1
|
Polyphosphate Reverses the Toxicity of the Quasi-Enzyme Bleomycin on Alveolar Endothelial Lung Cells In Vitro. Cancers (Basel) 2021; 13:cancers13040750. [PMID: 33670189 PMCID: PMC7916961 DOI: 10.3390/cancers13040750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
The anti-cancer antitumor antibiotic bleomycin(s) (BLM) induces athyminic sites in DNA after its activation, a process that results in strand splitting. Here, using A549 human lung cells or BEAS-2B cells lunc cells, we show that the cell toxicity of BLM can be suppressed by addition of inorganic polyphosphate (polyP), a physiological polymer that accumulates and is released from platelets. BLM at a concentration of 20 µg ml-1 causes a decrease in cell viability (by ~70%), accompanied by an increased DNA damage and chromatin expansion (by amazingly 6-fold). Importantly, the BLM-caused effects on cell growth and DNA integrity are substantially suppressed by polyP. In parallel, the enlargement of the nuclei/chromatin in BLM-treated cells (diameter, 20-25 µm) is normalized to ~12 µm after co-incubation of the cells with BLM and polyP. A sequential application of the drugs (BLM for 3 days, followed by an exposure to polyP) does not cause this normalization. During co-incubation of BLM with polyP the gene for the BLM hydrolase is upregulated. It is concluded that by upregulating this enzyme polyP prevents the toxic side effects of BLM. These data might also contribute to an application of BLM in COVID-19 patients, since polyP inhibits binding of SARS-CoV-2 to cellular ACE2.
Collapse
|
2
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|
3
|
Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice. Mar Drugs 2015; 13:2813-33. [PMID: 25955756 PMCID: PMC4446607 DOI: 10.3390/md13052813] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing.
Collapse
|
4
|
Van de Laar E, Clifford M, Hasenoeder S, Kim BR, Wang D, Lee S, Paterson J, Vu NM, Waddell TK, Keshavjee S, Tsao MS, Ailles L, Moghal N. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas. Respir Res 2014; 15:160. [PMID: 25551685 PMCID: PMC4343068 DOI: 10.1186/s12931-014-0160-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. METHODS We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. RESULTS We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. CONCLUSION This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.
Collapse
Affiliation(s)
- Emily Van de Laar
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Monica Clifford
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Stefan Hasenoeder
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Present address: Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstrasse 1, 85746 Neuherberg, Germany
| | - Bo Ram Kim
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Dennis Wang
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Sharon Lee
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Josh Paterson
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Nancy M Vu
- />Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
- />Present address: University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| | - Thomas K Waddell
- />Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Shaf Keshavjee
- />Toronto Lung Transplant Program, University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Ming-Sound Tsao
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Laurie Ailles
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
| | - Nadeem Moghal
- />Department of Medical Biophysics, Ontario Cancer Institute/Campbell Family Cancer Research Institute/Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, ON M5G 1 L7 Canada
- />Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
- />Present address: Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, ON M5G 1 L7 Canada
| |
Collapse
|
5
|
Fang X, Wang L, Shi L, Chen C, Wang Q, Bai C, Wang X. Protective effects of keratinocyte growth factor-2 on ischemia-reperfusion-induced lung injury in rats. Am J Respir Cell Mol Biol 2014; 50:1156-65. [PMID: 24450501 DOI: 10.1165/rcmb.2013-0268oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common cause to compromise tissue injury via endothelial and epithelial barrier dysfunction and damage. Keratinocyte growth factor (KGF)-2 could play an important role in the repair of alveolar epithelial damage and maintain the capillary barrier function. The present study aimed to investigate the potential effects of KGF-2 on I/R-induced lung injury in rats and the related mechanisms. KGF-2 (2.5-10 mg/kg) was administered intratracheally in rats 3 days before the left lobe with ischemia for 60 minutes followed by reperfusion for 180 minutes. Lung injury was evaluated by measuring lung morphology, blood gas analysis, total cell number, and protein concentration in the bronchoalveolar lavage fluid. The protective effects of KGF-2 on human pulmonary microvascular endothelial cells and related mechanisms were evaluated. Pretreatment with KGF-2 significantly prevented I/R-induced lung edema, inflammatory cell infiltration, protein exudation, and the release of inflammatory cytokines in rats, or I/R-induced endothelial cell apoptosis, migration, and barrier dysfunction. Phosphoinositide 3-kinase or epidermal growth factor receptor inhibitors attenuated the protective effect of KGF-2 in endothelial cells. Our results evidence that the local administration of KGF-2 may be an alternative to prophylactic or adjunct drug therapies for I/R-induced lung injury.
Collapse
|
6
|
Horani A, Nath A, Wasserman MG, Huang T, Brody SL. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction. Am J Respir Cell Mol Biol 2013; 49:341-7. [PMID: 23713995 DOI: 10.1165/rcmb.2013-0046te] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell-cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air-liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors.
Collapse
Affiliation(s)
- Amjad Horani
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
7
|
Muyal JP, Muyal V, Kotnala S, Kumar D, Bhardwaj H. Therapeutic potential of growth factors in pulmonary emphysematous condition. Lung 2012; 191:147-63. [PMID: 23161370 DOI: 10.1007/s00408-012-9438-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 11/04/2012] [Indexed: 02/02/2023]
Abstract
Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.
Collapse
Affiliation(s)
- Jai Prakash Muyal
- Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Greater Noida, 201308, India.
| | | | | | | | | |
Collapse
|
8
|
Manipulation of Cell Physiology Enables Gene Silencing in Well-differentiated Airway Epithelia. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e41. [PMID: 23344182 PMCID: PMC3437804 DOI: 10.1038/mtna.2012.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The application of RNA interference-based gene silencing to the airway surface epithelium holds great promise to manipulate host and pathogen gene expression for therapeutic purposes. However, well-differentiated airway epithelia display significant barriers to double-stranded small-interfering RNA (siRNA) delivery despite testing varied classes of nonviral reagents. In well-differentiated primary pig airway epithelia (PAE) or human airway epithelia (HAE) grown at the air–liquid interface (ALI), the delivery of a Dicer-substrate small-interfering RNA (DsiRNA) duplex against hypoxanthine–guanine phosphoribosyltransferase (HPRT) with several nonviral reagents showed minimal uptake and no knockdown of the target. In contrast, poorly differentiated cells (2–5-day post-seeding) exhibited significant oligonucleotide internalization and target knockdown. This finding suggested that during differentiation, the barrier properties of the epithelium are modified to an extent that impedes oligonucleotide uptake. We used two methods to overcome this inefficiency. First, we tested the impact of epidermal growth factor (EGF), a known enhancer of macropinocytosis. Treatment of the cells with EGF improved oligonucleotide uptake resulting in significant but modest levels of target knockdown. Secondly, we used the connectivity map (Cmap) database to correlate gene expression changes during small molecule treatments on various cells types with genes that change upon mucociliary differentiation. Several different drug classes were identified from this correlative assessment. Well-differentiated epithelia treated with DsiRNAs and LY294002, a PI3K inhibitor, significantly improved gene silencing and concomitantly reduced target protein levels. These novel findings reveal that well-differentiated airway epithelia, normally resistant to siRNA delivery, can be pretreated with small molecules to improve uptake of synthetic oligonucleotide and RNA interference (RNAi) responses.
Collapse
|
9
|
Franco-Montoya ML, Bourbon JR, Durrmeyer X, Lorotte S, Jarreau PH, Delacourt C. Pulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 2009; 297:L965-76. [PMID: 19700645 DOI: 10.1152/ajplung.00136.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute lung injury and compromised alveolar development characterize bronchopulmonary dysplasia (BPD) of the premature neonate. High levels of keratinocyte growth factor (KGF), a cell-cell mediator with pleiotrophic lung effects, are associated with low BPD risk. KGF decreases mortality in hyperoxia-exposed newborn rodents, a classic model of injury-induced impaired alveolarization, although the pulmonary mechanisms of this protection are poorly defined. These were explored through in vitro and in vivo approaches in the rat. Hyperoxia decreased by 30% the rate of wound closure of a monolayer of fetal alveolar epithelial cells, due to cell death, which was overcome by recombinant human KGF (100 ng/ml). In rat pups exposed to >95% O2 from birth, increased viability induced by intraperitoneal injection of KGF (2 microg/g body wt) every other day was associated with prevention of neutrophil influx in bronchoalveolar lavage (BAL), prevention of decreases in whole lung DNA content and cell proliferation rate, partial prevention of apoptosis increase, and a markedly increased proportion of surfactant protein B-immunoreactive cells in lung parenchyma. Increased lung antioxidant capacity is likely to be due in part to enhanced CAAT/enhancer binding protein alpha expression. By contrast, KGF neither corrected changes induced by hyperoxia in parameters of lung morphometry that clearly indicated impaired alveolarization nor had any significant effect on tissue or BAL surfactant phospholipids. These findings evidence KGF alveolar epithelial cell protection, enhancing effects on alveolar repair capacity, and anti-inflammatory effects in the injured neonatal lung that may account, at least in part, for its ability to reduce mortality. They argue in favor of a therapeutic potential of KGF in the injured neonatal lung.
Collapse
Affiliation(s)
- Marie-Laure Franco-Montoya
- Institut National de la Santé et de la Recherche Médicale, Unité 955, Faculté de Médecine, Université Paris-Val-de-Marne, Centre Hospitalier Intercommunal, Créteil, France
| | | | | | | | | | | |
Collapse
|
10
|
Bader RA, Kao WJ. Modulation of the keratinocyte-fibroblast paracrine relationship with gelatin-based semi-interpenetrating networks containing bioactive factors for wound repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2009; 20:1005-30. [PMID: 19454166 PMCID: PMC3757500 DOI: 10.1163/156856209x444402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gelatin-based semi-interpenetrating networks (sIPNs) containing soluble and covalently-linked bioactive factors have been shown to aid in wound healing; however, the biological responses elicited by the introduction of sIPN biomaterials remain unclear. In the current study, modulation of the re-epithelialization phase of wound healing by sIPNs grafted with PEGylated fibronectin-derived peptides and utilized as platforms for the delivery of exogenous keratinocyte growth factor (KGF) was evaluated. Following wounding, keratinocyte migration, proliferation and protein secretion is largely controlled by diffusible factors, such as KGF, released by the underlying fibroblasts. The impact of sIPNs and exogenous KGF upon the latter keratinocyte-fibroblast paracrine relationship and keratinocyte behavior was explored by monitoring keratinocyte adhesion and cytokine (IL-1alpha, IL-1beta, IL-6, KGF, GM-CSF and TGF-alpha) release. Results were generally similar for keratinocyte monoculture and keratinocyte-fibroblast co-culture systems. Although keratinocyte adhesion increased over time for positive control surfaces, adhesion to the sIPNs remained low throughout the course of the study. Release of IL-1alpha and GM-CSF was increased by exogenous KGF. The effects were more noticeable on the positive control surfaces relative to the sIPN surfaces. Regulation of the release of TGF-alpha was surface dependent, while IL-6 release was dependent upon surface type, the inclusion of exogenous KGF and the presence of fibroblasts. The findings indicate that during re-epithelialization, sIPNs containing soluble bioactive factors aid in wound healing primarily by serving as conduits for KGF, which induces the release of other key cytokines involved in tissue repair.
Collapse
Affiliation(s)
- Rebecca A. Bader
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Manicone AM. Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 2009; 5:63-75. [PMID: 19885383 PMCID: PMC2745180 DOI: 10.1586/177666x.5.1.63] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute lung injury (ALI) is a clinical disease marked by respiratory failure due to disruption of the epithelial and endothelial barrier, flooding of the alveolar compartment with protein-rich fluid and recruitment of neutrophils into the alveolar space. ALI affects approximately 200,000 patients annually in the USA and results in approximately 75,000 deaths. It is associated with prolonged mechanical ventilation, intensive medical care, high morbidity and mortality, and rising healthcare costs. Owing to its impact on public health, great strides have been made towards understanding the pathobiology of ALI to affect outcome. This review will focus on the role of the epithelial cell in the pathogenesis and resolution of ALI and the role of various inflammatory mediators in ALI.
Collapse
Affiliation(s)
- Anne M Manicone
- Center for Lung Biology, 815, Mercer Street, Box 358050, Seattle, WA 98115, USA,
| |
Collapse
|
12
|
Atkinson JJ, Toennies HM, Holmbeck K, Senior RM. Membrane type 1 matrix metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth factor receptor expression after acute injury. Am J Physiol Lung Cell Mol Physiol 2007; 293:L600-10. [PMID: 17557804 DOI: 10.1152/ajplung.00028.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP) is a protease produced by airway epithelial cells in various diseases. Since other MMPs are involved in bronchial epithelial repair, we investigated the role of MT1-MMP in naphthalene-induced small airway injury and repair in wild-type (WT) and MT1-MMP-knockout (KO) mice. The degree of injury was similar in both strains, but the MT1-MMP KO mice were unable to reconstitute a normal, fully differentiated airway epithelium 28 days after injury. MT1-MMP was required for the proliferative response in distal airway epithelial cells, resulting in decreased cell density and airway epithelial cell differentiation in MT1-MMP KO mice. Surprisingly, EGF-mediated signaling was unaltered in MT1-MMP KO mice and therefore unrelated to the proliferative response. However, keratinocyte growth factor receptor (KGFR) expression was significantly upregulated before the proliferative response and markedly less evident in the distal airway epithelium of MT1-MMP KO mice. These results indicate MT1-MMP is involved in KGFR expression and epithelial cell proliferation after acute airway injury.
Collapse
Affiliation(s)
- Jeffrey J Atkinson
- Department of Internal Medicine, Pulmonary and Critical Care Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
13
|
Gomperts BN, Belperio JA, Fishbein MC, Keane MP, Burdick MD, Strieter RM. Keratinocyte growth factor improves repair in the injured tracheal epithelium. Am J Respir Cell Mol Biol 2007; 37:48-56. [PMID: 17332441 PMCID: PMC1899348 DOI: 10.1165/rcmb.2006-0384oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a critical growth factor in lung development and is a protective agent after lung injury, although the exact mechanisms of this protective effect have not yet been elucidated. Our laboratory has shown that circulating epithelial progenitor cells can traffic to the airway and that they appear to be derived from the bone marrow. On this basis, we hypothesized that KGF and its putative receptor (KGFR) would be important to these cells. We showed that the KGFR, which is found almost exclusively on epithelial cells, was present on cells in the bone marrow and circulation of mice that identified a subpopulation of cytokeratin 5+ circulating epithelial progenitor cells (CEPC). In addition, the KGFR co-localized with a population of cytokeratin 5+ basal cells in the repairing proximal airway. Systemic administration of KGF resulted in a significant increase in mobilization of cytokeratin 5+ CEPC at 6 h after injection. Administration of KGF to mouse recipients of heterotopic syngeneic tracheal transplants resulted in protection and more rapid repair of the tracheal epithelium, with an increase in the number of CEPC in the epithelium of the airway, and this effect was abrogated by blocking CEPC with anti-CXCL12 antibodies. KGF therefore appears to be an important growth factor for local resident progenitor epithelial cell repair and for mobilization and enhanced engraftment of CEPC to the injured proximal airway epithelium.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- UCLA Department of Pediatrics, Mattel Children's Hospital, 10833 Le Conte Avenue, A2-410 MDCC, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Aksoy MO, Yang Y, Ji R, Reddy PJ, Shahabuddin S, Litvin J, Rogers TJ, Kelsen SG. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation. Am J Physiol Lung Cell Mol Physiol 2005; 290:L909-18. [PMID: 16339779 DOI: 10.1152/ajplung.00430.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Mark O Aksoy
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Temple University School of Medicine, Temple University Hospital, 762 Parkinson Pavilion, 3401 N. Broad St., Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shaykhiev R, Beisswenger C, Kändler K, Senske J, Püchner A, Damm T, Behr J, Bals R. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 2005; 289:L842-8. [PMID: 15964896 DOI: 10.1152/ajplung.00286.2004] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides are endogenous antibiotics that directly inactivate microorganisms and in addition have a variety of receptor-mediated functions. LL-37/hCAP-18 is the only cathelicidin found in humans and is involved in angiogenesis and regulation of the innate immune system. The aim of the present study was to characterize the role of the peptide LL-37 in the regulation of wound closure of the airway epithelium in the cell line NCI-H292 and primary airway epithelial cells. LL-37 stimulated healing of mechanically induced wounds in monolayers of the cell line and in differentiated primary airway epithelium. This effect was detectable at concentrations of 5 mug/ml in NCI-H292 and 1 mug/ml in primary cells. The effect of LL-37 on wound healing was dependent on the presence of serum. LL-37 induced cell proliferation and migration of NCI-H292 cells. Inhibitor studies in the wound closure and proliferation assays indicated that the effects caused by LL-37 are mediated through epidermal growth factor receptor, a G protein-coupled receptor, and MAP/extracellular regulated kinase. In conclusion, LL-37 induces wound healing, proliferation, and migration of airway epithelial cells. The peptide is likely involved in the regulation of tissue homeostasis in the airways.
Collapse
Affiliation(s)
- Renat Shaykhiev
- Hospital of the University of Marburg, Department of Internal Medicine, Division of Pulmonary Diseases, Philipps-Universtät Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Upadhyay D, Bundesmann M, Panduri V, Correa-Meyer E, Kamp DW. Fibroblast Growth Factor-10 Attenuates H2O2-Induced Alveolar Epithelial Cell DNA Damage. Am J Respir Cell Mol Biol 2004; 31:107-13. [PMID: 14975937 DOI: 10.1165/rcmb.2003-0064oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibroblast growth factor-10 (FGF-10), an alveolar epithelial cell (AEC) mitogen that is critical for lung development, may promote AEC repair. We determined whether FGF-10 attenuates H2O2-induced, A549 and rat alveolar type II cell DNA damage. We show that FGF-10 prevents H2O2-induced DNA damage assessed by an alkaline elution, ethidium bromide fluorescence as well as by a comet assay. Mitogen-activated protein kinase inhibitors abolished the protective effect of FGF-10 against H2O2-induced DNA damage yet had no effect on H2O2-induced DNA damage. A Grb2-SOS inhibitor (SH3 binding peptide), an Ras inhibitor (farnesyl transferase inhibitor 277), and an Raf-1 inhibitor (forskolin) each prevented FGF-10- and H2O2-induced A549 cell ERK1/2 phosphorylation. Also, FGF-10 and H2O2 each induced negligible ERK1/2 phosphorylation in Ras dominant-negative (N17) cells. Inhibitors of Ras and Raf-1 blocked the protective effect of FGF-10 against H2O2-induced DNA damage but had no effect on H2O2-induced DNA damage. Furthermore, cold conditions and aphidicolin, an inhibitor of DNA polymerase-alpha, -delta, and -epsilon, each blocked the protective effects of FGF-10, suggesting a role for DNA repair. We conclude that FGF-10 attenuates H2O2-induced AEC DNA damage by mechanisms that involve activation of Grb2-SOS/Ras/RAF-1/ERK1/2 pathway and DNA repair.
Collapse
Affiliation(s)
- Daya Upadhyay
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Veterans Administration Chicago Health Care System, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
17
|
Just N, Tillie-Leblond I, Guery BPH, Fourneau C, Tonnel AB, Gosset P. Keratinocyte growth factor (KGF) decreases ICAM-1 and VCAM-1 cell expression on bronchial epithelial cells. Clin Exp Immunol 2003; 132:61-9. [PMID: 12653837 PMCID: PMC1808662 DOI: 10.1046/j.1365-2249.2003.02102.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of leucocytes during airway inflammatory reaction involves adhesion to bronchial epithelial cells (BEC), a process implicating specific interactions between glycoproteins with epithelial cell surface proteins, mainly intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). In this study, the effect of keratinocyte growth factor (KGF), a growth factor involved in pulmonary epithelium repair, was evaluated on adhesion molecule expression with BEAS-2B cells and BEC and granulocyte adherence to BEAS-2B. The modulation by KGF of membrane and mRNA expression of ICAM-1 and VCAM-1 was studied on confluent cells stimulated or not with tumour necrosis factor-alpha (TNF) (200 UI/ml) or TNF and interleukin (IL)-4 (50 UI/ml and 10 ng/ml). Levels of soluble-(s)ICAM-1 and sVCAM-1 were measured by ELISA. Although moderately, KGF significantly decreased membrane ICAM-1 expression in unstimulated BEAS-2B cells (24% inhibition at 100 ng/ml) or in TNF- or TNF + IL-4-stimulated cells (22.5 and 18.7% inhibition, respectively). Treatment with KGF tended to decrease VCAM-1 expression in TNF- and TNF + IL-4-stimulated BEAS-2B (P = n.s. and P < 0.05, 14 and 15% inhibition, respectively). In primary culture of BEC, adhesion molecule expression was also reduced. ICAM-1 and VCAM-1 mRNA expression were also inhibited by KGF. Levels of sICAM-1 and sVCAM-1 were not significantly increased in supernatants from KGF-treated cells (30% and 24% increase at 100 ng/ml, respectively) compared to controls. Moreover, KGF decreased by 31% the adherence of neutrophils to TNF-activated BEAS-2B. In conclusion, KGF decreases ICAM-1 and VCAM-1 expression and neutrophil adherence in BEC. These suggest its involvement in the resolution of the inflammatory reaction.
Collapse
Affiliation(s)
- N Just
- INSERM 416, Institut Pasteur, Lille, France, Service de pneumo-immuno-allergologie, Hôpital Calmette, Lille, France
| | | | | | | | | | | |
Collapse
|
18
|
Ware LB, Matthay MA. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am J Physiol Lung Cell Mol Physiol 2002; 282:L924-40. [PMID: 11943656 DOI: 10.1152/ajplung.00439.2001] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence indicates that the epithelial-specific growth factors keratinocyte growth factor (KGF), fibroblast growth factor (FGF)-10, and hepatocyte growth factor (HGF) play important roles in lung development, lung inflammation, and repair. The therapeutic potential of these growth factors in lung disease has yet to be fully explored. KGF has been best studied and has impressive protective effects against a wide variety of injurious stimuli when given as a pretreatment in animal models. Whether this protective effect could translate to a treatment effect in humans with acute lung injury needs to be investigated. FGF-10 and HGF may also have therapeutic potential, but more extensive studies in animal models are needed. Because HGF lacks true epithelial specificity, it may have less potential than KGF and FGF-10 as a targeted therapy to facilitate lung epithelial repair. Regardless of their therapeutic potential, studies of the unique roles played by these growth factors in the pathogenesis and the resolution of acute lung injury and other lung diseases will continue to enhance our understanding of the complex pathophysiology of inflammation and repair in the lung.
Collapse
Affiliation(s)
- Lorraine B Ware
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
19
|
Slonina D, Hoinkis C, Dörr W. Effect of keratinocyte growth factor on radiation survival and colony size of human epidermal keratinocytes in vitro. Radiat Res 2001; 156:761-6. [PMID: 11741500 DOI: 10.1667/0033-7587(2001)156[0761:eokgfo]2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Keratinocyte growth factor (FGF7, also known as KGF) ameliorates the radiation response of mouse oral mucosa and other epithelial tissues. However, the precise mechanisms remain unclear. The aim of the present study was to investigate the effect of FGF7 on the survival and colony size of normal human epidermal keratinocytes in vitro. Primary neonatal keratinocytes (HEKn) were irradiated with doses of 0 and 2 Gy of 200 kV X rays and incubated in the presence or absence of 100 ng/ml FGF7. The plating efficiency (PE) and surviving fraction (SF2) were determined using a clonogenic assay. In cell cultures without FGF7, the mean PE was 4.6 +/- 0.2%. Irradiation with 2 Gy resulted in an SF2 of 51 +/- 2%. In cell cultures with FGF7, the mean PE was identical, and a similar SF2 of 54 +/- 1% was observed (P = 0.4). However, the individual colony size was significantly increased in all cultures incubated with FGF7 compared to those incubated without FGF7. The number of extremely large colonies (> or =2 mm) was clearly higher (P < 0.0001) in cultures with FGF7. This was accompanied by a significant reduction in the diameter of individual cells from 29 microm in controls to 23 microm with FGF7. In conclusion, FGF7 does not affect the survival of keratinocytes after irradiation, but it does stimulate proliferation of surviving cells.
Collapse
Affiliation(s)
- D Slonina
- Laboratory of Radiation Biology, Centre of Oncology, Kraków, Poland.
| | | | | |
Collapse
|