1
|
Dobay O, Laub K, Stercz B, Kéri A, Balázs B, Tóthpál A, Kardos S, Jaikumpun P, Ruksakiet K, Quinton PM, Zsembery Á. Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens. Front Microbiol 2018; 9:2245. [PMID: 30283433 PMCID: PMC6157313 DOI: 10.3389/fmicb.2018.02245] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of bicarbonate on the growth of several different bacteria as well as its effects on biofilm formation and intracellular cAMP concentration in Pseudomonas aeruginosa. Biofilm formation was examined in 96-well plates, with or without bicarbonate. The cAMP production of bacteria was measured by a commercial assay kit. We found that NaHCO3 (100 mmol l-1) significantly inhibited, whereas NaCl (100 mmol l-1) did not influence the growth of planktonic bacteria. MIC and MBC measurements indicated that the effect of HCO3− is bacteriostatic rather than bactericidal. Moreover, NaHCO3 prevented biofilm formation as a function of concentration. Bicarbonate and alkalinization of external pH induced a significant increase in intracellular cAMP levels. In conclusion, HCO3− impedes the planktonic growth of different bacteria and impedes biofilm formation by P. aeruginosa that is associated with increased intracellular cAMP production. These findings suggest that aerosol inhalation therapy with HCO3− solutions may help improve respiratory hygiene in patients with cystic fibrosis and possibly other chronically infected lung diseases.
Collapse
Affiliation(s)
- Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Kéri
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Bernadett Balázs
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | | | - Kasidid Ruksakiet
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Paul M Quinton
- Department of Pediatrics, UC San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Huang J, Kim D, Shan J, Abu‐Arish A, Luo Y, Hanrahan JW. Most bicarbonate secretion by Calu-3 cells is mediated by CFTR and independent of pendrin. Physiol Rep 2018; 6:e13641. [PMID: 29536650 PMCID: PMC5849580 DOI: 10.14814/phy2.13641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/24/2022] Open
Abstract
Bicarbonate plays an important role in airway host defense, however, its transport mechanisms remain uncertain. Here we examined the relative contributions of the anion channel CFTR (cystic fibrosis transmembrane conductance regulator, ABCC7) and the anion exchanger pendrin (SLC26A4) to HCO3- secretion by the human airway cell line Calu-3. Pendrin and CFTR were both detected in parental Calu-3 cells, although mRNA and protein expression appeared higher for CFTR than for pendrin. Targeting pendrin transcripts with lentiviral shRNA reduced pendrin detection by immunofluorescence staining but did not alter the rates of HCO3- or fluid secretion, HCO3- transport under pH-stat conditions, or net HCO3- flux across basolaterally permeabilized monolayers. Intracellular pH varied with step changes in apical Cl- and HCO3- concentrations in control and pendrin knockdown Calu-3 cells, but not in CFTR deficient cells. Exposure to the proinflammatory cytokine IL-4, which strongly upregulates pendrin expression in airway surface epithelia, had little effect on Calu-3 pendrin expression and did not alter fluid or HCO3- secretion. Similar results were obtained using air-liquid interface and submerged cultures, although CFTR and pendrin mRNA expression were both lower when cells were cultured under submerged conditions. While the conclusions cannot be extrapolated to other airway epithelia, the present results demonstrate that most HCO3- secretion by Calu-3 cells is mediated by CFTR.
Collapse
Affiliation(s)
- Junwei Huang
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Present address:
AbbVie Bioresearch CenterAbbVie Inc.381 Plantation St.WorcesterMA01605
| | - Dusik Kim
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - Jiajie Shan
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Present address:
School of MedicineSouth China University of TechnologyGuangzhou University TownPanyu DistrictGuangzhouChina
| | - Asmahan Abu‐Arish
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - Yishan Luo
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - John W. Hanrahan
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Research Institute‐McGill University Health CentreMontréalQuébecCanada
| |
Collapse
|
3
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
Affiliation(s)
- Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| | - Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Miriam Frankenthal Figueira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Gopika Hari
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| | - Eric Sibley
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
| | - Jackson Souza-Menezes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Marcelo M. Morales
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
4
|
Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017; 532:555-572. [PMID: 28917986 PMCID: PMC5744044 DOI: 10.1016/j.ijpharm.2017.09.018] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Mucus is a selective barrier to particles and molecules, preventing penetration to the epithelial surface of mucosal tissues. Significant advances in transmucosal drug delivery have recently been made and have emphasized that an understanding of the basic structure, viscoelastic properties, and interactions of mucus is of great value in the design of efficient drug delivery systems. Mucins, the primary non-aqueous component of mucus, are polymers carrying a complex and heterogeneous structure with domains that undergo a variety of molecular interactions, such as hydrophilic/hydrophobic, hydrogen bonds and electrostatic interactions. These properties are directly relevant to the numerous mucin-associated diseases, as well as delivering drugs across the mucus barrier. Therefore, in this review we discuss regional differences in mucus composition, mucus physicochemical properties, such as pore size, viscoelasticity, pH, and ionic strength. These factors are also discussed with respect to changes in mucus properties as a function of disease state. Collectively, the review seeks to provide a state of the art roadmap for researchers who must contend with this critical barrier to drug delivery.
Collapse
Affiliation(s)
- Jasmim Leal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA.
| |
Collapse
|
5
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
6
|
Turner MJ, Saint-Criq V, Patel W, Ibrahim SH, Verdon B, Ward C, Garnett JP, Tarran R, Cann MJ, Gray MA. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. J Physiol 2015; 594:1643-61. [PMID: 26574187 PMCID: PMC4799982 DOI: 10.1113/jp271309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.
Collapse
Affiliation(s)
- Mark J Turner
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Vinciane Saint-Criq
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Waseema Patel
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Salam H Ibrahim
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Bernard Verdon
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institute for Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James P Garnett
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin J Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
7
|
Kim D, Kim J, Burghardt B, Best L, Steward MC. Role of anion exchangers in Cl− and HCO3− secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 2014; 307:C208-19. [DOI: 10.1152/ajpcell.00083.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3− secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl−/HCO3− exchangers to Cl− and HCO3− transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl− with gluconate. Apical Cl− substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl−/HCO3− exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3− influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3− entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl− substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl− evoked a DIDS-sensitive alkalinization, attributed to Cl−/HCO3− exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3− via CFTR. We conclude that Calu-3 cells secrete HCO3− predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl− uptake.
Collapse
Affiliation(s)
- Dusik Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Juyeon Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Beáta Burghardt
- Department of Oral Biology, Semmelweis University, Budapest, Hungary; and
| | - Len Best
- Faculty of Medicine and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Martin C. Steward
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Kim D, Liao J, Hanrahan JW. The buffer capacity of airway epithelial secretions. Front Physiol 2014; 5:188. [PMID: 24917822 PMCID: PMC4042063 DOI: 10.3389/fphys.2014.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO−3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO−3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO−3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.
Collapse
Affiliation(s)
- Dusik Kim
- Department of Physiology, McGill University Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University Montréal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University Montréal, QC, Canada ; McGill University Health Centre Research Institute Montréal, QC, Canada
| |
Collapse
|
9
|
Abstract
Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Sciences, North Chicago, IL 60064, USA.
| |
Collapse
|
10
|
Huang J, Shan J, Kim D, Liao J, Evagelidis A, Alper SL, Hanrahan JW. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 2012; 590:5299-316. [PMID: 22802585 DOI: 10.1113/jphysiol.2012.236919] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl(-)/HCO(3)(-) exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (I(sc)). We have studied the role of AE2 in Cl(-) and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced 90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter) or NBCe1 (Na(+)-nHCO(3)(-) cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO(3)(-)] as compared with the control lines. Unstimulated equivalent short-circuit current (I(eq)) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both I(eq) and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl(-)/HCO(3)(-) exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl(-) removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl(-) loading during cAMP-stimulated secretion of Cl(-) and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway submucosal glands and some other epithelia.
Collapse
Affiliation(s)
- Junwei Huang
- Department of Physiology, McGill University, Montr´eal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Shan J, Liao J, Huang J, Robert R, Palmer ML, Fahrenkrug SC, O'Grady SM, Hanrahan JW. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 2012; 590:5273-97. [PMID: 22777674 DOI: 10.1113/jphysiol.2012.236893] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl(-) and HCO(3)(-) secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (I(sc)) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (I(eq)) calculated under open-circuit conditions. I(sc) was equivalent to the HCO(3)(-) net flux measured using the pH-stat technique, whereas I(eq) was the sum of the Cl(-) and HCO(3)(-) net fluxes. I(eq) and HCO(3)(-) fluxes were increased by bafilomycin and ZnCl(2), suggesting that some secreted HCO(3)(-) is neutralized by parallel electrogenic H(+) secretion. I(eq) and fluid secretion were dependent on the presence of both Na(+) and HCO(3)(-). The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of I(eq) and HCO(3)(-) secretion, suggesting that HCO(3)(-) transport under these conditions requires catalysed synthesis of carbonic acid. Cl(-) was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50-70% of Cl(-) and fluid transport was bumetanide-insensitive, suggesting basolateral Cl(-) loading by a sodium-potassium-chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO(3)(-) gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO(3)(-) secretion was increased by bilateral Cl(-) removal and therefore did not require apical Cl(-)/HCO(3)(-) exchange. The results suggest a model in which most HCO(3)(-) is recycled basolaterally by exchange with Cl(-), and the resulting HCO(3)(-)-dependent Cl(-) transport provides an osmotic driving force for fluid secretion.
Collapse
Affiliation(s)
- Jiajie Shan
- Department of Physiology, McGill University, Montr´eal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Garnett JP, Hickman E, Burrows R, Hegyi P, Tiszlavicz L, Cuthbert AW, Fong P, Gray MA. Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 2011; 286:41069-82. [PMID: 21914796 DOI: 10.1074/jbc.m111.266734] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.
Collapse
Affiliation(s)
- James P Garnett
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shan J, Huang J, Liao J, Robert R, Hanrahan JW. Anion secretion by a model epithelium: more lessons from Calu-3. Acta Physiol (Oxf) 2011; 202:523-31. [PMID: 21251238 DOI: 10.1111/j.1748-1716.2011.02253.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Anion transport drives fluid into the airways and is essential for humidifying inspired air and supplying surface liquid for mucociliary transport. Despite the importance of airway secretion in diseases such as cystic fibrosis, the cellular mechanisms remain poorly understood, in part due to the small size and complicated structure of the submucosal glands that produce most of the fluid. The Calu-3 human lung adenocarcinoma cell line has become a popular model for studying airway secretion because it can be cultured as a flat sheet, expresses the cystic fibrosis transmembrane conductance regulator and several acinar cell markers, forms polarized monolayers with tight junctions, has robust cAMP-stimulated anion transport, and responds to secretagogues that regulate the glands in vivo. However, some properties of Calu-3 cells are less consistent with those of native tissue. In particular, Calu-3 monolayers do not secrete chloride when stimulated by forskolin under short-circuit conditions. Bicarbonate ions are thought to carry the short-circuit current (I(sc)) and the drive secretion of alkaline fluid, in contrast to the neutral pH secretions that are produced by submucosal glands. Calu-3 cells also have abnormal chromosomes and characteristics of both serous and mucus cells. In this article, we discuss Calu-3 as a model in light of our ongoing studies, which suggest that Calu-3 monolayers resemble submucosal glands more closely than was previously thought. For example, we find that net HCO(3)(-) flux fully accounts for I(sc) as previously suggested but Cl(-) is the main anion transported under physiological conditions. A novel, HCO(3)(-) -dependent mechanism of Cl(-) transport is emerging which may explain secretion by Calu-3 and perhaps other epithelial cells.
Collapse
Affiliation(s)
- J Shan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
14
|
Aoki M, Iguchi M, Hayashi H, Shibasaki S, Kurosawa T, Hayashi M. Active uptake of ulifloxacin from plasma to lung that controls its concentration in epithelial lining fluid. Biol Pharm Bull 2009; 32:1095-100. [PMID: 19483322 DOI: 10.1248/bpb.32.1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulifloxacin is a new quinolone antibiotic and it is effective against pneumonia. We previously showed that it is highly distributed into the epithelial lining fluid (ELF) in rats, which might be resulting from certain active transport. The transport system has not been, however, clarified yet. In this study, we attempted to characterize the distribution mechanism of ulifloxacin into the rat ELF. We also aimed to elucidate the feature of ulifloxacin uptake in rat lung and human lung adenocarcinoma cells (Calu-3). In infusion studies, ulifloxacin concentrations in the ELF and lung were higher than that in the plasma, and decreased by co-administration of sparfloxacin or azithromycin to the level of plasma concentration. Integration plot analysis showed that active uptake of ulifloxacin from the plasma to lung was also inhibited by sparfloxacin and azithromycin. In in vitro studies, time and temperature-dependent uptake into Calu-3 was observed, and this uptake was inhibited by sparfloxacin and azithromycin as observed in the rat lung. Additionally sparfloxacin inhibited the active uptake of ulifloxacin into Calu-3 more strongly than levofloxacin as observed in the rat lung. These results suggest that active uptake of ulifloxacin from the plasma to lung controls the distribution of ulifloxacin from the plasma to ELF, and that the uptake of ulifloxacin into Calu-3 has partly similar characteristics to its uptake into the rat lung. We believe our study will contribute to much better understanding of antibiotic efficacy against pathogens which cause pneumonia.
Collapse
Affiliation(s)
- Makoto Aoki
- Applied Pharmacology Research Laboratories, Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Pseudomonas aeruginosa Inhibition of Flagellin-activated NF-kappaB and interleukin-8 by human airway epithelial cells. Infect Immun 2009; 77:2857-65. [PMID: 19451246 DOI: 10.1128/iai.01355-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa-induced activation of NF-kappaB and secretion of proinflammatory cytokines by airway epithelial cells require that the bacteria express flagellin. We tested whether P. aeruginosa and human airway epithelial cells secrete factors that modulated this response. Experiments were performed with both the Calu-3 cell line and primary cultures of tracheal epithelial cells. P. aeruginosa strain PAK DeltafliC (flagellin knockout) did not activate NF-kappaB or interleukin-8 (IL-8) but inhibited flagellin-activated NF-kappaB by 40 to 50% and IL-8 secretion by 20 to 25%. PAK DeltafliC also inhibited NF-kappaB induced by IL-1beta and Toll-like receptor 2 agonist Pam3CSK4. Similar inhibitions were observed with strains PAK, PAO1, and PA14. The inhibitory factor was present in conditioned medium isolated from PAK DeltafliC or Calu-3 plus PAK DeltafliC, but it was not present in conditioned medium isolated from Calu-3 cells alone or from PAK DeltafliC that had been heat treated. Inhibition by PAK DeltafliC-conditioned medium was exerted from either the apical or the basolateral side of the epithelium, was enhanced in simple Ringer's solution over that in tissue culture medium, and did not result from altered pH or depletion of glucose. The inhibitory effect of conditioned medium was abolished by boiling and appeared from filtration studies to result from effects of a factor with a molecular mass of <3 kDa. These and further studies with isogenic mutants led to the conclusion that the NF-kappaB and IL-8 response of airway epithelial cells to P. aeruginosa results from a balance of proinflammatory effects of flagellin and antiinflammatory effects of a small (<3-kDa), heat-sensitive factor(s) that is not lipopolysaccharide, C12 homoserine lactone, alginate, CIF, or exotoxin A, S, T, U, or Y.
Collapse
|
16
|
Illek B, Fu Z, Schwarzer C, Banzon T, Jalickee S, Miller SS, Machen TE. Flagellin-stimulated Cl- secretion and innate immune responses in airway epithelia: role for p38. Am J Physiol Lung Cell Mol Physiol 2008; 295:L531-42. [PMID: 18658272 DOI: 10.1152/ajplung.90292.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.
Collapse
Affiliation(s)
- Beate Illek
- Dept. of Molecular and Cell Biology, Univ. of California-Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Hybiske K, Fu Z, Schwarzer C, Tseng J, Do J, Huang N, Machen TE. Effects of cystic fibrosis transmembrane conductance regulator and DeltaF508CFTR on inflammatory response, ER stress, and Ca2+ of airway epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1250-60. [PMID: 17827250 DOI: 10.1152/ajplung.00231.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.
Collapse
Affiliation(s)
- Kevin Hybiske
- Dept. of Molecular and Cell Biology, 231 LSA, Univ. of California-Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Itani OA, Lamb FS, Melvin JE, Welsh MJ. Basolateral chloride current in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 293:L991-9. [PMID: 17660331 DOI: 10.1152/ajplung.00077.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) >> I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.
Collapse
Affiliation(s)
- Omar A Itani
- Howard Hughes Medical Institute, Univ. of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
19
|
Schwarzer C, Illek B, Suh JH, Remington SJ, Fischer H, Machen TE. Organelle redox of CF and CFTR-corrected airway epithelia. Free Radic Biol Med 2007; 43:300-16. [PMID: 17603939 PMCID: PMC4085155 DOI: 10.1016/j.freeradbiomed.2007.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 04/13/2007] [Accepted: 04/19/2007] [Indexed: 11/18/2022]
Abstract
In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure the redox potentials of the cytosol, endoplasmic reticulum (ER), mitochondria, and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (approx -207+/-8 mV) and in the ER (approx -217+/-1 mV) and rates of regulation of the apical fluid and ER lumen after DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344+/-9 mV) and cytosol (-322+/-7 mV). Oxidation of carboxydichlorodihydrofluorescein diacetate and of apical Amplex red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small-molecule couples confirmed there were no differences in the redox properties of CF and CFTR-corrected cells.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720-3200
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Beate Illek
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Jung H. Suh
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - S. James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229
| | - Horst Fischer
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
20
|
Wine JJ. Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 2007; 133:35-54. [PMID: 17350348 PMCID: PMC1989147 DOI: 10.1016/j.autneu.2007.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/20/2007] [Accepted: 01/22/2007] [Indexed: 11/20/2022]
Abstract
Airway submucosal glands produce the mucus that lines the upper airways to protect them against insults. This review summarizes evidence for two forms of gland secretion, and hypothesizes that each is mediated by different but partially overlapping neural pathways. Airway innate defense comprises low level gland secretion, mucociliary clearance and surveillance by airway-resident phagocytes to keep the airways sterile in spite of nearly continuous inhalation of low levels of pathogens. Gland secretion serving innate defense is hypothesized to be under the control of intrinsic (peripheral) airway neurons and local reflexes, and these may depend disproportionately on non-cholinergic mechanisms, with most secretion being produced by VIP and tachykinins. In the genetic disease cystic fibrosis, airway glands no longer secrete in response to VIP alone and fail to show the synergy between VIP, tachykinins and ACh that is observed in normal glands. The consequent crippling of the submucosal gland contribution to innate defense may be one reason that cystic fibrosis airways are infected by mucus-resident bacteria and fungi that are routinely cleared from normal airways. By contrast, the acute (emergency) airway defense reflex is centrally mediated by vagal pathways, is primarily cholinergic, and stimulates copious volumes of gland mucus in response to acute, intense challenges to the airways, such as those produced by very vigorous exercise or aspiration of foreign material. In cystic fibrosis, the acute airway defense reflex can still stimulate the glands to secrete large amounts of mucus, although its properties are altered. Importantly, treatments that recruit components of the acute reflex, such as inhalation of hypertonic saline, are beneficial in treating cystic fibrosis airway disease. The situation for recipients of lung transplants is the reverse; transplanted airways retain the airway intrinsic nervous system but lose centrally mediated reflexes. The consequences of this for gland secretion and airway defense are poorly understood, but it is possible that interventions to modify submucosal gland secretion in transplanted lungs might have therapeutic consequences.
Collapse
Affiliation(s)
- Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Room 450, Bldg. 420, Main Quad, Stanford University, Stanford, CA 94305-2130, USA.
| |
Collapse
|
21
|
Ianowski JP, Choi JY, Wine JJ, Hanrahan JW. Mucus secretion by single tracheal submucosal glands from normal and cystic fibrosis transmembrane conductance regulator knockout mice. J Physiol 2007; 580:301-14. [PMID: 17204498 PMCID: PMC2075436 DOI: 10.1113/jphysiol.2006.123653] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Submucosal glands line the cartilaginous airways and produce most of the antimicrobial mucus that keeps the airways sterile. The glands are defective in cystic fibrosis (CF), but how this impacts airway health remains uncertain. Although most CF mouse strains exhibit mild airway defects, those with the C57Bl/6 genetic background have increased airway pathology and susceptibility to Pseudomonas. Thus, they offer the possibility of studying whether, and if so how, abnormal submucosal gland function contributes to CF airway disease. We used optical methods to study fluid secretion by individual glands in tracheas from normal, wild-type (WT) mice and from cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice (Cftr(m1UNC)/Cftr(m1UNC); CF mice). Glands from WT mice qualitatively resembled those in humans by responding to carbachol and vasoactive intestinal peptide (VIP), although the relative rates of VIP- and forskolin-stimulated secretion were much lower in mice than in large mammals. The pharmacology of mouse gland secretion was also similar to that in humans; adding bumetanide or replacement of HCO(3)(-) by Hepes reduced the carbachol response by approximately 50%, and this inhibition increased to 80% when both manoeuvres were performed simultaneously. It is important to note that glands from CFTR knockout mice responded to carbachol but did not secrete when exposed to VIP or forskolin, as has been shown previously for glands from CF patients. Tracheal glands from WT and CF mice both had robust secretory responses to electrical field stimulation that were blocked by tetrodotoxin. It is interesting that local irritation of the mucosa using chili pepper oil elicited secretion from WT glands but did not stimulate glands from CF mice. These results clarify the mechanisms of murine submucosal gland secretion and reveal a novel defect in local regulation of glands lacking CFTR which may also compromise airway defence in CF patients.
Collapse
Affiliation(s)
- Juan P Ianowski
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6.
| | | | | | | |
Collapse
|
22
|
Fischer H, Widdicombe JH. Mechanisms of acid and base secretion by the airway epithelium. J Membr Biol 2006; 211:139-50. [PMID: 17091214 PMCID: PMC2929530 DOI: 10.1007/s00232-006-0861-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/15/2006] [Indexed: 12/15/2022]
Abstract
One of the main functions of the airway epithelium is to inactivate and remove infectious particles from inhaled air and thereby prevent infection of the distal lung. This function is achieved by mucociliary and cough clearance and by antimicrobial factors present in the airway surface liquid (ASL). There are indications that airway defenses are affected by the pH of the ASL and historically, acidification of the airway surfaces has been suggested as a measure of airway disease. However, even in health, the ASL is slightly acidic, and this acidity might be part of normal airway defense. Only recently research has focused on the mechanisms responsible for acid and base secretion into the ASL. Advances resulted from research into the airway disease associated with cystic fibrosis (CF) after it was found that the CFTR Cl(-) channel conducts HCO (3) (-) and, therefore, may contribute to ASL pH. However, the acidity of the ASL indicated parallel mechanisms for H(+) secretion. Recent investigations identified several H(+) transporters in the apical membrane of the airway epithelium. These include H(+) channels and ATP-driven H(+) pumps, including a non-gastric isoform of the H(+)-K(+) ATPase and a vacuolar-type H(+) ATPase. Current knowledge of acid and base transporters and their potential roles in airway mucosal pH regulation is reviewed here.
Collapse
Affiliation(s)
- Horst Fischer
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
23
|
Fu Z, Bettega K, Carroll S, Buchholz KR, Machen TE. Role of Ca2+ in responses of airway epithelia to Pseudomonas aeruginosa, flagellin, ATP, and thapsigargin. Am J Physiol Lung Cell Mol Physiol 2006; 292:L353-64. [PMID: 16963531 DOI: 10.1152/ajplung.00042.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neither Pseudomonas aeruginosa nor flagellin affected cytosolic Ca(2+) concentration ([Ca](i)) in airway epithelial cell lines JME and Calu-3, but bacteria or flagellin activated NF-kappaB, IL-8 promoter, and IL-8 secretion. ATP (purinergic agonist) and thapsigargin (blocks Ca(2+) pump, releases endoplasmic reticulum Ca(2+), and triggers Ca(2+) entry through plasma membrane channels) both increased [Ca](i) but hardly stimulated NF-kappaB and IL-8. ATP and thapsigargin elicited larger, synergistic activations of NF-kappaB and IL-8 secretion when combined with flagellin. BAPTA-AM (to buffer [Ca](i)) or Ca(2+)-free solution reduced increases in [Ca](i) due to ATP or thapsigargin and also reduced NF-kappaB activation and IL-8 secretion triggered by flagellin, ATP, thapsigargin, ATP + flagellin, and thapsigargin + flagellin. IL-8 promoter analysis showed that AP-1 and CCAAT/enhancer-binding protein (C/EBP)beta/nuclear factor for IL-6 (NF-IL6) sites were important for IL-8 expression, and the NF-kappaB-binding site was critical for activation by all agonists and for activation by [Ca](i). Thus increased [Ca](i) was not required for P. aeruginosa- or flagellin-activated NF-kappaB and IL-8 expression and secretion, and increased [Ca](i) was only weakly stimulatory during activation by ATP or thapsigargin. However, ATP- or thapsigargin-induced increases in [Ca](i) synergized with flagellin or P. aeruginosa, and buffering or reducing [Ca](i) reduced these responses. Thus [Ca](i) plays an important regulatory role in P. aeruginosa- or flagellin-activated innate immune responses in airway epithelia. Dose-dependent responses indicated that flagellin-ATP synergism occurred most prominently at ATP concentrations ([ATP]) > 10 microM and [flagellin] >10(-8) g/ml and during steady increases rather than oscillations in [Ca](i).
Collapse
Affiliation(s)
- Zhu Fu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The lack of functional cystic fibrosis (CF) transmembrane conductance regulator (CFTR) in the apical membranes of CF airway epithelial cells abolishes cAMP-stimulated anion transport, and bacteria, eventually including Pseudomonas aeruginosa, bind to and accumulate in the mucus. Flagellin released from P. aeruginosa triggers airway epithelial Toll-like receptor 5 and subsequent NF-kappaB signaling and production and release of proinflammatory cytokines that recruit neutrophils to the infected region. This response has been termed hyperinflammatory because so many neutrophils accumulate; a response that damages CF lung tissue. We first review the contradictory data both for and against the idea that epithelial cells exhibit larger-than-normal proinflammatory signaling in CF compared with non-CF cells and then review proposals that might explain how reduced CFTR function could activate such proinflammatory signaling. It is concluded that apparent exaggerated innate immune response of CF airway epithelial cells may have resulted not from direct effects of CFTR on cellular signaling or inflammatory mediator production but from indirect effects resulting from the absence of CFTRs apical membrane channel function. Thus, loss of Cl-, HCO3-, and glutathione secretion may lead to reduced volume and increased acidification and oxidation of the airway surface liquid. These changes concentrate proinflammatory mediators, reduce mucociliary clearance of bacteria and subsequently activate cellular signaling. Loss of apical CFTR will also hyperpolarize basolateral membrane potentials, potentially leading to increases in cytosolic [Ca2+], intracellular Ca2+, and NF-kappaB signaling. This hyperinflammatory effect of CF on intracellular Ca2+ and NF-kappaB signaling would be most prominently expressed during exposure to both P. aeruginosa and also endocrine, paracrine, or nervous agonists that activate Ca2+ signaling in the airway epithelia.
Collapse
Affiliation(s)
- Terry E Machen
- Dept. of Molecular and Cell Biology, 231 LSA, Univ. of California at Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
25
|
Hasegawa I, Niisato N, Iwasaki Y, Marunaka Y. Ambroxol-induced modification of ion transport in human airway Calu-3 epithelia. Biochem Biophys Res Commun 2006; 343:475-82. [PMID: 16546120 DOI: 10.1016/j.bbrc.2006.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 11/18/2022]
Abstract
Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level.
Collapse
Affiliation(s)
- Isao Hasegawa
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
26
|
Song Y, Salinas D, Nielson DW, Verkman AS. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 2005; 290:C741-9. [PMID: 16207791 DOI: 10.1152/ajpcell.00379.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior studies have shown that fluid secretions from airway submucosal glands in cystic fibrosis (CF) are reduced and hyperviscous, possibly contributing to the pathogenesis of CF airway disease. Because the CF transmembrane conductance regulator (CFTR) protein can transport both chloride and bicarbonate, we investigated whether gland fluid pH is abnormal in early CF, using nasal biopsies from pediatric subjects having minimal CF lung disease. Gland fluid pH, measured in freshly secreted droplets under oil stained with BCECF-dextran, was 6.57 +/- 0.09 (mean +/- SE) in biopsies from six CF subjects, significantly lower than 7.18 +/- 0.06 in eight non-CF biopsies (P < 0.01). To rule out the possibility that the apparent gland fluid hyperacidity in CF results from modification of fluid pH by the airway surface, a microcannulation method was used to measure pH in fluid exiting gland orifices. In pig trachea and human bronchi, gland fluid pH was reduced by up to 0.45 units by CFTR inhibitors, but was not affected by amiloride. Acid base transport in the surface epithelium of pig trachea was studied from pH changes in 300-nl fluid droplets deposited onto the oil-covered airway surface. The droplets had specified ionic composition/pH and/or contained transporter activators/inhibitors. We found evidence for CFTR-dependent bicarbonate transport by the tracheal surface epithelium as well as ATP/histamine-stimulated proton secretion, but not for sodium/proton or chloride/bicarbonate exchange. These results provide evidence for intrinsic hyperacidity in CF gland fluid secretions, which may contribute to CF airway pathology.
Collapse
Affiliation(s)
- Yuanlin Song
- 1246 Health Sciences East Tower, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | | | | | | |
Collapse
|
27
|
Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung 2005; 182:297-317. [PMID: 15742242 DOI: 10.1007/s00408-004-2511-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2004] [Indexed: 10/25/2022]
Abstract
Lung-lining fluid (LLF) is a primary constituent of the pulmonary host defense system. It is distributed continuously throughout the respiratory tract but is heterogeneous regarding its chemistry and physiology between the conducting airways and alveoli. The conducting airways are lined with airway surface liquid (ASL), a mucus gel-aqueous sol complex that interacts functionally with epithelial cilia as the mucociliary escalator. The alveoli are lined with alveolar subphase fluid (AVSF) and pulmonary surfactant. AVSF sterility is maintained in part by the phagocytic activity of resident alveolar macrophages. Normal ASL and AVSF are both more acidic than blood plasma. However, the details of acid-base regulation differ between the two media. Appreciable transepithelial acid-base flux is possible across the airway epithelium, whereas the alveolar epithelium is relatively impermeable to transepithelial acid-base flux. Moreover, one must consider the influence of resident macrophages on AVSF pH. Resident macrophages occupy a sizable fraction of AVSF by volume and are a substantial source of metabolic H+. The buffering capacities of ASL and AVSF probably are largely due to secreted peptides (e.g., ASL mucins and AVSF surfactant proteins). Acid-base exchange between the extracellular hydrophase and intracellular buffering systems of resident macrophages represents an additional buffer pool for AVSF. The pH of ASL and AVSF can be depressed by disease or inflammation. Low pH is predicted to suppress microbe clearance from the airways and alveoli, increase pathogen survival in both regions, and alter mediator release by resident macrophages and recruited leukocytes thereby increasing the propensity for bystander cell injury. Overall, ASL/AVSF pH is expected to be a major determinant of lung host defense responses.
Collapse
Affiliation(s)
- Amelia W Ng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | |
Collapse
|
28
|
Moody M, Pennington C, Schultz C, Caldwell R, Dinkel C, Rossi MW, McNamara S, Widdicombe J, Gabriel S, Traynor-Kaplan AE. Inositol polyphosphate derivative inhibits Na+ transport and improves fluid dynamics in cystic fibrosis airway epithelia. Am J Physiol Cell Physiol 2005; 289:C512-20. [PMID: 15857902 PMCID: PMC1800890 DOI: 10.1152/ajpcell.00591.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amiloride-sensitive, epithelial Na(+) channel (ENaC)-mediated, active absorption of Na(+) is elevated in the airway epithelium of cystic fibrosis (CF) patients, resulting in excess fluid removal from the airway lumen. This excess fluid/volume absorption corresponds to CF transmembrane regulator-linked defects in ENaC regulation, resulting in the reduced mucociliary clearance found in CF airways. Herein we show that INO-4995, a synthetic analog of the intracellular signaling molecule, D-myo-inositol 3,4,5,6-tetrakisphosphate, inhibits Na(+) and fluid absorption across CF airway epithelia, thus alleviating this critical pathology. This conclusion was based on electrophysiological studies, fluid absorption, and (22)Na(+) flux measurements in CF airway epithelia, contrasted with normal epithelia, and on electrophysiological studies in Madin-Darby canine kidney cells and 3T3 cells overexpressing ENaC. The effects of INO-4995 were long-lasting, dose-dependent, and more pronounced in epithelia from CF patients vs. controls. These findings support preclinical development of INO-4995 for CF treatment and demonstrate for the first time the therapeutic potential of inositol polyphosphate derivatives.
Collapse
Affiliation(s)
| | | | | | - Ray Caldwell
- University of North Carolina, Chapel Hill, North Carolina
| | - Carlo Dinkel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | - Sherif Gabriel
- University of North Carolina, Chapel Hill, North Carolina
| | - Alexis E. Traynor-Kaplan
- Inologic Inc., Seattle, Washington
- Address for reprint requests and other correspondence: A. Traynor-Kaplan, Inologic Inc., 101 Elliot Ave. West, Suite 100, Seattle, WA 98119 (e-mail: )
| |
Collapse
|
29
|
Irokawa T, Krouse ME, Joo NS, Wu JV, Wine JJ. A “virtual gland” method for quantifying epithelial fluid secretion. Am J Physiol Lung Cell Mol Physiol 2004; 287:L784-93. [PMID: 15169677 DOI: 10.1152/ajplung.00124.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a new apparatus, the virtual gland (VG), for measuring the rate of fluid secretion ( Jv), its composition, and the transepithelial potential (TEP) in cultured epithelial cells under open circuit. The VG creates a 10-μl chamber above the apical surface of epithelial cells on a Costar filter with a small hole leading to an oil-filled reservoir. After the chamber is primed with a fluid of choice, secreted fluid is forced through the hole into the oil, where it forms a bubble that is monitored optically to determine Jv and collected for analysis. Calu-3 cells were mounted in the VG with a basolateral bath consisting of Krebs-Ringer bicarbonate buffer at 37°C. Basal Jv was 2.7 ± 0.1 μl·cm−2·h−1 ( n = 42), and TEP was −9.2 ± 0.6 mV ( n = 33); both measures were reduced to zero by ouabain ( n = 6). Jv and TEP were stimulated 64 and 59%, respectively, by 5 μM forskolin ( n = 10), 173 and 101% by 1 mM 1-ethyl-2-benzimidazolinone ( n = 5), 213 and 122% by 333 nM thapsigargin ( n = 5), and 520 and 240% by forskolin + thapsigargin ( n = 6). Basal Jv and TEP were inhibited to 82 and 63%, respectively, with 10 μM bumetanide ( n = 5), 71 and 82% with 100 μM acetazolamide ( n = 5), and 47 and 56% with 600 μM glibenclamide ( n = 4). Basal Jv and TEP were 52 and 89% of control values, respectively, after HCO3− replacement with HEPES ( n = 16). The net HCO3− concentration of the secreted fluid was close to that of the bath (25 mM), except when stimulated with forskolin or VIP, when it increased (∼80 mM). These results validate the use of the VG apparatus and provide the first direct measures of Jv in Calu-3 cells.
Collapse
Affiliation(s)
- Toshiya Irokawa
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | | | |
Collapse
|
30
|
Krouse ME, Talbott JF, Lee MM, Joo NS, Wine JJ. Acid and base secretion in the Calu-3 model of human serous cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L1274-83. [PMID: 15310554 DOI: 10.1152/ajplung.00036.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Submucosal glands are the primary source of airway mucus, a critical component of lung innate defenses. Airway glands are defective in cystic fibrosis (CF), showing a complete absence of secretion to vasoactive intestinal peptide or forskolin, which increase intracellular cAMP concentration. This defect is attributed to gland serous cells, which express the cystic fibrosis transmembrane conductance regulator. Calu-3 cells, which mimic many features of serous cells, secrete Cl(-) and HCO(3)(-), with HCO(3)(-) secretion predominating for forskolin stimulation and Cl(-) secretion predominating for stimuli that open basolateral K(+) channels to hyperpolarize the cells. We used pH stat and ion substitution experiments to clarify the mechanisms and consequences of these two modes of secretion. We confirm that Calu-3 cells secrete primarily HCO(3)(-) in response to forskolin. Unexpectedly, HCO(3)(-) secretion continued in response to K(+) channel openers, with Cl(-) secretion being added to it. Secretion of HCO(3)(-) from hyperpolarized cells occurs via the conversion of CO(2) to HCO(3)(-) and is reduced by approximately 50% with acetazolamide. A gap between the base equivalent current and short-circuit current was observed in all experiments and was traced to secretion of H(+) via a ouabain-sensitive, K(+)-dependent process (possibly H(+)-K(+)-ATPase), which partially neutralized the secreted HCO(3)(-). The conjoint secretion of HCO(3)(-) and H(+) may help explain the puzzling finding that mucus secreted from normal and CF glands has the same acidic pH as does mucus from glands stimulated with forskolin or ACh. It may also help explain how human airway glands produce mucus that is hypotonic.
Collapse
Affiliation(s)
- Mauri E Krouse
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
31
|
Lazarowski ER, Tarran R, Grubb BR, van Heusden CA, Okada S, Boucher RC. Nucleotide release provides a mechanism for airway surface liquid homeostasis. J Biol Chem 2004; 279:36855-64. [PMID: 15210701 PMCID: PMC2943374 DOI: 10.1074/jbc.m405367200] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina School of Medicine, 7017 Thurston-Bowles Building, Chapel Hill, NC 72599, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Dubin RF, Robinson SK, Widdicombe JH. Secretion of lactoferrin and lysozyme by cultures of human airway epithelium. Am J Physiol Lung Cell Mol Physiol 2004; 286:L750-5. [PMID: 15003937 DOI: 10.1152/ajplung.00326.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lactoferrin and lysozyme are important antimicrobial compounds of airway surface liquid, derived predominantly from serous cells of submucosal glands but also from surface epithelium. Here we compared release of these compounds from the following human cell cultures: primary cultures of tracheal epithelium (HTE), Calu-3 cells (a lung adenocarcinoma cell line frequently used as a model of serous gland cells), 16HBE14o- cells (an SV40 transformed line from airway surface epithelium), T84 cells (a colon carcinoma cell line), and human foreskin fibroblasts (HFF). For lysozyme, baseline secretory rates were in the order Calu-3 > 16HBE14o- > HTE ≈ T84 > HFF = 0; for lactoferrin, the only cell type showing measurable release was HTE; for mucus, HTE > Calu-3 > 16HBE14o- ≈ T84 > HFF = 0. A wide variety of neurohumoral agents and inflammatory stimuli was without effect on lactoferrin and lysozyme release from HTE or Calu-3 cells, although forskolin did stimulate secretion of water and lysozyme from Calu-3 cells. However, the concentration of lysozyme in the forskolin-induced secretions was much less than in airway gland secretions. Thus our data cast doubt on the utility of Calu-3 cells as a model of airway serous gland cells but do suggest that HTE could prove highly suitable for studies of mucin synthesis and release.
Collapse
Affiliation(s)
- R F Dubin
- Dept. of Human Physiology, Univ. of California-Davis, Davis, CA 95616-8664, USA.
| | | | | |
Collapse
|
33
|
Thiagarajah JR, Song Y, Haggie PM, Verkman AS. A small molecule CFTR inhibitor produces cystic fibrosis-like submucosal gland fluid secretions in normal airways. FASEB J 2004; 18:875-7. [PMID: 15001557 DOI: 10.1096/fj.03-1248fje] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Airway submucosal glands have been proposed as a primary site for initiating and sustaining airway disease in cystic fibrosis (CF). However, it has been difficult to define the role of CFTR in gland fluid secretion because of concerns in interpreting experiments on diseased CF human airways subjected to chronic infection and inflammation. Here, we test the role of CFTR in gland fluid secretion by using a selective CFTR inhibitor (CFTRinh-172) in pig and human airways. Measurements of single-gland fluid secretion rates showed inhibition of both cholinergic and cAMP-stimulated fluid secretion by CFTRinh-172. Secreted fluid [Na+] and [Cl-] measured by fluorescence ratio imaging were 101 and 116 mM, respectively, and not significantly altered by secretory agonists or CFTR inhibition. Gland fluid pH was 7.1 and reduced by 0.4 units after CFTR inhibition. Gland fluid viscosity, determined by photobleaching of FITC-dextran, was threefold increased in pilocarpine-stimulated gland fluid after CFTR inhibition, and protein concentration was increased from 12 to 20 mg/ml. Our data provide strong evidence that gland fluid secretion is CFTR-dependent. The relatively hyper-viscous and acidic fluid secretions produced by acute CFTR inhibition support a role for defective gland function in CF lung disease and provide a rational basis for pharmacological creation of a large animal model of CF.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
34
|
Cuthbert AW, MacVinish LJ. Mechanisms of anion secretion in Calu-3 human airway epithelial cells by 7,8-benzoquinoline. Br J Pharmacol 2003; 140:81-90. [PMID: 12967937 PMCID: PMC1574001 DOI: 10.1038/sj.bjp.0705403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(1) Cultured epithelial monolayers of Calu-3 human airway cells were used to measure anion secretion in response to a number of phenanthrolines and benzoquinolines, using short-circuit current measurements. Calu-3 cells are derived from serous cells of submucosal glands of the airways and are a target for conditions in which muco-ciliary clearance is compromised. (2) Compounds studied were 5,6-benzoquinoline, 5-chloro-1,10-phenanthroline, 7,8-benzoquinoline, 5-nitro-1,10-phenanthroline, benzo[c]cinnoline and 1,10-phenanthroline, which gave EC50 values of 34, 48, 123, 235, 192 and 217 microm, respectively. Of these, 7,8-benzoquinoline was chosen for further detailed study. Concentration-response relationships for all the compounds had Hill slopes greater than 1. (3) Permeabilisation of the apical surface of epithelia with nystatin in the presence of an apical to basolateral potassium ion gradient reduced the EC50 for 7,8-benzoquinoline to 31 microm and altered the Hill slope to close to 1. (4) Using apically permeabilised epithelia it was shown that 7,8-benzoquinoline activates an intermediate-conductance calcium-sensitive potassium channel (KCNN4) and a cAMP-sensitive potassium channel (KCNQ1/KCNE3) in the basolateral epithelial membranes. (5) 7,8-Benzoquinoline was shown to increase chloride conductance of apical epithelial membranes, presumed to be by activation of the cystic fibrosis transmembrane conductance regulator. (6) 7,8-Benzoquinoline had a minor effect on cAMP accumulation in Calu-3 cells, probably by inhibition of phosphodiesterase, which may contribute to its effect on CFTR- and cAMP-sensitive potassium channels. (7) The usefulness of these novel actions in promoting secretion in airway submucosal glands is discussed.
Collapse
Affiliation(s)
- A W Cuthbert
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Level 5, Box 157), Hills Road, Cambridge CB2 2QQ.
| | | |
Collapse
|
35
|
Cuthbert AW, Supuran CT, MacVinish LJ. Bicarbonate-dependent chloride secretion in Calu-3 epithelia in response to 7,8-benzoquinoline. J Physiol 2003; 551:79-92. [PMID: 12872009 PMCID: PMC2343133 DOI: 10.1113/jphysiol.2003.046482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stimulation of Calu-3 epithelia with 7,8-benzoquinoline, under short circuit current conditions, produced a current increase that was completely accounted for by the net flux of chloride, measured simultaneously with 36Cl-. Nevertheless the current stimulated by 7,8-benzoquinoline was sensitive to acetazolamide, which caused up to 50 % inhibition of the stimulated current, the remainder being sensitive to the Na+-K+-2Cl- cotransport inhibitor bumetanide. The effects of acetazolamide could be mimicked by either amiloride or by the di-sodium salt of 4,4'-dinitrostilbene-2,2'-disulphonic acid (DNDS) added to the basolateral side of the epithelium, but their actions were not additive. Amiloride was needed in sufficient concentration to inhibit the sodium-proton exchanger NHE1. DNDS blocks both the chloride-bicarbonate exchanger AE2 and the sodium-bicarbonate transporter NBC1. However, since 7,8-benzoquinoline activates basolateral K+ channels, causing hyperpolarisation, it is unlikely NBC1 is active after addition of 7,8-benzoquinoline. The effect of DNDS is, therefore, mainly on AE2. It is concluded that chloride enters the basolateral aspect of the cells using the Na+-K+-2Cl- cotransporter and a parallel arrangement of NHE1 with AE2, these latter two being sensitive to acetazolamide because of their association with the cytoplasmic form of carbonic anhydrase CAII. The effects of acetazolamide could be mimicked by removal of HCO3-/CO2 from the bathing medium, and furthermore showed that the NHE1-AE2 mechanism is particularly important when the transport rate is high. Thus part of the current stimulated by 7,8-benzoquinoline and inhibited by acetazolamide or HCO3-/CO2 removal can be said to represent bicarbonate-dependent chloride secretion.
Collapse
Affiliation(s)
- A W Cuthbert
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Level 5 Box 157, Hills Road, Cambridge CB2 2QQ, UK.
| | | | | |
Collapse
|
36
|
Hug MJ, Tamada T, Bridges RJ. CFTR and bicarbonate secretion by [correction of to] epithelial cells. Physiology (Bethesda) 2003; 18:38-42. [PMID: 12531931 DOI: 10.1152/nips.01412.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defective HCO(3)(-) and fluid secretion are hallmarks of the pathophysiology of the pancreas of cystic fibrosis patients. Recently, impaired HCO(3)(-) secretion has been shown in most tissues known to express the cystic fibrosis transmembrane conductance regulator (CFTR). New results suggest that CFTR plays an important role in the transcellular secretion of HCO(3)(-).
Collapse
Affiliation(s)
- Martin J Hug
- Institute of Physiology, University of Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
37
|
Verkman AS, Song Y, Thiagarajah JR. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol 2003; 284:C2-15. [PMID: 12475759 DOI: 10.1152/ajpcell.00417.2002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, an epithelial chloride channel expressed in the airways, pancreas, testis, and other tissues. A central question is how defective CFTR function in CF leads to chronic lung infection and deterioration of lung function. Several mechanisms have been proposed to explain lung disease in CF, including abnormal airway surface liquid (ASL) properties, defective airway submucosal gland function, altered inflammatory response, defective organellar acidification, loss of CFTR regulation of plasma membrane ion transporters, and others. This review focuses on the physiology of the ASL and submucosal glands with regard to their proposed role in CF lung disease. Experimental evidence for defective ASL properties and gland function in CF is reviewed, and deficiencies in understanding ASL/gland physiology are identified as areas for further investigation. New model systems and measurement technologies are being developed to make progress in establishing lung disease mechanisms in CF, which should facilitate mechanism-based design of therapies for CF.
Collapse
Affiliation(s)
- A S Verkman
- Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California-San Francisco, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | | | |
Collapse
|
38
|
Xie Q, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murine Slc26a6 anion exchanger: functional comparison with Slc26a1. Am J Physiol Renal Physiol 2002; 283:F826-38. [PMID: 12217875 DOI: 10.1152/ajprenal.00079.2002] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report the molecular and functional characterization of murine Slc26a6, the putative apical chloride-formate exchanger of the proximal tubule. The Slc26a6 transcript is expressed in several tissues, including kidney. Alternative splicing of the second exon generates two distinct isoforms, denoted Slc26a6a and Slc26a6b, which differ in the inclusion of a 23-residue NH(2)-terminal extension. Functional comparison with murine Slc26a1, the basolateral oxalate exchanger of the proximal tubule, reveals a number of intriguing differences. Whereas Slc26a6 is capable of Cl(-), SO, formate, and oxalate uptake when expressed in Xenopus laevis oocytes, Slc26a1 transports only SO and oxalate. Measurement of intracellular pH during the removal of extracellular Cl(-) in the presence and absence of HCO indicates that Slc26a6 functions as both a Cl(-)/HCO and a Cl(-)/OH(-) exchanger; simultaneous membrane hyperpolarization during these experimental maneuvers reveals that HCO and OH(-) transport mediated by Slc26a6 is electrogenic. Cis-inhibition and efflux experiments indicate that Slc26a6 can mediate the exchange of both Cl(-) and SOwith a number of substrates, including formate and oxalate. In contrast, SO and oxalate transport by Slc26a1 are mutually cis-inhibited but activated significantly by extracellular halides, lactate, and formate. The data indicate that Slc26a6 encodes an apical Cl(-)/formate/oxalate and Cl(-)/base exchanger and reveal significant mechanistic differences between apical and basolateral oxalate exchangers of the proximal tubule.
Collapse
Affiliation(s)
- Qizhi Xie
- Division of Nephrology, Nashville Veterans Affairs Medical Center, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
39
|
Ballard ST, Trout L, Mehta A, Inglis SK. Liquid secretion inhibitors reduce mucociliary transport in glandular airways. Am J Physiol Lung Cell Mol Physiol 2002; 283:L329-35. [PMID: 12114194 DOI: 10.1152/ajplung.00277.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because of its possible importance in cystic fibrosis (CF) pulmonary pathogenesis, the effect of anion and liquid secretion inhibitors on airway mucociliary transport was examined. When excised porcine tracheas were treated with ACh to induce gland liquid secretion, the rate of mucociliary transport was increased nearly threefold from 2.5 +/- 0.5 to 6.8 +/- 0.8 mm/min. Pretreatment with both bumetanide and dimethylamiloride (DMA), to respectively inhibit Cl(-) and HCO secretion, significantly reduced mucociliary transport in the presence of ACh by 92%. Pretreatment with the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid similarly reduced mucociliary transport in ACh-treated airways by 97%. These agents did not, however, reduce ciliary beat frequency. Luminal application of benzamil to block liquid absorption significantly attenuated the inhibitory effects of bumetanide and DMA on mucociliary transport. We conclude that anion and liquid secretion is essential for normal mucociliary transport in glandular airways. Because the CF transmembrane conductance regulator protein likely mediates Cl(-), HCO, and liquid secretion in normal glands, we speculate that impairment of gland liquid secretion significantly contributes to defective mucociliary transport in CF.
Collapse
Affiliation(s)
- Stephen T Ballard
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | | | |
Collapse
|
40
|
Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PHARMSCI 2002; 4:E12. [PMID: 12423061 PMCID: PMC2751351 DOI: 10.1208/ps040312] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the present study, we evaluated polyethylenimine (PEI) of different molecular weights (MWs) as a DNA complexing agent for its efficiency in transfecting nondifferentiated COS-1 (green monkey fibroblasts) and well-differentiated human submucosal airway epithelial cells (Calu-3). Studying the effect of particle size, zeta potential, presence of serum proteins or chloroquine, it appeared that transfection efficiency depends on the experimental conditions and not on the MW of the PEI used. Comparing transfection efficiencies in both cell lines, we found that PEI was 3 orders of magnitude more effective in COS-1 than in Calu-3 cells, because Calu-3 cells are differentiated and secrete mucins, which impose an additional barrier to gene delivery. Transfection efficiency was strongly correlated to PEI cytotoxicity. Also, some evidence for PEI-induced apoptosis in both cell lines was found. In conclusion, our results indicate that PEI is a useful vector for nonviral transfection in undifferentiated cell lines. However, results from studies in differentiated bronchial epithelial cells suggest that PEI has yet to be optimized for successful gene therapy of cystic fibrosis (CF).
Collapse
Affiliation(s)
- Bogdan I. Florea
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Clare Meaney
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans E. Junginger
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerrit Borchard
- Division of Pharmaceutical Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
41
|
Fischer H, Widdicombe JH, Illek B. Acid secretion and proton conductance in human airway epithelium. Am J Physiol Cell Physiol 2002; 282:C736-43. [PMID: 11880261 DOI: 10.1152/ajpcell.00369.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid secretion and proton conductive pathways across primary human airway surface epithelial cultures were investigated with the pH stat method in Ussing chambers and by single cell patch clamping. Cultures showed a basal proton secretion of 0.17 +/- 0.04 micromol.h(-1).cm(-2), and mucosal pH equilibrated at 6.85 +/- 0.26. Addition of histamine or ATP to the mucosal medium increased proton secretion by 0.27 +/- 0.09 and 0.24 +/- 0.09 micromol.h(-1).cm(-2), respectively. Addition of mast cells to the mucosal medium of airway cultures similarly activated proton secretion. Stimulated proton secretion was similar in cultures bathed mucosally with either NaCl Ringer or ion-free mannitol solutions. Proton secretion was potently blocked by mucosal ZnCl(2) and was unaffected by mucosal bafilomycin A(1), Sch-28080, or ouabain. Mucosal amiloride blocked proton secretion in tissues that showed large amiloride-sensitive potentials. Proton secretion was sensitive to the application of transepithelial current and showed outward rectification. In whole cell patch-clamp recordings a strongly outward-rectifying, zinc-sensitive, depolarization-activated proton conductance was identified with an average chord conductance of 9.2 +/- 3.8 pS/pF (at 0 mV and a pH 5.3-to-pH 7.3 gradient). We suggest that inflammatory processes activate proton secretion by the airway epithelium and acidify the airway surface liquid.
Collapse
Affiliation(s)
- Horst Fischer
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
42
|
Lazrak A, Thome U, Myles C, Ware J, Chen L, Venglarik CJ, Matalon S. cAMP regulation of Cl(-) and HCO(-)(3) secretion across rat fetal distal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L650-8. [PMID: 11880289 DOI: 10.1152/ajplung.00370.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology, University of Alabama at Birmingham, 619 19th Street S., Birmingham, AL 35233, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Cowley EA, Linsdell P. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J Physiol 2002; 538:747-57. [PMID: 11826162 PMCID: PMC2290097 DOI: 10.1113/jphysiol.2001.013300] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transepithelial anion secretion in many tissues depends upon the activity of basolateral channels. Using monolayers of the Calu-3 cell line, a human submucosal serous cell model mounted in an Ussing chamber apparatus, we investigated the nature of the K+ channels involved in basal, cAMP- and Ca2+-stimulated anion secretion, as reflected by the transepithelial short circuit current (I(sc)). The non-specific K+ channel inhibitor Ba2+ inhibited the basal I(sc) by either 77 or 16 % when applied directly to the basolateral or apical membranes, respectively, indicating that a basolateral K+ conductance is required for maintenance of basal anion secretion. Using the K+ channel blockers clofilium and clotrimazole, we found basal I(sc) to be sensitive to clofilium, with a small clotrimazole-sensitive component. By stimulating the cAMP and Ca2+ pathways, we determined that cAMP-stimulated anion secretion was almost entirely abolished by clofilium, but insensitive to clotrimazole. In contrast, the Ca2+-stimulated response was sensitive to both clofilium and clotrimazole. Thus, pharmacologically distinct basolateral K+ channels are differentially involved in the control of anion secretion under different conditions. Isolation of the basolateral K+ conductance in permeabilized monolayers revealed a small basal and forskolin-stimulated I(sc). Finally, using the reverse transcriptase-polymerase chain reaction, we found that Calu-3 cells express the K+ channel genes KCNN4 and KCNQ1 and the subunits KCNE2 and KCNE3. We conclude that while KCNN4 contributes to Ca2+-activated anion secretion by Calu-3 cells, basal and cAMP-activated secretion are more critically dependent on other K+ channel types, possibly involving one or more class of KCNQ1-containing channel complexes.
Collapse
Affiliation(s)
- Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7.
| | | |
Collapse
|
44
|
Inglis SK, Finlay L, Ramminger SJ, Richard K, Ward MR, Wilson SM, Olver RE. Regulation of intracellular pH in Calu-3 human airway cells. J Physiol 2002; 538:527-39. [PMID: 11790817 PMCID: PMC2290072 DOI: 10.1113/jphysiol.2001.012806] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Calu-3 human cell line exhibits features of submucosal gland serous cells and secretes HCO(3)(-). The aim of this study was to identify the HCO(3)(-) transporters present in these cells by studying their role in the regulation of intracellular pH (pH(i)). Calu-3 cells were grown on coverslips, loaded with the pH-sensitive fluorescent dye BCECF, and their fluorescence intensity monitored as an indication of pH(i). Cells were acidified with NH(4)Cl (25 mM, 1 min) and pH(i) recovery recorded. In the absence of HCO(3)(-), initial recovery was 0.208 +/- 0.016 pH units min(-1) (n = 37). This was almost abolished by removal of extracellular Na(+) and by amiloride (1 mM), consistent with the activity of a Na(+)-H(+) exchanger (NHE). In the presence of HCO(3)(-) and CO(2), recovery (0.156 +/- 0.018 pH units min(-1)) was abolished (reduced by 91.8 +/- 6.7 %, n = 7) by removal of Na(+) but only attenuated (by 63.3 +/- 5.8 %, n = 9) by amiloride. 4,4-Dinitrostilbene-2,2-disulfonic acid (DNDS) inhibited recovery by 45.8 +/- 5.0 % (n = 7). The amiloride-insensitive recovery was insensitive to changes in membrane potential, as confirmed by direct microelectrode measurements, brought about by changing extracellular [K(+)] in the presence of either valinomycin or the K(+) channel opener 1-EBIO. In addition, forskolin (10 microM), which activates the cystic fibrosis transmembrane conductance regulator Cl(-) conductance in these cells and depolarises the cell membrane, had no effect on recovery. Removal of extracellular Cl(-) trebled pH(i) recovery rates, suggesting that an electroneutral, DNDS-sensitive, Cl(-)-HCO(3)(-) exchanger together with a NHE may be involved in pH(i) regulation and HCO(3)(-) secretion in these cells. RT-PCR detected the expression of the electrogenic Na(+)-HCO(3)(-) cotransporter NBC1 and the Cl(-)-HCO(3)(-) exchanger (AE2) but not the electroneutral Na(+)-HCO(3)(-) cotransporter NBCn1.
Collapse
Affiliation(s)
- S K Inglis
- Lung Membrane Transport Group, Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Trout L, Corboz MR, Ballard ST. Mechanism of substance P-induced liquid secretion across bronchial epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 281:L639-45. [PMID: 11504691 DOI: 10.1152/ajplung.2001.281.3.l639] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to identify and determine the mechanism of noncholinergic pathways for the induction of liquid secretion across airway epithelium. Excised porcine bronchi secreted substantial and significant quantities of liquid when exposed to acetylcholine, substance P, or forskolin but not to isoproterenol, norepinephrine, or phenylephrine. Bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransport, reduced the liquid secretion response to substance P by 69%. Approximately two-thirds of bumetanide-insensitive liquid secretion was blocked by dimethylamiloride (DMA), a Na(+)/H(+) exchange inhibitor. Substance P responses were preserved in airways after surface epithelium removal, suggesting that secreted liquid originated from submucosal glands. The anion channel blockers diphenylamine-2-carboxylate (DPC) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) inhibited >90% of substance P-induced liquid secretion, whereas DIDS had no effect. DMA, DPC, and NPPB had greater inhibitory effects on net HCO(3)(-) secretion than on liquid secretion. Although preserved relative to liquid secretion, net HCO(3)(-) secretion was reduced by 39% in the presence of bumetanide. We conclude that substance P induces liquid secretion from bronchial submucosal glands of pigs through active transport of Cl(-) and HCO(3)(-). The pattern of responses to secretion agonists and antagonists suggests that the cystic fibrosis transmembrane conductance regulator mediates this process.
Collapse
Affiliation(s)
- L Trout
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | |
Collapse
|
46
|
Joo NS, Wu JV, Krouse ME, Saenz Y, Wine JJ. Optical method for quantifying rates of mucus secretion from single submucosal glands. Am J Physiol Lung Cell Mol Physiol 2001; 281:L458-68. [PMID: 11435221 DOI: 10.1152/ajplung.2001.281.2.l458] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe an optical method to quantify single- gland secretion. Isolated tracheal mucosa were mounted at the air-Krebs interface and coated with oil. Gland secretions formed spherical bubbles that were digitally imaged at intervals, allowing rates of secretion to be calculated. We monitored 340 glands in 54 experiments with 12 sheep. Glands secreted basally at low rates (0.57 +/- 0.04 nl x min(-1) x gland(-1), 123 glands) in tissues up to 9 h postharvest and at lower rates for up to 3 days. Carbachol (10 microM) stimulated secretion with an early transient and a sustained or oscillating phase. Peak secretion was 15.7 +/- 1.2 nl x min(-1) x gland(-1) (60 glands); sustained secretion was 4.5 +/- 0.5 nl x min(-1) x gland(-1) (10 glands). Isoproterenol and phenylephrine (10 microM each) stimulated only small, transient responses. We confirmed that cats have a large secretory response to phenylephrine (11.6 +/- 3.7 nl x min(-1) x gland(-1), 12 glands), but pigs, sheep, and humans all have small responses (<2 nl x min(-1)m x gland(-1)). Carbachol-stimulated peak secretion was inhibited 56% by bumetanide, 67% by HCO replacement with HEPES, and 92% by both. The distribution of secretion rates was nonnormal, suggesting the existence of subpopulations of glands.
Collapse
Affiliation(s)
- N S Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | | | |
Collapse
|
47
|
Grubb BR, Pace AJ, Lee E, Koller BH, Boucher RC. Alterations in airway ion transport in NKCC1-deficient mice. Am J Physiol Cell Physiol 2001; 281:C615-23. [PMID: 11443061 DOI: 10.1152/ajpcell.2001.281.2.c615] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airways of Na(+)-K(+)-2Cl(-) (NKCC1)-deficient mice (-/-) were studied in Ussing chambers to determine the role of the basolateral NKCC1 in transepithelial anion secretion. The basal short-circuit current (I(sc)) of tracheae and bronchi from adult mice did not differ between NKCC1-/- and normal mice, whereas NKCC1-/- tracheae from neonatal mice exhibited a significantly reduced basal I(sc). In normal mouse tracheae, sensitivity to the NKCC1 inhibitor bumetanide correlated inversely with the age of the mouse. In contrast, tracheae from NKCC1-/- mice at all ages were insensitive to bumetanide. The anion secretory response to forskolin did not differ between normal and NKCC1-/- tissues. However, when larger anion secretory responses were induced with UTP, airways from the NKCC1-/- mice exhibited an attenuated response. Ion substitution and drug treatment protocols suggested that HCO secretion compensated for reduced Cl(-) secretion in NKCC1-/- airway epithelia. The absence of spontaneous airway disease or pathology in airways from the NKCC1-/- mice suggests that the NKCC1 mutant mice are able to compensate adequately for absence of the NKCC1 protein.
Collapse
Affiliation(s)
- B R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA.
| | | | | | | | | |
Collapse
|
48
|
Loffing J, Moyer BD, Reynolds D, Shmukler BE, Alper SL, Stanton BA. Functional and molecular characterization of an anion exchanger in airway serous epithelial cells. Am J Physiol Cell Physiol 2000; 279:C1016-23. [PMID: 11003582 DOI: 10.1152/ajpcell.2000.279.4.c1016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serous cells secrete Cl(-) and HCO(3)(-) and play an important role in airway function. Recent studies suggest that a Cl(-)/HCO(3)(-) anion exchanger (AE) may contribute to Cl(-) secretion by airway epithelial cells. However, the molecular identity, the cellular location, and the contribution of AEs to Cl(-) secretion in serous epithelial cells in tracheal submucosal glands are unknown. The goal of the present study was to determine the molecular identity, the cellular location, and the role of AEs in the function of serous epithelial cells. To this end, Calu-3 cells, a human airway cell line with a serous-cell phenotype, were studied by RT-PCR, immunoblot, and electrophysiological analysis to examine the role of AEs in Cl(-) secretion. In addition, the subcellular location of AE proteins was examined by immunofluorescence microscopy. Calu-3 cells expressed mRNA and protein for AE2 as determined by RT-PCR and Western blot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rat tracheal serous cells in situ. In Cl(-)/HCO(3)(-)/Na(+)-containing media, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP)-stimulated short-circuit anion current (I(sc)) was reduced by basolateral but not by apical application of 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (50 microM) and 4, 4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 microM)], inhibitors of AEs. In the absence of Na(+) in the bath solutions, to eliminate the contributions of the Na(+)/HCO(3)(-) and Na(+)/K(+)/2Cl(-) cotransporters to I(sc), CPT-cAMP stimulated a small DNDS-sensitive I(sc). Taken together with previous studies, these observations suggest that a small component of cAMP-stimulated I(sc) across serous cells may be referable to Cl(-) secretion and that uptake of Cl(-) across the basolateral membrane may be mediated by AE2.
Collapse
Affiliation(s)
- J Loffing
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
49
|
Devor DC, Singh AK, Lambert LC, DeLuca A, Frizzell RA, Bridges RJ. Bicarbonate and chloride secretion in Calu-3 human airway epithelial cells. J Gen Physiol 1999; 113:743-60. [PMID: 10228185 PMCID: PMC2222914 DOI: 10.1085/jgp.113.5.743] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Serous cells are the predominant site of cystic fibrosis transmembrane conductance regulator expression in the airways, and they make a significant contribution to the volume, composition, and consistency of the submucosal gland secretions. We have employed the human airway serous cell line Calu-3 as a model system to investigate the mechanisms of serous cell anion secretion. Forskolin-stimulated Calu-3 cells secrete HCO-3 by a Cl-offdependent, serosal Na+-dependent, serosal bumetanide-insensitive, and serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive, electrogenic mechanism as judged by transepithelial currents, isotopic fluxes, and the results of ion substitution, pharmacology, and pH studies. Similar studies revealed that stimulation of Calu-3 cells with 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of basolateral membrane Ca2+-activated K+ channels, reduced HCO-3 secretion and caused the secretion of Cl- by a bumetanide-sensitive, electrogenic mechanism. Nystatin permeabilization of Calu-3 monolayers demonstrated 1-EBIO activated a charybdotoxin- and clotrimazole- inhibited basolateral membrane K+ current. Patch-clamp studies confirmed the presence of an intermediate conductance inwardly rectified K+ channel with this pharmacological profile. We propose that hyperpolarization of the basolateral membrane voltage elicits a switch from HCO-3 secretion to Cl- secretion because the uptake of HCO-3 across the basolateral membrane is mediated by a 4,4 '-dinitrostilben-2,2'-disulfonic acid (DNDS)-sensitive Na+:HCO-3 cotransporter. Since the stoichiometry reported for Na+:HCO-3 cotransport is 1:2 or 1:3, hyperpolarization of the basolateral membrane potential by 1-EBIO would inhibit HCO-3 entry and favor the secretion of Cl-. Therefore, differential regulation of the basolateral membrane K+ conductance by secretory agonists could provide a means of stimulating HCO-3 and Cl- secretion. In this context, cystic fibrosis transmembrane conductance regulator could serve as both a HCO-3 and a Cl- channel, mediating the apical membrane exit of either anion depending on basolateral membrane anion entry mechanisms and the driving forces that prevail. If these results with Calu-3 cells accurately reflect the transport properties of native submucosal gland serous cells, then HCO-3 secretion in the human airways warrants greater attention.
Collapse
Affiliation(s)
- D C Devor
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. dd2+@pitt.edu
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- J J Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Room 450, Bldg. 420, Main Quad, Stanford, California 94305-2130, USA.
| |
Collapse
|