1
|
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine. Am J Physiol Heart Circ Physiol 2012; 304:H195-205. [PMID: 23103497 DOI: 10.1152/ajpheart.00188.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is characterized by vasoconstriction and vascular remodeling, leading to right ventricular dysfunction. Given the role of arterial compliance (C(a)) in right ventricular work, a decrease in C(a) would add to right ventricular work. Nitric oxide (NO) is a potent vasodilator made by NO synthases from L-arginine (L-Arg). However, little is known of the effect of L-Arg on vascular compliance (C(v)) in the lung. We hypothesized that exposure to CH would decrease C(a) and that this effect would be reversed by exogenous L-Arg. Sprague-Dawley rats were exposed to either normoxia or CH for 14 days; the lungs were then isolated and perfused. Vascular occlusions were performed and modeled using a three-compliance, two-resistor model. Pressure-flow curves were generated, and a distensible vessel model was used to estimate distensibility and a vascular resistance parameter (R(0)). Hypoxia resulted in the expected increase in arterial resistance (R(a)) as well as a decrease in both C(a) and C(v). L-Arg had little effect on R(a), C(a), or C(v) in isolated lungs from normoxic animals. L-Arg decreased R(a) in lungs from CH rats and redistributed compliance to approximately that found in normoxic lungs. CH increased R(0), and L-Arg reversed this increase in R(0). L-Arg increased exhaled NO, and inhibition of L-Arg uptake attenuated the L-Arg-induced increase in exhaled NO. These data demonstrate that the CH-induced decrease in C(a) was reversed by L-Arg, suggesting that L-Arg may improve CH-induced right ventricular dysfunction.
Collapse
Affiliation(s)
- Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
2
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
3
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
4
|
Schwenke DO, Pearson JT, Sonobe T, Ishibashi-Ueda H, Shimouchi A, Kangawa K, Umetani K, Shirai M. Role of Rho-kinase signaling and endothelial dysfunction in modulating blood flow distribution in pulmonary hypertension. J Appl Physiol (1985) 2011; 110:901-8. [DOI: 10.1152/japplphysiol.01318.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rho-kinase-mediated vasoconstriction and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). However, their contribution to the adverse changes in pulmonary blood flow distribution associated with PAH has not been addressed. This study utilizes synchrotron radiation microangiography to assess the specific role, and contribution of, Rho-kinase-mediated vasoconstriction and endothelial dysfunction in PAH. Male adult Sprague-Dawley rats were injected with saline (Cont-rats) or monocrotaline (MCT-rats) 3 wk before microangiography was performed on the left lung. We assessed dynamic changes in vessel internal diameter (ID) in response to 1) the Rho-kinase inhibitor fasudil (10 mg/kg iv); or 2) ACh (3 μg · kg−1 · min−1), sodium nitroprusside (SNP, 5 μg · kg−1 · min−1), and Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg iv). We observed that MCT-rats had fewer vessels of the microcirculation compared with Cont-rats. The fundamental result of this study is that fasudil improved pulmonary blood flow distribution and reduced pulmonary pressure in PAH rats, not only by dilating already-perfused vessels (ID > 100 μm), but also by restoring blood flow to vessels that had previously been constricted closed (ID < 100 μm). Endothelium-dependent vasodilation was impaired in MCT-rats primarily in vessels with an ID < 200 μm. Moreover the vasoconstrictor response to l-NAME was accentuated in MCT-rats, but only in the 200- to 300-μm vessels. These results highlight the importance of Rho-kinase-mediated control and endothelial control of pulmonary vascular tone in PAH. Indeed, an effective therapeutic strategy for treating PAH should target both the smooth muscle Rho-kinase and endothelial pathways.
Collapse
Affiliation(s)
| | - James T. Pearson
- Department of Physiology and Monash Centre for Synchrotron Science, Monash University, Melbourne, Australia
| | | | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | - Kenji Kangawa
- National Cardiovascular Center Research Institute, Suita, Osaka, Japan; and
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | | |
Collapse
|
5
|
Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54:S108-S117. [PMID: 19555854 DOI: 10.1016/j.jacc.2009.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/16/2009] [Indexed: 02/02/2023]
Abstract
Over the past 2 decades, pulmonary arterial hypertension has evolved from a uniformly fatal condition to a chronic, manageable disease in many cases, the result of unparalleled development of new therapies and advances in early diagnosis. However, none of the currently available therapies is curative, so the search for new treatment strategies continues. With a deeper understanding of the genetics and the molecular mechanisms of pulmonary vascular disorders, we are now at the threshold of entering a new therapeutic era. Our working group addressed what can be expected in the near future. The topics span the understanding of genetic variations, novel antiproliferative treatments, the role of stem cells, the right ventricle as a therapeutic target, and strategies and challenges for the translation of novel experimental findings into clinical practice.
Collapse
|
6
|
Changes in pulmonary blood flow distribution in monocrotaline compared with hypoxia-induced models of pulmonary hypertension: assessed using synchrotron radiation. J Hypertens 2009; 27:1410-9. [DOI: 10.1097/hjh.0b013e32832af6a1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Sud N, Sharma S, Wiseman DA, Harmon C, Kumar S, Venema RC, Fineman JR, Black SM. Nitric oxide and superoxide generation from endothelial NOS: modulation by HSP90. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1444-53. [PMID: 17827253 DOI: 10.1152/ajplung.00175.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we have shown that pulmonary arterial endothelial cells (PAECs) isolated from fetal lambs produce significant levels of nitric oxide (NO) but minimal superoxide upon stimulation, whereas PAECs isolated from 4-wk-old lambs produce significant amounts of both NO and superoxide. These data indicated that a certain degree of uncoupling of endothelial NO synthase (eNOS) occurs in PAECs during postnatal development. In this study, we sought to extend these studies by investigating the potential role of heat shock protein 90 (HSP90) in eNOS coupling. Western blot analyses revealed higher HSP90 expression in PAECs isolated from fetal compared with 4-wk-old lambs, whereas the analysis of recombinant human eNOS activation in vitro in the presence of HSP90 indicated that HSP90 significantly augmented NO production while inhibiting superoxide generation from eNOS. To further investigate whether HSP90 could be involved in uncoupling of eNOS in PAECs isolated from 4-wk-old lambs, we utilized an adenovirus to overexpress HSP90. We found that overexpression of HSP90 significantly increased the shear-stimulated association of HSP90 with eNOS and led to significant increases in NO production and reduced NOS-dependent superoxide generation. Conversely, the exposure of PAECs isolated from fetal lambs to the HSP90 inhibitor radicicol led to significant decreases in eNOS-HSP90 interactions, decreased shear-stimulated NO generation, and increased NOS-dependent superoxide production indicative of eNOS uncoupling. Finally, we examined eNOS-HSP90 interactions in our lamb model of pulmonary hypertension associated with increased pulmonary blood flow (shunt). Our data indicate that HSP90-eNOS interactions were decreased in shunt lambs and that this was associated with decreased NO generation and an increase in eNOS-dependent generation of superoxide. Together, our data support a significant role for HSP90 in promoting NO generation and inhibiting superoxide generation by eNOS and indicate that the disruption of this interaction may be involved in the endothelial dysfunction associated with pulmonary hypertension.
Collapse
Affiliation(s)
- Neetu Sud
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Paffett ML, Naik JS, Resta TC, Walker BR. Reduced store-operated Ca2+ entry in pulmonary endothelial cells from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1135-42. [PMID: 17693482 DOI: 10.1152/ajplung.00432.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension may influence basal endothelial cell (EC) intracellular Ca(2+) concentration ([Ca(2+)](i)). We hypothesized that CH decreases EC [Ca(2+)](i) associated with membrane depolarization and reduced Ca(2+) entry. To test this hypothesis, we assessed 1) basal endothelial Ca(2+) in pressurized pulmonary arteries and freshly isolated ECs, 2) EC membrane potential (E(m)), 3) store-operated Ca(2+) current (I(SOC)), and 4) store-operated Ca(2+) (SOC) entry in arteries from control and CH rats. We found that basal EC Ca(2+) was significantly lower in pressurized pulmonary arteries and freshly isolated ECs from CH rats compared with controls. Similarly, ECs in intact arteries from CH rats were depolarized compared with controls, although no differences were observed between groups in isolated cells. I(SOC) activation by 1 muM thapsigargin displayed diminished inward current and a reversal potential closer to 0 mV in cells from CH rats compared with controls. In addition, SOC entry determined by fura 2 fluorescence and Mn(2+) quenching revealed a parallel reduction in Ca(2+) entry following CH. We conclude that differences in the magnitude of SOC entry exist between freshly dispersed ECs from CH and control rats and correlates with the decrease in basal EC [Ca(2+)](i). In contrast, basal EC Ca(2+) influx is unaffected and membrane depolarization is limited to intact arteries, suggesting that E(m) may not play a major role in determining basal EC [Ca(2+)](i) following CH.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Dept. of Cell Biology and Physiology, Univ. of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
9
|
Sehgal PB, Mukhopadhyay S. Pulmonary arterial hypertension: a disease of tethers, SNAREs and SNAPs? Am J Physiol Heart Circ Physiol 2007; 293:H77-85. [PMID: 17416597 DOI: 10.1152/ajpheart.01386.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Histological and electron microscopic studies over the past four decades have highlighted "plump," "enlarged" endothelial, smooth muscle, and fibroblastic cellular elements with increased endoplasmic reticulum, Golgi stacks, and vacuolation in pulmonary arterial lesions in human and in experimental (hypoxia and monocrotaline) pulmonary arterial hypertension. However, the contribution of disrupted intracellular membrane trafficking in the pathobiology of this disease has received insufficient attention. Recent studies suggest a pathogenetic role of the disruption of intracellular trafficking of vasorelevant proteins and cell-surface receptors in the development of this disease. The purpose of this essay is to highlight the molecular regulation of vesicular trafficking by membrane tethers, SNAREs and SNAPs, and to suggest how their dysfunction, directly and/or indirectly, might contribute to development of pulmonary arterial hypertension in experimental models and in humans, including that due to mutations in bone morphogenetic receptor type 2.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
10
|
Schwenke DO, Pearson JT, Kangawa K, Shirai M. Does central nitric oxide chronically modulate the acute hypoxic ventilatory response in conscious rats? Acta Physiol (Oxf) 2006; 186:309-18. [PMID: 16634786 DOI: 10.1111/j.1748-1716.2006.01570.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Hypoxia initiates an increase in ventilation (VE) through a cascade of events of which central nitric oxide (NO) has been implicated as an important neuromodulator. There have not been any reports describing the consequences of long-term imbalances in the central NO pathways on the modulation of the acute hypoxic ventilatory response (HVR). Chronic hypoxia (CH) can potentially modify the HVR, and so we hypothesized that central NO may be involved. In this study we describe the long-term role of central NO in the modulation of HVR before and after CH. METHODS Male Sprague-Dawley rats (BW c. 200-320 g; n = 21) were implanted with an osmotic pump for continuous intracerebroventricular administration of either artificial cerebrospinal fluid (control), Nomega-nitro-L-arginine methyl ester (L-NAME) (150 microg kg(-1) day(-1)) or the NO-donor, 3-[4-morpholinyl]-sydnonimine-hydrochloride (SIN-1) (100 microg kg(-1) day(-1)). The VE response to acute poikilocapnic hypoxia (8% O2 for 20 min) was measured by plethysmography seven days after surgery, in normoxia, and again after 14 days of exposure to CH (CH = 12% O2). RESULTS The magnitude of the HVR (c. 230% increase in VE) was unaltered by centrally infusing either L-NAME or SIN-1 for 1 week. CH did not modify the HVR, although baseline VE and HVR were shifted downward by L-NAME during CH - because of a reduction in the frequency component. CONCLUSIONS These results suggest that long-term alterations in central NO levels may not alter the HVR under moderate CH, presumably because of the onset/development of compensatory mechanisms. However, NO appears to be an important component of the HVR following CH.
Collapse
Affiliation(s)
- D O Schwenke
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
11
|
Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bärtsch P, Haefeli WE. Hypoxia Impairs Systemic Endothelial Function in Individuals Prone to High-Altitude Pulmonary Edema. Am J Respir Crit Care Med 2005; 172:763-7. [PMID: 15947284 DOI: 10.1164/rccm.200504-654oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE High-altitude pulmonary edema (HAPE) is characterized by excessive pulmonary vasoconstriction and is associated with decreased concentrations of nitric oxide (NO) in the lung. OBJECTIVES We hypothesized that individuals susceptible to HAPE (HAPE-S) would also have dysfunction of the vascular NO vasodilator pathway during hypoxia in the systemic vasculature. METHODS During normoxia (FI(O(2)) = 0.21) and 4 hours of normobaric hypoxia (FI(O(2)) = 0.12, corresponding to an altitude of 4,500 m above sea level) endothelium-dependent and endothelium-independent vasodilator responses to intraarterial infusion of acetylcholine (ACh) and sodium nitroprusside, respectively, were measured by forearm venous occlusion plethysmography in nine HAPE-S subjects and in nine HAPE-resistant control subjects. MAIN RESULTS Pulmonary artery systolic pressure increased from 22 +/- 3 to 33 +/- 6 mm Hg (p < 0.001) during hypoxia in control subjects, and from 25 +/- 4 to 50 +/- 9 mm Hg in HAPE-S subjects (p < 0.001). Despite similar responses during normoxia in both groups, ACh-induced changes in forearm blood flow markedly decreased during hypoxia in HAPE-S subjects (p = 0.01) but not in control subjects. The attenuated vascular response to ACh infusion during hypoxia inversely correlated with increased pulmonary artery systolic pressure (p = 0.04) and decreased plasma nitrite correlated with attenuated ACh-induced vasodilation in HAPE-S subjects (p = 0.02). CONCLUSIONS Hypoxia markedly impairs vascular endothelial function in the systemic circulation in HAPE-S subjects due to a decreased bioavailability of NO. Impairment of the NO pathway could contribute to the enhanced hypoxic pulmonary vasoconstriction that is central to the pathogenesis of HAPE.
Collapse
Affiliation(s)
- Marc M Berger
- Department of Internal Medicine VI (Clinical Pharmacology and Pharmacoepidemiology), University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Littler CM, Wehling CA, Wick MJ, Fagan KA, Cool CD, Messing RO, Dempsey EC. Divergent contractile and structural responses of the murine PKC-epsilon null pulmonary circulation to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L1083-93. [PMID: 16085670 DOI: 10.1152/ajplung.00472.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Loss of PKC-epsilon limits the magnitude of acute hypoxic pulmonary vasoconstriction (HPV) in the mouse. Therefore, we hypothesized that loss of PKC-epsilon would decrease the contractile and/or structural response of the murine pulmonary circulation to chronic hypoxia (Hx). However, the pattern of lung vascular responses to chronic Hx may or may not be predicted by the acute HPV response. Adult PKC-epsilon wild-type (PKC-epsilon(+/+)), heterozygous null, and homozygous null (PKC-epsilon(-/-)) mice were exposed to normoxia or Hx for 5 wk. PKC-epsilon(-/-) mice actually had a greater increase in right ventricular (RV) systolic pressure, RV mass, and hematocrit in response to chronic Hx than PKC-epsilon(+/+) mice. In contrast to the augmented PA pressure and RV hypertrophy, pulmonary vascular remodeling was increased less than expected (i.e., equal to PKC-epsilon(+/+) mice) in both the proximal and distal PKC-epsilon(-/-) pulmonary vasculature. The contribution of increased vascular tone to this pulmonary hypertension (PHTN) was assessed by measuring the acute vasodilator response to nitric oxide (NO). Acute inhalation of NO reversed the increased PA pressure in hypoxic PKC-epsilon(-/-) mice, implying that the exaggerated PHTN may be due to a relative deficiency in nitric oxide synthase (NOS). Despite the higher PA pressure, chronic Hx stimulated less of an increase in lung endothelial (e) and inducible (i) NOS expression in PKC-epsilon(-/-) than PKC-epsilon(+/+) mice. In contrast, expression of nNOS in PKC-epsilon(+/+) mice decreased in response to chronic Hx, while lung levels in PKC-epsilon(-/-) mice remained unchanged. In summary, loss of PKC-epsilon results in increased vascular tone, but not pulmonary vascular remodeling in response to chronic Hx. Blunting of Hx-induced eNOS and iNOS expression may contribute to the increased vascular tone. PKC-epsilon appears to be an important signaling intermediate in the hypoxic regulation of each NOS isoform.
Collapse
Affiliation(s)
- C M Littler
- Cardiovascular Pulmonary Research Laboratory, B-133, University of Colorado Health Sciences Center, 4200 E. 9th Avenue, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nagaoka T, Morio Y, Casanova N, Bauer N, Gebb S, McMurtry I, Oka M. Rho/Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2004; 287:L665-72. [PMID: 12959926 DOI: 10.1152/ajplung.00050.2003] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that Rho/Rho kinase signaling plays an important role in the sustained vasoconstriction induced by many agonists and is involved in the pathogenesis of systemic vascular diseases. However, little is known about its role in increased vascular tone in hypoxic pulmonary hypertension (PH). The purpose of this study was to examine whether Rho/Rho kinase-mediated Ca2+ sensitization contributed to sustained vasoconstriction and increased vasoreactivity in hypoxic PH in rats. Acute intravenous administration of Y-27632, a Rho kinase inhibitor, nearly normalized the high pulmonary arterial blood pressure and total pulmonary resistance in chronically hypoxic rats. In contrast to nifedipine, Y-27632 also markedly decreased elevated basal vascular tone in hypertensive blood-perfused lungs and isolated pulmonary arteries. Y-27632 and another Rho kinase inhibitor, HA-1077, completely reversed nitro-L-arginine-induced vasoconstriction in physiological salt solution-perfused hypertensive lungs, whereas inhibitors of myosin light chain kinase (ML-9), protein kinase C (GF-109203X), phosphatidylinositol 3-kinase (LY-294002), and tyrosine kinase (tyrphostin A23) caused only partial or no reversal of the vasoconstriction. Vasoconstrictor responses to KCl were augmented in hypertensive physiological salt solution-perfused lungs and pulmonary arteries, and the augmentation was eliminated by Y-27632. These results suggest that Rho/Rho kinase-mediated Ca2+ sensitization plays a central role in mediating sustained vasoconstriction and increased vasoreactivity in hypoxic PH.
Collapse
Affiliation(s)
- Tetsutaro Nagaoka
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 2004; 287:L656-64. [PMID: 14977625 DOI: 10.1152/ajplung.00090.2003] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activation of Rho/Rho-kinase in the pulmonary circulation of mice contributes to acute hypoxic pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension and vascular remodeling. In isolated, salt solution-perfused mouse lungs, acute administration of the Rho-kinase inhibitor Y-27632 (1 × 10−5 M) attenuated hypoxic vasoconstriction as well as that due to angiotensin II and KCl. Chronic treatment with Y-27632 (30 mg·kg−1·day−1) via subcutaneous osmotic pump decreased right ventricular systolic pressure, right ventricular hypertrophy, and neomuscularization of the distal pulmonary vasculature in mice exposed to hypobaric hypoxia for 14 days. Analysis of a small number of proximal pulmonary arteries suggested that Y-27632 treatment reduced the level of phospho-CPI-17, a Rho-kinase target, in hypoxic lungs. We also found that endothelial nitric oxide synthase protein in hypoxic lungs was augmented by Y-27632, suggesting that enhanced nitric oxide production might have played a role in the Y-27632-induced attenuation of chronically hypoxic pulmonary hypertension. In conclusion, Rho/Rho-kinase activation is important in the effects of both acute and chronic hypoxia on the pulmonary circulation of mice, possibly by contributing to both vasoconstriction and vascular remodeling.
Collapse
Affiliation(s)
- Karen A Fagan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Weissmann N, Nollen M, Gerigk B, Ardeschir Ghofrani H, Schermuly RT, Gunther A, Quanz K, Fink L, Hänze J, Rose F, Seeger W, Grimminger F. Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003; 284:H931-8. [PMID: 12433654 DOI: 10.1152/ajpheart.00376.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion to ventilation for optimizing pulmonary gas exchange. Chronic alveolar hypoxia results in vascular remodeling and pulmonary hypertension. Previous studies have reported conflicting results of the effect of chronic alveolar hypoxia on pulmonary vasoreactivity and the contribution of nitric oxide (NO), which may be related to species and strain differences as well as to the duration of chronic hypoxia. Therefore, we investigated the impact of chronic hypoxia on HPV in rabbits, with a focus on lung NO synthesis. After exposure of the animals to normobaric hypoxia (10% O(2)) for 1 day to 10 wk, vascular reactivity was investigated in ex vivo perfused normoxic ventilated lungs. Chronic hypoxia induced right heart hypertrophy and increased normoxic vascular tone within weeks. The vasoconstrictor response to an acute hypoxic challenge was strongly downregulated within 5 days, whereas the vasoconstrictor response to the thromboxane mimetic U-46619 was maintained. The rapid downregulation of HPV was apparently not linked to changes in the lung vascular NO system, detectable in the exhaled gas and by pharmacological blockage of NO synthesis. Treatment of the animals with long-term inhaled NO reduced right heart hypertrophy and partially maintained the reactivity to acute hypoxia, without any impact on the endogenous NO system being noted. We conclude that chronic hypoxia causes rapid downregulation of acute HPV as a specific event, preceding the development of major pulmonary hypertension and being independent of the lung vascular NO system. Long-term NO inhalation partially maintains the strength of the hypoxic vasoconstrictor response.
Collapse
Affiliation(s)
- Norbert Weissmann
- Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Blumberg FC, Wolf K, Arzt M, Lorenz C, Riegger GAJ, Pfeifer M. Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs. J Appl Physiol (1985) 2003; 94:446-52. [PMID: 12391096 DOI: 10.1152/japplphysiol.00239.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)). Right ventricular systolic pressure and cross-sectional medial vascular wall area of pulmonary arteries rose significantly, and eNOS mRNA levels increased 1.8- and 2.6-fold after 2 and 4 wk of hypoxia, respectively (each P < 0.05). Pulmonary ET-1 mRNA and ET-1 plasma levels increased significantly after 4 wk of hypoxia (each P < 0.05). LU-135252 reduced right ventricular systolic pressure, vascular remodeling, and eNOS gene expression in chronic hypoxic rats (each P < 0.05), whereas ET-1 production was not altered. We conclude that eNOS expression in chronic hypoxic rat lungs is modified predominantly by hemodynamic factors, whereas the ET-B receptor-mediated pathway and hypoxia seem to be less important.
Collapse
|
17
|
Ivy DD, Yanagisawa M, Gariepy CE, Gebb SA, Colvin KL, McMurtry IF. Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats. Am J Physiol Lung Cell Mol Physiol 2002; 282:L703-12. [PMID: 11880295 DOI: 10.1152/ajplung.00272.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanisms by which endothelin (ET)-1 mediates chronic pulmonary hypertension remain incompletely understood. Although activation of the ET type A (ET(A)) receptor causes vasoconstriction, stimulation of ET type B (ET(B)) receptors can elicit vasodilation or vasoconstriction. We hypothesized that the ET(B) receptor attenuates the development of hypoxic pulmonary hypertension and studied a genetic rat model of ET(B) receptor deficiency (transgenic sl/sl). After 3 wk of severe hypoxia, the transgenic sl/sl pulmonary vasculature lacked expression of mRNA for the ET(B) receptor and developed exaggerated pulmonary hypertension that was characterized by elevated pulmonary arterial pressure, diminished cardiac output, and increased total pulmonary resistance. Plasma ET-1 was fivefold higher in transgenic sl/sl rats than in transgenic controls. Although mRNA for prepro-ET-1 was not different, mRNA for ET-converting enzyme-1 was higher in transgenic sl/sl than in transgenic control lungs. Hypertensive lungs of sl/sl rats also produced less nitric oxide metabolites and 6-ketoprostaglandin F(1alpha), a metabolite of prostacyclin, than transgenic controls. These findings suggest that the ET(B) receptor plays a protective role in the pulmonary hypertensive response to chronic hypoxia.
Collapse
Affiliation(s)
- D Dunbar Ivy
- Section of Pediatric Cardiology, Pediatric Heart Lung Center, University of Colorado School of Medicine, 1056 E. 19th Ave., Denver, CO 80218, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Razavi HM, Werhun R, Scott JA, Weicker S, Wang LF, McCormack DG, Mehta S. Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury. Crit Care Med 2002; 30:868-73. [PMID: 11940761 DOI: 10.1097/00003246-200204000-00026] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Although inhaled nitric oxide transiently improves oxygenation in patients with acute lung injury, it has not affected clinical outcomes. As well, the effects of inhaled nitric oxide on the pathophysiologic features of acute lung injury have not been well defined. Therefore, we assessed the effects of inhaled nitric oxide on the degree of pulmonary inflammation and injury in a mouse model of sepsis-induced acute lung injury. DESIGN Randomized, controlled animal study. SETTING Research laboratory of an academic institution. SUBJECTS Male C57Bl/6 mice. INTERVENTIONS Sepsis was induced by cecal ligation and perforation. At the time of surgery, septic and naïve mice were randomized to exposure to either 40 ppm inhaled nitric oxide or room air for 24 hrs before they were killed. MEASUREMENTS AND MAIN RESULTS Sepsis-induced acute lung injury was characterized by increased pulmonary myeloperoxidase (68 +/- 13 vs. 13 +/- 3 mU/mg protein in naïve mice, p <.01), pulmonary 8-isoprostane content (627 +/- 51 vs. 88 +/- 20 pg/mg protein in naïve mice, p <.01), and protein in bronchoalveolar lavage fluid (p <.05). Inhaled nitric oxide exposure in septic mice completely abrogated the septic increases in myeloperoxidase activity (p <.05) and pulmonary 8-isoprostane content (p <.05) but had no effect on bronchoalveolar lavage protein. The induction of sepsis also was associated with an increase in pulmonary inducible NO synthase activity (2.8 +/- 0.5 vs. 0.4 +/- 0.1 pmol small middle dotmin-1 small middle dotmg-1 protein in naïve mice, p <.05), and inhaled nitric oxide attenuated this increase in pulmonary inducible NO synthase activity (p <.05). CONCLUSIONS Exposure to inhaled nitric oxide early in the course of sepsis-induced acute lung injury is associated with reduced pulmonary leukocyte infiltration and less oxidative injury. Decreased lung inflammation and injury with inhaled nitric oxide is associated with decreased pulmonary inducible NO synthase activity. Therefore, inhaled NO may have greater clinical benefit if administered earlier in the natural history of acute lung injury in patients.
Collapse
Affiliation(s)
- Habib M Razavi
- C. Burton Vascular Research Laboratory, Division of Respirology, London Health Sciences Center, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Morio Y, McMurtry IF. Ca(2+) release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs. J Appl Physiol (1985) 2002; 92:527-34. [PMID: 11796660 DOI: 10.1152/jappl.2002.92.2.527] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of thapsigargin, cyclopiazonic acid, and ryanodine in isolated pulmonary arteries and smooth muscle cells suggest that release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))- and/or ryanodine-sensitive sarcoplasmic reticulum Ca(2+) stores is a component of the mechanism of acute hypoxic pulmonary vasoconstriction (HPV). However, the actions of these agents on HPV in perfused lungs have not been reported. Thus we tested effects of thapsigargin and cyclopiazonic acid, inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase, and of ryanodine, an agent that either locks the ryanodine receptor open or blocks it, on HPV in salt solution-perfused rat lungs. After inhibition of cyclooxygenase and nitric oxide synthase, thapsigargin (10 nM) and cyclopiazonic acid (5 microM) augmented the vasoconstriction to 0% but not to 3% inspired O(2). Relatively high concentrations of ryanodine (100 and 300 microM) blunted HPV in nitric oxide synthase-inhibited lungs. The results indicate that release of Ca(2+) from the ryanodine-sensitive, but not the IP(3)-sensitive, store, contributes to the mechanism of HPV in perfused rat lungs and that Ca(2+)-ATPase-dependent Ca(2+) buffering moderates the response to severe hypoxia.
Collapse
Affiliation(s)
- Yoshiteru Morio
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
20
|
Fagan KA, McMurtry IF, Rodman DM. Role of endothelin-1 in lung disease. Respir Res 2002; 2:90-101. [PMID: 11686871 PMCID: PMC59574 DOI: 10.1186/rr44] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Accepted: 01/08/2001] [Indexed: 01/12/2023] Open
Abstract
Endothelin-1 (ET-1) is a 21 amino acid peptide with diverse biological activity that has been implicated in numerous diseases. ET-1 is a potent mitogen regulator of smooth muscle tone, and inflammatory mediator that may play a key role in diseases of the airways, pulmonary circulation, and inflammatory lung diseases, both acute and chronic. This review will focus on the biology of ET-1 and its role in lung disease.
Collapse
Affiliation(s)
- K A Fagan
- Cardiovascular Pulmonary Research Laboratory, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
21
|
Galan HL, Regnault TR, Le Cras TD, Tyson RW, Anthony RV, Wilkening RB, Abman SH. Cotyledon and binucleate cell nitric oxide synthase expression in an ovine model of fetal growth restriction. J Appl Physiol (1985) 2001; 90:2420-6. [PMID: 11356809 DOI: 10.1152/jappl.2001.90.6.2420] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat exposure early in ovine pregnancy results in placental insufficiency and intrauterine growth restriction (PI-IUGR). We hypothesized that heat exposure in this model disrupts placental structure and reduces placental endothelial nitric oxide synthase (eNOS) protein expression. We measured eNOS protein content and performed immunohistochemistry for eNOS in placentas from thermoneutral (TN) and hyperthermic (HT) animals killed at midgestation (90 days). Placental histomorphometry was compared between groups. Compared with the TN controls, the HT group showed reduced delivery weights (457 +/- 49 vs. 631 +/- 21 g; P < 0.05) and a trend for reduced placentome weights (288 +/- 61 vs. 554 +/- 122 g; P = 0.09). Cotyledon eNOS protein content was reduced by 50% in the HT group (P < 0.03). eNOS localized similarly to the vascular endothelium and binucleated cells (BNCs) within the trophoblast of both experimental groups. HT cotyledons showed a reduction in the ratio of fetal to maternal stromal tissue (1.36 +/- 0.36 vs. 3.59 +/- 1.2; P< or = 0.03). We conclude that eNOS protein expression is reduced in this model of PI-IUGR and that eNOS localizes to both vascular endothelium and the BNC. We speculate that disruption of normal vascular development and BNC eNOS production and function leads to abnormal placental vascular tone and blood flow in this model of PI-IUGR.
Collapse
Affiliation(s)
- H L Galan
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ivy D, McMurtry IF, Yanagisawa M, Gariepy CE, Le Cras TD, Gebb SA, Morris KG, Wiseman RC, Abman SH. Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1040-8. [PMID: 11290529 DOI: 10.1152/ajplung.2001.280.5.l1040] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelin (ET)-1 contributes to the regulation of pulmonary vascular tone by stimulation of the ET(A) and ET(B) receptors. Although activation of the ET(A) receptor causes vasoconstriction, stimulation of the ET(B) receptors can elicit either vasodilation or vasoconstriction. To examine the physiological role of the ET(B) receptor in the pulmonary circulation, we studied a genetic rat model of ET(B) receptor deficiency [transgenic(sl/sl)]. We hypothesized that deficiency of the ET(B) receptor would predispose the transgenic(sl/sl) rat lung circulation to enhanced pulmonary vasoconstriction. We found that the lungs of transgenic(sl/sl) rats are ET(B) deficient because they lack ET(B) mRNA in the pulmonary vasculature, have minimal ET(B) receptors as determined with an ET-1 radioligand binding assay, and lack ET-1-mediated pulmonary vasodilation. The transgenic(sl/sl) rats have higher basal pulmonary arterial pressure and vasopressor responses to brief hypoxia or ET-1 infusion. Plasma ET-1 levels are elevated and endothelial nitric oxide synthase protein content and nitric oxide production are diminished in the transgenic(sl/sl) rat lung. These findings suggest that the ET(B) receptor plays a major physiological role in modulating resting pulmonary vascular tone and reactivity to acute hypoxia. We speculate that impaired ET(B) receptor activity can contribute to the pathogenesis of pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Blood Pressure/drug effects
- Blood Pressure/genetics
- Dopamine beta-Hydroxylase/genetics
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypoxia/metabolism
- In Situ Hybridization
- In Vitro Techniques
- Lung/blood supply
- Lung/drug effects
- Lung/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Promoter Regions, Genetic
- Pulmonary Artery/physiology
- Pulmonary Circulation/drug effects
- Pulmonary Circulation/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Inbred Strains
- Receptor, Endothelin B
- Receptors, Endothelin/deficiency
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Vascular Resistance/drug effects
- Vascular Resistance/genetics
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- D Ivy
- Pediatric Heart Lung Center, University of Colorado School of Medicine and The Children's Hospital, Denver, Colorado 80218, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Nitric oxide (NO) is a potent vasodilator and inhibitor of vascular remodeling. Reduced NO production has been implicated in the pathophysiology of pulmonary hypertension, with endothelial NO synthase (NOS) knockout mice showing an increased risk for pulmonary hypertension. Because molecular oxygen (O2) is an essential substrate for NO synthesis by the NOSs and biochemical studies using purified NOS isoforms have estimated the Michaelis-Menten constant values for O2 to be in the physiological range, it has been suggested that O2 substrate limitation may limit NO production in various pathophysiological conditions including hypoxia. This review summarizes numerous studies of the effects of acute and chronic hypoxia on NO production in the lungs of humans and animals as well as in cultured vascular cells. In addition, the effects of hypoxia on NOS expression and posttranslational regulation of NOS activity by other proteins are also discussed. Most studies found that hypoxia limits NO synthesis even when NOS expression is increased.
Collapse
Affiliation(s)
- T D Le Cras
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
24
|
Fagan KA, Morrissey B, Fouty BW, Sato K, Harral JW, Morris KG, Hoedt-Miller M, Vidmar S, McMurtry IF, Rodman DM. Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir Res 2001; 2:306-13. [PMID: 11686901 PMCID: PMC59521 DOI: 10.1186/rr74] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Revised: 07/09/2001] [Accepted: 08/02/2001] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The importance of nitric oxide (NO) in hypoxic pulmonary hypertension has been demonstrated using nitric oxide synthase (NOS) knockout mice. In that model NO from endothelial NOS (eNOS) plays a central role in modulating pulmonary vascular tone and attenuating hypoxic pulmonary hypertension. However, the normal regulation of NOS expression in mice following hypoxia is uncertain. Because genetically engineered mice are often utilized in studies of NO, we conducted the present study to determine how hypoxia alters NOS expression in wild-type mice. METHOD Mice were exposed to sea level, ambient conditions (5280 feet) or severe altitude (17,000 feet) for 6 weeks from birth, and hemodynamics and lung NOS expression were assessed. RESULTS Hypoxic mice developed severe pulmonary hypertension (right ventricular systolic pressure [RVsP] 60 mmHg) as compared with normoxic mice (27 mmHg). Using quantitative reverse-transcription PCR, it was found that expressions of eNOS and inducible NOS (iNOS) increased 1.5-fold and 3.5-fold, respectively, in the lung. In addition, the level of lung eNOS protein was increased, neuronal NOS (nNOS) protein was unchanged, and iNOS was below the limit of detection. Immunohistochemistry demonstrated no change in lung iNOS or nNOS staining in either central or peripheral areas, but suggested increased eNOS in the periphery following hypoxia. CONCLUSION In mice, hypoxia is associated with increases in lung eNOS, possibly in iNOS, but not in nNOS; this suggests that the pattern of lung NOS expression following hypoxia must be considered in studies using genetically engineered mice.
Collapse
Affiliation(s)
- K A Fagan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue B-133, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chronic pulmonary hypertension is a serious complication of a number of chronic lung and heart diseases. In addition to vasoconstriction, its pathogenesis includes injury to the peripheral pulmonary arteries leading to their structural remodeling. Increased pulmonary vascular synthesis of an endogenous vasodilator, nitric oxide (NO), opposes excessive increases of intravascular pressure during acute pulmonary vasoconstriction and chronic pulmonary hypertension, although evidence for reduced NO activity in pulmonary hypertension has also been presented. NO can modulate the degree of vascular injury and subsequent fibroproduction, which both underlie the development of chronic pulmonary hypertension. On one hand, NO can interrupt vascular wall injury by oxygen radicals produced in increased amounts in pulmonary hypertension. NO can also inhibit pulmonary vascular smooth muscle and fibroblast proliferative response to the injury. On the other hand, NO may combine with oxygen radicals to yield peroxynitrite and other related, highly reactive compounds. The oxidants formed in this manner may exert cytotoxic and collagenolytic effects and, therefore, promote the process of reparative vascular remodeling. The balance between the protective and adverse effects of NO is determined by the relative amounts of NO and reactive oxygen species. We speculate that this balance may be shifted toward more severe injury especially during exacerbations of chronic diseases associated with pulmonary hypertension. Targeting these adverse effects of NO-derived radicals on vascular structure represents a potential novel therapeutic approach to pulmonary hypertension in chronic lung diseases.
Collapse
Affiliation(s)
- V Hampl
- Department of Physiology, Charles University Second Medical School, Prague, Czech Republic
| | | |
Collapse
|