cool CD, Messing RO, Dempsey EC. Divergent contractile and structural responses of the murine PKC-epsilon null pulmonary circulation to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1083-93. [PMID: 16085670 DOI: 10.1152/ajplung.00472.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loss of PKC-epsilon limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-epsilon would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-epsilon wild-type (PKC-epsilon(+/+)), heterozygous null, and homozygous null (PKC-epsilon(-/-)) mice were exposed to normoxia or Hx for 5 wk. PKC-epsilon(-/-) mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-epsilon(+/+) mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-epsilon(+/+) mice) in both the proximal and distal PKC-epsilon(-/-) pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-epsilon(-/-) mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-epsilon(-/-) than PKC-epsilon(+/+) mice. In contrast, expression of nNOS in PKC-epsilon(+/+) mice decreased in response to chronic Hx, while lung levels in PKC-epsilon(-/-) mice remained unchanged. In summary, loss of PKC-epsilon results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-epsilon appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.
Collapse
Affiliation(s)
- C M Littler
- Cardiovascular Pulmonary Research Laboratory, B-133, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Grover TR, Parker TA, Markham NE, Abman SH. rhVEGF treatment preserves pulmonary vascular reactivity and structure in an experimental model of pulmonary hypertension in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2005; 289:L315-21. [PMID: 15833763 DOI: 10.1152/ajplung.00038.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that lung VEGF expression is decreased in a fetal lamb model of PPHN and that VEGF165 inhibition causes severe pulmonary hypertension in fetal lambs. Therefore, we hypothesized that treatment with rhVEGF165 would preserve endothelium-dependent vasodilation and reduce the severity of pulmonary vascular remodeling in an experimental model of PPHN. We studied the effects of daily intrapulmonary infusions of rhVEGF after partial ligation of the ductus arteriosus (DA). We performed surgery in 24 late-gestation fetal lambs and placed catheters in the main pulmonary artery, left atrium, and aorta for pressure measurements and in the left pulmonary artery for drug infusions. A pressure transducer was placed around the LPA to measure blood flow to the left lung (Qp), and the DA was surgically constricted to induce pulmonary hypertension. rhVEGF165 or vehicle was infused for 7 or 14 days. ACh or 8-BrcGMP was infused on days 2 and 13 to assess endothelium-dependent and -independent vasodilation, respectively. ACh-induced vasodilation was reduced in PPHN lambs after 14 days (change in Qp from baseline, 106% vs. 11%). In contrast, the response to ACh was preserved in lambs treated with rhVEGF (change in Qp, 94% vs. 90%). Pulmonary vasodilation to 8-BrcGMP was not altered in PPHN lambs or enhanced by VEGF treatment. rhVEGF treatment increased expression of lung eNOS protein and decreased pulmonary artery wall thickness by 34% vs. PPHN lambs. We conclude that VEGF165 preserves endothelium-dependent vasodilation, upregulates eNOS expression, and reduces the severity of pulmonary vascular remodeling in experimental PPHN.
Collapse
Affiliation(s)
- Theresa R Grover
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado School of Medicine, Denver, CO 80045, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Despite significant advances in myocardial revascularization and reperfusion, coronary artery disease and subsequently myocardial infarction, are the leading causes of morbidity and mortality in the United States. Strategies which improve the myocardial substrate during and following a myocardial infarction-such as the regrowth of functional blood vessels to the ischemic myocardium would be of great clinical importance. This review article attempts to address this important clinical issue through identifying potential signalling mechanisms by various mode of preconditioning that cause angiogenesis.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA.
| |
Collapse
|
47
|
Gonzales GF, Chung FA, Miranda S, Valdez LB, Zaobornyj T, Bustamante J, Boveris A. Heart mitochondrial nitric oxide synthase is upregulated in male rats exposed to high altitude (4,340 m). Am J Physiol Heart Circ Physiol 2005; 288:H2568-73. [PMID: 15695556 DOI: 10.1152/ajpheart.00812.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Male rats exposed for 21 days to high altitude (4,340 m) responded with arrest of weight gain and increased hematocrit and testosterone levels. High altitude significantly (58%) increased heart mitochondrial nitric oxide (NO) synthase (mtNOS) activity, whereas heart cytosolic endothelial NOS (eNOS) and liver mtNOS were not affected. Western blot analysis found heart mitochondria reacting only with anti-inducible NOS (iNOS) antibodies, whereas the postmitochondrial fraction reacted with anti-iNOS and anti-eNOS antibodies. In vitro-measured NOS activities allowed the estimation of cardiomyocyte capacity for NO production, a value that increased from 57% (sea level) to 79 nmol NO.min(-1).g heart(-1) (4,340 m). The contribution of mtNOS to total cell NO production increased from 62% (sea level) to 71% (4340 m). Heart mtNOS activity showed a linear relationship with hematocrit and a biphasic quadratic association with estradiol and testosterone. Multivariate analysis showed that exposure to high altitude linearly associates with hematocrit and heart mtNOS activity, and that testosterone-to-estradiol ratio and heart weight were not linearly associated with mtNOS activity. We conclude that high altitude triggers a physiological adaptive response that upregulates heart mtNOS activity and is associated in an opposed manner with the serum levels of testosterone and estradiol.
Collapse
Affiliation(s)
- Gustavo F Gonzales
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
48
|
Grover TR, Parker TA, Balasubramaniam V, Markham NE, Abman SH. Pulmonary hypertension impairs alveolarization and reduces lung growth in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 2004; 288:L648-54. [PMID: 15579625 DOI: 10.1152/ajplung.00288.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a clinical disorder characterized by abnormal vascular structure, growth, and reactivity. Disruption of vascular growth during early postnatal lung development impairs alveolarization, and newborns with lung hypoplasia often have severe pulmonary hypertension. To determine whether pulmonary hypertension can directly impair vascular growth and alveolarization in the fetus, we studied the effects of chronic intrauterine pulmonary hypertension on lung growth in fetal lambs. We performed surgery, which included partial constriction of the ductus arteriosus (DA) to induce pulmonary hypertension (PH, n = 14) or sham surgery (controls, n = 13) in fetal lambs at 112-125 days (term = 147 days). Tissues were harvested near term for measurement of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), mean linear intercepts (MLI), wall thickness, and vessel density of small pulmonary arteries. Chronic DA constriction caused RVH (P < 0.0001), increased wall thickness of small pulmonary arteries (P < 0.002), and reduced small pulmonary artery density (P < 0.005). PH also reduced alveolarization, causing a 27% reduction in RAC and 20% increase in MLI. Furthermore, prolonged DA constriction (21 days) not only decreased RAC and increased MLI by 30% but also caused a 25% reduction of lung-body weight ratio. We conclude that chronic PH reduces pulmonary arterial growth, decreases alveolar complexity, and impairs lung growth. We speculate that chronic hypertension impairs vascular growth, which disrupts critical signaling pathways regulating lung vascular and alveolar development, thereby interfering with alveolarization and ultimately resulting in lung hypoplasia.
Collapse
Affiliation(s)
- Theresa R Grover
- University of Colorado Health Sciences Center, Department of Pediatrics, PO Box 6508, Box F441, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
49
|
Jernigan NL, Walker BR, Resta TC. Chronic hypoxia augments protein kinase G-mediated Ca2+ desensitization in pulmonary vascular smooth muscle through inhibition of RhoA/Rho kinase signaling. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1220-9. [PMID: 15310556 DOI: 10.1152/ajplung.00196.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular smooth muscle (VSM) sensitivity to nitric oxide (NO) is enhanced in pulmonary arteries from rats exposed to chronic hypoxia (CH) compared with controls. Furthermore, in contrast to control arteries, relaxation to NO following CH is not reliant on a decrease in VSM intracellular free calcium ([Ca2+]i). We hypothesized that enhanced NO-dependent pulmonary vasodilation following CH is a function of VSM myofilament Ca2+ desensitization via inhibition of the RhoA/Rho kinase (ROK) pathway. To test this hypothesis, we compared the ability of the NO donor, spermine NONOate, to reverse VSM tone generated by UTP, the ROK agonist sphingosylphosphorylcholine, or the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate in Ca2+-permeabilized, endothelium-denuded pulmonary arteries (150- to 300-μm inner diameter) from control and CH (4 wk at 0.5 atm) rats. Arteries were loaded with fura-2 AM to continuously monitor VSM [Ca2+]i. We further examined effects of NO on levels of GTP-bound RhoA and ROK membrane translocation as indexes of enzyme activity in arteries from each group. We found that spermine NONOate reversed Y-27632-sensitive Ca2+ sensitization and inhibited both RhoA and ROK activity in vessels from CH rats but not control animals. In contrast, spermine NONOate was without effect on PKC-mediated vasoconstriction in either group. We conclude that CH mediates a shift in NO signaling to promote pulmonary VSM Ca2+ desensitization through inhibition of RhoA/ROK.
Collapse
Affiliation(s)
- Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology MSC 08-4750, 1 Univ. of New Mexico, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|
50
|
Imamura M, Luo B, Limbird J, Vitello A, Oka M, Ivy DD, McMurtry IF, Garat CV, Fallon MB, Carter EP. Hypoxic pulmonary hypertension is prevented in rats with common bile duct ligation. J Appl Physiol (1985) 2004; 98:739-47. [PMID: 15516365 DOI: 10.1152/japplphysiol.00556.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted. The purpose of this work was to examine the pulmonary vascular responses and adaptations to the combination of liver cirrhosis and chronic hypoxia (CH). In addition to hemodynamic measurements, we investigated whether pulmonary expression changes of eNOS, ET-1 and its receptors (endothelin A and B), or heme oxygenase 1 in experimental cirrhosis affect the development of hypoxic pulmonary hypertension. We induced cirrhosis in male Sprague-Dawley rats using common bile duct ligation (CBDL) and exposed them to CH (inspired PO2 approximately 76 Torr) or maintained them in Denver (Den, inspired PO2 approximately 122 Torr) for 3 wk. Our data show 1) CBDL-CH rats had a persistent blunted hypoxic pulmonary vasoconstriction similar to CBDL-Den; 2) the development of hypoxic pulmonary hypertension was completely prevented in the CBDL-CH rats, as indicated by normal pulmonary arterial pressure and lack of right ventricular hypertrophy and pulmonary arteriole remodeling; and 3) selective increases in expression of ET-1, pulmonary endothelin B receptor, eNOS, and heme oxygenase 1 are potential mechanisms of protection against hypoxic pulmonary hypertension in the CBDL-CH rats. These data demonstrate that unique and undefined hepatic-pulmonary interactions occur during liver cirrhosis and chronic hypoxia. Understanding these interactions may provide important information for the prevention and treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Masatoshi Imamura
- Cardiovascular-Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|