1
|
Chen Y, Zhou H, Wu H, Lu W, He Y. Abnormal Fetal Lung of Hoxa1 -/- Piglets Is Rescued by Maternal Feeding with All-Trans Retinoic Acid. Animals (Basel) 2023; 13:2850. [PMID: 37760250 PMCID: PMC10525738 DOI: 10.3390/ani13182850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neonatal Hoxa1-/- piglets were characterized by dyspnea owing to the Hoxa1 mutation, and maternal administration with ATRA alleviated the dyspnea of neonatal Hoxa1-/- piglets. The purpose of this experiment was to explore how maternal ATRA administration rescued the abnormal fetal lungs of Hoxa1-/- piglets. Samples of the lungs were collected from neonatal Hoxa1-/- and non-Hoxa1-/- piglets delivered by sows in the control group, and from neonatal Hoxa1-/- piglets born by sows administered with ATRA at 4 mg/kg body weight on dpc 12, 13, or 14, respectively. These were used for the analysis of ELISA, histological morphology, immunofluorescence staining, immunohistochemistry staining, and quantitative real-time PCR. The results indicate that the Hoxa1 mutation had adverse impacts on the development of the alveoli and pulmonary microvessels of Hoxa1-/- piglets. Maternal administration with ATRA at 4 mg/kg body weight on dpc 14 rescued the abnormal lung development of Hoxa1-/- piglets by increasing the IFN-γ concentration (p < 0.05), airspace area (p < 0.01) and pulmonary microvessel density (p < 0.01); increasing the expression of VEGFD (p < 0.01), PDGFD (p < 0.01), KDR (p < 0.01), ID1 (p < 0.01), and NEDD4 (p < 0.01); and decreasing the septal wall thickness (p < 0.01) and the expression of SFTPC (p < 0.01) and FOXO3 (p < 0.01). Maternal administration with ATRA plays a vital role in rescuing the abnormal development of lung of Hoxa1-/- fetal piglets.
Collapse
Affiliation(s)
- Yixin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- Department of Animal Science, Ganzhou Polytechnic, Ganzhou 341000, China
| | - Haimei Zhou
- Department of Animal Science, Jiangxi Agricultural Engineering College, Zhangshu 331200, China;
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China; (Y.C.); (W.L.)
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China;
| |
Collapse
|
2
|
Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS. Retinoic Acid: A Key Regulator of Lung Development. Biomolecules 2020; 10:biom10010152. [PMID: 31963453 PMCID: PMC7022928 DOI: 10.3390/biom10010152] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid (RA) is a key molecular player in embryogenesis and adult tissue homeostasis. In embryo development, RA plays a crucial role in the formation of different organ systems, namely, the respiratory system. During lung development, there is a spatiotemporal regulation of RA levels that assures the formation of a fully functional organ. RA signaling influences lung specification, branching morphogenesis, and alveolarization by regulating the expression of particular target genes. Moreover, cooperation with other developmental pathways is essential to shape lung organogenesis. This review focuses on the events regulated by retinoic acid during lung developmental phases and pulmonary vascular development; also, it aims to provide a snapshot of RA interplay with other well-known regulators of lung development.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- PhDOC PhD Program, ICVS/3B’s, School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Araújo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital of Braga, 4710-243 Braga, Portugal
| | - Rute S Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (H.F.-S.); (H.A.-S.); (J.C.-P.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +35-12-5360-4911
| |
Collapse
|
3
|
Yang C, Yang X, Du J, Wang H, Li H, Zeng L, Gu W, Jiang J. Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis. Respir Res 2015; 16:140. [PMID: 26561298 PMCID: PMC4642746 DOI: 10.1186/s12931-015-0300-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 11/03/2015] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of acute respiratory distress syndrome (ARDS), most commonly seen during the organ dysfunction remains unsatisfied. Presently, the stem/progenitor cell-based endogenous repair has been aroused attention enormously. This report investigated the effects of retinoic acid (RA) plus simvastatin (SS) with respect to dynamics of lung repair cells as well as to elucidate the underlying mechanism. Materials and methods The experimental Sprague–Dawley rats were divided randomly into normal control (control), sham operated (sham), ARDS, ARDS + vehicle and ARDS + RA + SS groups. ARDS was reproduced through hemorrhagic shock/resuscitation (shock) and subsequent intratracheal LPS (4.5 mg/kg, Escherichia coli serotype O55: B5) injection. The rats were treated by intragastric administration of RA (2 mg/kg/day) and SS (2 mg/kg/day) for 5 days in the ARDS + RA + SS group. Seven days after the first RA-SS injection, a right lower lobe of lung was sampled for histological analysis concerning systemic uniform random sampling method. Immunohistochemistry of inflation-fixed lungs for alveolar type 1 (AT1), alveolar type 2 (AT2) and Clara cells was measured by AQP5, Pro-SPC and CCSP staining respectively. The alveolar cell proliferation and apoptosis were analyzed with Ki67 staining and terminal deoxylnucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Meanwhile, the alveolar cell numerical and surface density (alveolar cells, AT1, AT2, Clara, proliferating and apoptotic cells) were evaluated by stereology. Results RA-SS compound exerted anti-inflammatory and pro-repairing effects on respiratory tracts in ARDS induced by hemorrhagic-endotoxin shock. The numerical density and surface density of alveolar cells, AT1 cell fraction, and numerical density of AT2 and Clara cells were significantly increased after treatment with RA-SS compound in ARDS. Concurrently, the Ki67+ alveolar cells were obviously increased while the TUNEL+ alveolar cells were reduced, which was correlated with the attenuation of inflammatory injury and functional repair in injured lung tissues. Conclusions Our data convincingly indicated that the prophylactic and therapeutic treatment of RA plus SS had obvious beneficial effect on the remodeling/regeneration of injured pulmonary tissues, suggesting that the underlying mechanisms are related to the re-balance between regeneration and apoptosis in lung stem/progenitor cells.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Haisheng Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Research Institute of Surgery, Daping Hospital, Third Military Medical University, Changjiang Zhilu, Daping, Chongqing, 400042, China.
| |
Collapse
|
4
|
Gao RW, Kong XY, Zhu XX, Zhu GQ, Ma JS, Liu XX. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells. In Vitro Cell Dev Biol Anim 2014; 51:479-87. [PMID: 25515249 DOI: 10.1007/s11626-014-9850-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022]
Abstract
Retinoic acid (RA) plays an important role in lung development and maturation. Many stimuli can induce alveolar epithelial cell damage which will result in the injury of lung parenchyma. The aim of this study was to observe the effect of RA on the proliferation and differentiation of primary fetal alveolar epithelial type II cells (fAECIIs). Primary fAECIIs were isolated from fetal rats at 19 d of gestation and purified by a differential centrifugation and adhesion method. The cells were randomly divided into control (dimethyl sulfoxide, DMSO) and RA groups. Cell proliferation, viability, apoptosis, cycle, and expression of target protein were examined at 24, 48, and 72 h. We found that the proliferation and viability of cells in the RA-exposed group significantly increased compared with the DMSO control group. The proportion (%) of cells in the G2 and S phases in the RA group was significantly higher than that in control group cells. The proportion (%) of both early apoptotic cells and late apoptotic cells decreased significantly in cells exposed to RA compared with cells exposed to DMSO. RA significantly enhanced the expression of aquaporin 5 (AQP5). The expression level of pulmonary surfactant C (SPC) was elevated after cells were exposed to RA for 24 and 72 h but was inhibited when cells were exposed to RA for 48 h. These results suggest that RA promotes fAECII proliferation by improving cell viability, promoting S phase entry and inhibiting apoptosis and RA promotes fAECIIs differentiation to alveolar epithelial type I cells (AECIs).
Collapse
Affiliation(s)
- Rui-wei Gao
- Binzhou Medical University, Yantai, 264000, Shandong, China
| | | | | | | | | | | |
Collapse
|
5
|
Kayalar O, Oztay F. Retinoic acid induced repair in the lung of adult hyperoxic mice, reducing transforming growth factor-β1 (TGF-β1) mediated abnormal alterations. Acta Histochem 2014; 116:810-9. [PMID: 24576683 DOI: 10.1016/j.acthis.2014.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 01/12/2023]
Abstract
The aim of the study was to determine the effects of retinoic acid on lung alveolar repair in adult hyperoxic mice and to investigate the relationship between TGF-β1 and retinoic acid during the repair processes. Adult mice were divided into 4 groups. Two groups were given daily intraperitoneal injections of peanut oil/dimethylsulfoxide mixture and retinoic acid (50mg/kg body weight, 50 μl of volume) dissolved in peanut oil/dimethylsulfoxide mixture for 12 days with a 2-day break on days 6 and 7. Following hyperoxia (100% oxygen) for 72 h the remaining two groups were treated in the same manner as already described: peanut oil/dimethylsulfoxide mixture and retinoic acid. Lung structure was investigated by light microscopy. TGF-β1 and Smad protein expressions in the lung were assayed by biochemical methods. Hyperoxic mice exhibited damage to the alveolar walls, increased cell proliferation and induced Smad3/TGF-β1 signaling. Smad2 and phospho-Smad2 protein expressions were unchanged in all groups. Retinoic acid administration improved the degenerative alterations caused by hyperoxia and helped in alveolar repair. This positive effect of retinoic acid resulted from the inhibition of Smad3/TGF-β1 signaling via reduced Smad4 mRNA and increased Smad7 protein expression. Retinoic acid also induced alveolarization and restricted Smad3/TGF-β1 signaling by decreasing Smad4 mRNA in healthy mice. Thus, retinoic acid helped repair Smad3/TGF-β1-induced lung damage in hyperoxic mice.
Collapse
Affiliation(s)
- Ozgecan Kayalar
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
6
|
Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 2012; 22:2171-83. [PMID: 22689466 PMCID: PMC3505796 DOI: 10.1002/hipo.22037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 12/23/2022]
Abstract
The nuclear receptor ligand retinoic acid (RA) has been identified as an endogenous regulatory factor in the hippocampus, acting on pyramidal neurons and granule neuron progenitors, but almost nothing is known about the distribution of RA itself in the hippocampus. This study describes the source of RA for the rodent hippocampus in the meninges via the key RA synthetic enzyme retinaldehyde dehydrogenase 2 (RALDH2). Diffusion of RA from the meninges potentially creates a gradient of RA across the infrapyramidal and suprapyramidal blades of the dentate gyrus, enhanced by the expression of the RA catabolic enzyme Cyp26B1 between the blades, and an infrapyramidal and suprapyramidal blade difference is evident in RA-regulated transcription. This asymmetry may contribute to some of the physiological and molecular differences between the blades, including a disparity in the rates of cell proliferation in the subgranular zone of the two blades through RA inhibition of cell proliferation. Such differences can be altered by either the application of excess RA, its effect dependent on the relative position along the septotemporal axis, or change in RA signaling through mutation of retinol binding protein, while the capacity of RA to inhibit proliferation of cells in the dentate gyrus is demonstrated using in vitro slice culture. Use of synthetic and catabolic enzymes in the hippocampus to create differing zones of RA concentration parallels the mechanisms used in the developing brain to generate patterns of RA-regulated transcription. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy Goodman
- Institute of Medical Sciences, University of Aberdeen, Aberdeenshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Lange AW, Keiser AR, Wells JM, Zorn AM, Whitsett JA. Sox17 promotes cell cycle progression and inhibits TGF-beta/Smad3 signaling to initiate progenitor cell behavior in the respiratory epithelium. PLoS One 2009; 4:e5711. [PMID: 19479035 PMCID: PMC2682659 DOI: 10.1371/journal.pone.0005711] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 05/04/2009] [Indexed: 12/26/2022] Open
Abstract
The Sry-related high mobility group box transcription factor Sox17 is required for diverse developmental processes including endoderm formation, vascular development, and fetal hematopoietic stem cell maintenance. Expression of Sox17 in mature respiratory epithelial cells causes proliferation and lineage respecification, suggesting that Sox17 can alter adult lung progenitor cell fate. In this paper, we identify mechanisms by which Sox17 influences lung epithelial progenitor cell behavior and reprograms cell fate in the mature respiratory epithelium. Conditional expression of Sox17 in epithelial cells of the adult mouse lung demonstrated that cell cluster formation and respecification of alveolar progenitor cells toward proximal airway lineages were rapidly reversible processes. Prolonged expression of Sox17 caused the ectopic formation of bronchiolar-like structures with diverse respiratory epithelial cell characteristics in alveolar regions of lung. During initiation of progenitor cell behavior, Sox17 induced proliferation and increased the expression of the progenitor cell marker Sca-1 and genes involved in cell cycle progression. Notably, Sox17 enhanced cyclin D1 expression in vivo and activated cyclin D1 promoter activity in vitro. Sox17 decreased the expression of transforming growth factor-beta (TGF-beta)-responsive cell cycle inhibitors in the adult mouse lung, including p15, p21, and p57, and inhibited TGF-beta1-mediated transcriptional responses in vitro. Further, Sox17 interacted with Smad3 and blocked Smad3 DNA binding and transcriptional activity. Together, these data show that a subset of mature respiratory epithelial cells retains remarkable phenotypic plasticity and that Sox17, a gene required for early endoderm formation, activates the cell cycle and reinitiates multipotent progenitor cell behavior in mature lung cells.
Collapse
Affiliation(s)
- Alexander W. Lange
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Angela R. Keiser
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nomura J, Horie I, Seto M, Nagai K, Hisatsune A, Miyata T, Isohama Y. All-trans retinoic acid increases expression of aquaporin-5 and plasma membrane water permeability via transactivation of Sp1 in mouse lung epithelial cells. Biochem Biophys Res Commun 2006; 351:1048-53. [PMID: 17097063 DOI: 10.1016/j.bbrc.2006.10.159] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 10/28/2006] [Indexed: 11/25/2022]
Abstract
Aquaporin-5 (AQP5) is a water-selective channel protein that is expressed in lacrimal glands, salivary glands, and distal lung. Several studies using AQP5 knockout mice have revealed that AQP5 plays an important role in maintaining water homeostasis in the lung. We report here that all-trans retinoic acid (atRA) increases plasma membrane water permeability, AQP5 mRNA and protein expression, and AQP5 promoter activity in MLE-12 cells. The promoter activation induced by atRA was diminished by mutation at the Sp1/Sp3 binding element (SBE), suggesting that the SBE mediates the effects of atRA. In addition, atRA increased the binding of Sp1 to the SBE without changing the levels of Sp1 in the nucleus. Taken together, our data indicate that atRA increases AQP5 expression through transactivation of Sp1, leading to an increase in plasma membrane water permeability.
Collapse
Affiliation(s)
- Johji Nomura
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Purton LE, Dworkin S, Olsen GH, Walkley CR, Fabb SA, Collins SJ, Chambon P. RARgamma is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation. J Exp Med 2006; 203:1283-93. [PMID: 16682494 PMCID: PMC2121209 DOI: 10.1084/jem.20052105] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 03/28/2006] [Indexed: 01/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)gamma is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARgamma knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARalpha is widely expressed in hematopoietic cells, but RARalpha knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARalpha differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARgamma exhibit a much more undifferentiated phenotype. Furthermore, loss of RARgamma abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARgamma ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARgamma is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Louise E Purton
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Terrien X, Bonvin E, Corroyer S, Tabary O, Clement A, Henrion Caude A. Intracellular colocalization and interaction of IGF-binding protein-2 with the cyclin-dependent kinase inhibitor p21CIP1/WAF1 during growth inhibition. Biochem J 2005; 392:457-65. [PMID: 16131350 PMCID: PMC1316284 DOI: 10.1042/bj20050517] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/23/2005] [Accepted: 08/30/2005] [Indexed: 01/07/2023]
Abstract
It is presently unknown whether any member of the IGFBP (insulin-like growth factor binding protein) family directly participates in the control of cell proliferation. We have previously documented that induction of IGFBP-2 was associated with inhibition of DNA synthesis in lung alveolar epithelial cells. In the present study, we investigated the relationship between IGFBP-2 and the cell cycle inhibitor p21CIP1/WAF1 further. We used serum deprivation to inhibit the proliferation of MLE (mouse lung epithelial)-12 cells, and characterized the spatial localization of IGFBP-2. We found that growth inhibition, which was supported by the strong induction of p21CIP1/WAF1, was correlated with increased secretion of IGFBP-2 and, unexpectedly, with its increased localization in the nucleus and particularly in the cytoplasm. By coimmunoprecipitation, we discovered that IGFBP-2 is capable of binding to p21CIP1/WAF1. Interaction between these two proteins was further supported by colocalization of the proteins within growth-arrested cells, as visualized by confocal microscopy. Furthermore, this interaction increased with the duration of the stress, but was suppressed when proliferation was restimulated by the addition of serum. The recombinant expression of GFP (green fluorescent protein)-tagged IGFBP-2 in transfected MLE-12 cells demonstrated its ability to bind specifically to p21CIP1/WAF1. Taken together, these results provide a link between IGFBP-2 and p21CIP1/WAF1 in the regulation of alveolar lung cell proliferation.
Collapse
Affiliation(s)
- Xavier Terrien
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| | - Elise Bonvin
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| | - Sophie Corroyer
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| | - Olivier Tabary
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| | - Annick Clement
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| | - Alexandra Henrion Caude
- INSERM U719, Université Pierre et Marie Curie, Hôpital St-Antoine, 75571 Paris Cedex 12, France
| |
Collapse
|
11
|
McCaffery P, Deutsch CK. Macrocephaly and the control of brain growth in autistic disorders. Prog Neurobiol 2005; 77:38-56. [PMID: 16280193 DOI: 10.1016/j.pneurobio.2005.10.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/29/2005] [Accepted: 10/05/2005] [Indexed: 01/17/2023]
Abstract
Autism is a childhood-onset neuropsychiatric disorder characterized by marked impairments in social interactions and communication, with restricted stereotypic and repetitive patterns of behavior, interests, and activities. Genetic epidemiology studies indicate that a strong genetic component exists to this disease, but these same studies also implicate significant environmental influence. The disorder also displays symptomatologic heterogeneity, with broad individual differences and severity on a graded continuum. In the search for phenotypes to resolve heterogeneity and better grasp autism's underlying biology, investigators have noted a statistical overrepresentation of macrocephaly, an indicator of enlarged brain volume. This feature is one of the most widely replicated biological findings in autism. What then does brain enlargement signify? One hypothesis invoked for the origin of macrocephaly is a reduction in neuronal pruning and consolidation of synapses during development resulting in an overabundance of neurites. An increase in generation of cells is an additional mechanism for macrocephaly, though it is less frequently discussed in the literature. Here, we review neurodevelopmental mechanisms regulating brain growth and highlight one underconsidered potential causal mechanism for autism and macrocephaly--an increase in neurogenesis and/or gliogenesis. We review factors known to control these processes with an emphasis on nuclear receptor activation as one signaling control that may be abnormal and contribute to increased brain volume in autistic disorders.
Collapse
|
12
|
Ralhan R, Chakravarti N, Kaur J, Sharma C, Kumar A, Mathur M, Bahadur S, Shukla NK, Deo SVS. Clinical significance of altered expression of retinoid receptors in oral precancerous and cancerous lesions: Relationship with cell cycle regulators. Int J Cancer 2005; 118:1077-89. [PMID: 16161051 DOI: 10.1002/ijc.21483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations in expression of retinoid receptors are implicated in human cancers. We hypothesized that altered expression of retinoic acid receptors (RARalpha,beta,gamma) and retinoid X receptor RXRalpha and their relationship with cell cycle regulators (p53, p16, p21) is associated with development, progression and prognosis of oral cancer. Immunohistochemical analysis of RAR alpha, beta, gamma and RXRalpha proteins was carried out on serial sections from 244 oral squamous cell carcinomas (OSCCs), 102 potentially malignant lesions (65 hyperplasias, 37 dysplasias), 83 matched histologically normal oral tissues and 29 normal mucosa from non-exposed individuals without oral lesions and correlated with expression of cell cycle regulators p53, p16 and p21 as well as with clinicopathological parameters. Expression of retinoid receptors RARbeta, RARgamma, RXRalpha and cell cycle regulators p16 and p21 was decreased in majority of oral SCCs as well as in potentially malignant lesions. Multivariate stepwise logistic regression analysis carried out for comparison of non-exposed normal oral mucosa with histologically normal oral tissues from patients with oral lesions showed significant loss of RARbeta or p53 accumulation (RARbeta(-)/p53(+) Odd's ratio, OR = 266.6, p = 0.000); non-exposed normal mucosa from individuals without oral lesions with potentially malignant lesion was RARbeta(-)/p21(-)/p53(+) (OR = 215.7, p = 0.000); matched normal to potentially malignant stage was RARalpha(+)/p21(-) (OR = 4.414, p = 0.005); hyperplasia to dysplasia was RARalpha(+)/p53(+) (OR = 4.72, p = 0.005) and potentially malignant to malignant phenotype was RARalpha(+) (OR = 2.061, p = 0.004). The prognostic relevance of these factors was assessed in 115 of these SCC patients who were followed-up for a maximum period of 94 months (median 21 months). Multivariate analysis using Cox's proportional Hazard's model showed that RARalpha(+)/p21(-) phenotype was associated with shorter disease-free survival (Hazard's ratio, HR = 1.863, p = 0.0471). To our knowledge, this is the first large study showing alterations in expression of retinoid receptors at the protein level at different stages in development and progression of oral SCC. It also underscored the prognostic significance of retinoid receptors and their interactions with cell cycle regulators in multistep oral tumorigenesis.
Collapse
Affiliation(s)
- Ranju Ralhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-100029, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mao JT, Tashkin DP, Belloni PN, Baileyhealy I, Baratelli F, Roth MD. All-trans retinoic acid modulates the balance of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in patients with emphysema. Chest 2003; 124:1724-32. [PMID: 14605041 DOI: 10.1378/chest.124.5.1724] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVE The balance between proteases and antiproteases plays an essential role in the pathogenesis of emphysema. This study was designed to evaluate the impact of all-trans retinoic acid (ATRA) on the balance of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in patients with emphysema. DESIGN AND SETTING As part of a clinical study, ATRA was administered to 20 patients with emphysema for 12 weeks and evaluated for its effects on plasma levels of MMP-9 and TIMP-1. Plasma MMP-9 levels were also measured in a separate cohort of patients with emphysema and matched control subjects to evaluate the relationship of circulating enzyme levels to lung disease. To further investigate the effects of ATRA on protease activity within the lung microenvironment, alveolar macrophages (AM) recovered from the lungs of active smokers with COPD were cultured with ATRA in vitro. MEASUREMENTS AND RESULTS Administration of ATRA to patients with emphysema produced a 45 +/- 14% reduction (mean +/- SEM) in plasma MMP-9 by enzyme-linked immunosorbent assay and a similar reduction in MMP-9 enzyme activity, while having little effect on TIMP-1 levels. Baseline MMP-9 levels were higher in patients with emphysema compared to nonsmoking control subjects, suggesting a relationship between plasma levels and the presence of lung disease. In vitro, concentrations of ATRA similar to those achieved in the plasma of study subjects significantly reduced both the production and enzyme activity of MMP-9 by AM. In the same experiments, TIMP-1 levels increased significantly, resulting in a marked reduction in the MMP-9/TIMP-1 molar ratio. CONCLUSION We conclude that ATRA can modulate protease/antiprotease balance in a manner that may impact on disease pathogenesis.
Collapse
Affiliation(s)
- Jenny T Mao
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Massaro D, Massaro GD. Retinoids, alveolus formation, and alveolar deficiency: clinical implications. Am J Respir Cell Mol Biol 2003; 28:271-4. [PMID: 12594052 DOI: 10.1165/rcmb.f263] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Donald Massaro
- Department of Medicine, Lung Biology Laboratory, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA.
| | | |
Collapse
|
15
|
Besnard V, Nabeyrat E, Henrion-Caude A, Chadelat K, Perin L, Le Bouc Y, Clement A. Protective role of retinoic acid from antiproliferative action of TNF-alpha on lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L863-71. [PMID: 11880314 DOI: 10.1152/ajplung.00368.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha is a key molecule in lung inflammation. We have established the insulin-like growth factor binding protein 2 (IGFBP-2) as a marker associated with the growth arrest of lung alveolar epithelial cells (AEC). Here, we studied the effects of TNF-alpha on AEC proliferation and the putative protective role of retinoic acid (RA). We documented an antiproliferative action of TNF-alpha that was reversible only at 24 h and then became irreversible with induction of apoptosis. TNF-alpha treatment was associated with a dramatic induction of IGFBP-2. To discover the mechanism of action of IGFBP-2, we further tested the mitogenic potential of IGF-I to counteract TNF-alpha inhibition. Addition of IGF-I to the TNF-alpha containing medium did not stimulate proliferation, whereas des(1-3)IGF-I, an analog of IGF-I that bears low affinity for IGFBPs, was able to restore cell growth. Interestingly, we observed that RA abrogated TNF-alpha-induced growth arrest and that this effect was associated with a dramatic decrease in IGFBP-2 expression. These results suggest a protective role of RA from TNF-alpha antiproliferative action, through mechanisms involving modulation of IGFBP-2 production.
Collapse
Affiliation(s)
- Valérie Besnard
- Département de Pneumologie Pédiatrique, Institut National de la Santé et de la Recherche Médicale U515, Hôpital Trousseau Assistance Publique-Hôpitaux de Paris, Université Paris VI, 26 Ave Dr. Netter, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Clement A, Henrion-Caude A, Besnard V, Corroyer S. Role of cyclins in epithelial response to oxidants. Am J Respir Crit Care Med 2001; 164:S81-4. [PMID: 11734473 DOI: 10.1164/ajrccm.164.supplement_2.2106069] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidants are involved in a large variety of pulmonary diseases. Among the various cell types that compose the respiratory system, the epithelial cells appear to be a major target for oxidative stress. When cells are exposed to DNA-damaging agents such as oxidants, a feedback control is activated that acts as a brake on the cell cycle to inhibit entry into the S phase until DNA repair is completed. Progression through the G1 phase and the G1-S transition involves sequential assembly and activation of key regulators of the cell cycle machinery, the cyclin-dependent kinases (CDKs). Activity of the CDKs is regulated by several mechanisms, which include the CDK inhibitors (CKIs). The CKI p21(CIP1) appears to play an important role in the response of epithelial cells to oxidants.
Collapse
Affiliation(s)
- A Clement
- Department of Pediatric Pulmonology, INSERM U515, Hôpital Armand Trousseau, Paris, France.
| | | | | | | |
Collapse
|
17
|
Nabeyrat E, Corroyer S, Besnard V, Cazals-Laville V, Bourbon J, Clement A. Retinoic acid protects against hyperoxia-mediated cell-cycle arrest of lung alveolar epithelial cells by preserving late G1 cyclin activities. Am J Respir Cell Mol Biol 2001; 25:507-14. [PMID: 11694457 DOI: 10.1165/ajrcmb.25.4.4478] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The epithelium of the lung alveolus is a major target for oxidant injury, and its proper repair after injury is dependent on the proliferative response of the alveolar epithelial type 2 cells. Recently, we have provided evidence that retinoic acid (RA) stimulates proliferation of type 2 cells. In the present study, we examined the effects of RA on the proliferative response of alveolar type 2 cells exposed to elevated oxygen (O(2)). We showed that pretreatment by RA was able to prevent the growth arrest and cell loss of O(2)-exposed cells. To gain insights into the mechanisms involved, we studied the effects of RA on the cyclin-dependent kinase (CDK) system. The activity of cyclin E-CDK2 complex was found to be decreased in O(2)-exposed cells. Interestingly, this decrease was no longer observed when cells were pretreated with RA. Analysis of p21(CIP1), an inhibitor of CDK, revealed an increased expression in O(2)-exposed cells that was no longer observed in cells treated with RA. These effects were associated with a reduced association of p21(CIP1) with cyclin E-CDK2 complexes in the presence of RA. In addition, studies of Smad activity strongly suggest that the mechanisms through which RA preserves late G(1) cyclin-CDK complex activity may involve interference with the transforming growth factor-beta signaling pathway.
Collapse
Affiliation(s)
- E Nabeyrat
- Département de Pneumologie Pédiatrique-INSERM U515, Hôpital Trousseau, 26, Ave Dr. Netter, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|