1
|
Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol 2024; 327:L382-L394. [PMID: 39010821 DOI: 10.1152/ajplung.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Cross talk between T cells and airway smooth muscle (ASM) may play a role in modulating asthmatic airway inflammation and remodeling. Infiltrating T cells have been observed within the ASM bundles of asthmatics, and a wide range of direct and indirect interactions between T cells and ASM has been demonstrated using various in vitro and in vivo model systems. Contact-dependent mechanisms such as ligation and activation of cellular adhesion and costimulatory molecules, as well as the formation of lymphocyte-derived membrane conduits, facilitate the adhesion, bidirectional communication, and transfer of materials between T and ASM cells. T cell-derived cytokines, particularly of the Th1, Th2, and Th17 subsets, modulate the secretome, proliferation, and contractility of ASM cells. This review summarizes the mechanisms governing T cell-ASM cross talk in the context of asthma. Understanding the underlying mechanistic basis is important for directing future research and developing therapeutic interventions targeted toward this complex interaction.
Collapse
Affiliation(s)
- Muyang Zhou
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Joyce Jang
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
3
|
Nino G, Rodríguez-Martínez CE, Castro-Rodriguez JA. The use of β 2-adrenoreceptor agonists in viral bronchiolitis: scientific rationale beyond evidence-based guidelines. ERJ Open Res 2020; 6:00135-2020. [PMID: 33083437 PMCID: PMC7553108 DOI: 10.1183/23120541.00135-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Despite scientific evidence proving that inhaled β2-adrenergic receptor (β2-AR) agonists can reverse bronchoconstriction in all ages, current guidelines advocate against the use of β2-AR bronchodilators in infants with viral bronchiolitis because clinical trials have not demonstrated an overall clinical benefit. However, there are many different types of viral bronchiolitis, with variations occurring at an individual and viral level. To discard a potentially helpful treatment from all children regardless of their clinical features may be unwarranted. Unfortunately, the clinical criteria to identify the infants that may benefit from bronchodilators from those who do not are not clear. Thus, we summarised the current understanding of the individual factors that may help clinicians determine the highest probability of response to β2-AR bronchodilators during viral bronchiolitis, based on the individual immunobiology, viral pathogen, host factors and clinical presentation. There are several factors that may help clinicians determine the highest probability of response to β2-AR bronchodilators during viral bronchiolitis, based on the individual immunobiology, viral pathogen, host factors and clinical presentationhttps://bit.ly/30CoHcH
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Center for Genetic Research, Children's National Medical Center, George Washington University, Washington, DC, USA
| | - Carlos E Rodríguez-Martínez
- Dept of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogota, Colombia.,Dept of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Dept of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Wang AL, Datta S, Weiss ST, Tantisira KG. Remission of persistent childhood asthma: Early predictors of adult outcomes. J Allergy Clin Immunol 2019; 143:1752-1759.e6. [PMID: 30445065 PMCID: PMC7061344 DOI: 10.1016/j.jaci.2018.09.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/20/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Few data exist on the predictors of asthma remission by early adulthood in North America. OBJECTIVE The predictors of adult asthma remission were determined in a multiethnic population of patients with mild-to-moderate persistent childhood asthma. METHODS Asthma remission in early adulthood was measured by using 2 definitions: a clinical and a strict definition. Both included normal lung function and the absence of symptoms, exacerbations, and medication use. The strict definition also included normal airways responsiveness. Predictors were identified from 23 baseline measures by using multivariate logistic regression. The probability of remission was modeled by using decision tree analysis. RESULTS In 879 subjects the mean ± SD baseline age was 8.8 ± 2.1 years, 59.4% were male, and 68.7% were white. By adulthood, 229 (26.0%) of 879 participants were in clinical remission, and 111 (15.0%) of 741 participants were in strict remission. The degree of FEV1/forced vital capacity (FVC) ratio impairment was the largest predictor of asthma remission. More than half of boys and two thirds of girls with baseline FEV1/FVC ratios of 90% or greater were in remission at adulthood. Decreased airways responsiveness was also a predictor for both remission definitions (clinical remission odds ratio, 1.23 [95% CI, 1.09-1.39]; strict remission odds ratio, 1.52 [95% CI, 1.26-1.84]). The combination of normal FEV1/FVC ratio, airways responsiveness, and serum eosinophil count at baseline yielded greater than 80% probability of remission by adulthood. CONCLUSION A considerable minority of patients with persistent childhood asthma will have disease remission by adulthood. Clinical prognostic indicators of asthma remission, including baseline lung function, can be seen from an early age.
Collapse
Affiliation(s)
- Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Soma Datta
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
5
|
Reply. J Allergy Clin Immunol 2017; 139:1717-1718. [PMID: 28274584 DOI: 10.1016/j.jaci.2016.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 11/22/2022]
|
6
|
Roth M, Zhong J, Zumkeller C, S'ng CT, Goulet S, Tamm M. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. PLoS One 2013; 8:e56015. [PMID: 23457493 PMCID: PMC3573085 DOI: 10.1371/journal.pone.0056015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Background In allergic asthma, IgE increases airway remodelling but the mechanism is incompletely understood. Airway remodelling consists of two independent events increased cell numbers and enhanced extracellular matrix deposition, and the mechanism by which IgE up-regulates cell proliferation and extracellular matrix deposition by human airway smooth muscle cells in asthma is unclear. Objective Characterise the role of the two IgE receptors and associated signalling cascades in airway smooth muscle cell remodelling. Methods Primary human airway smooth muscle cells (8 asthmatics, 8 non-asthmatics) were stimulated with human purified antibody-activated IgE. Proliferation was determined by direct cell counts. Total collagen deposition was determined by Sircol; collagen species deposition by ELISA. IgE receptors were silenced by siRNA and mitogen activated protein kinase (MAPK) signalling was blocked by chemical inhibitors. Results IgE dose-dependently increased extracellular matrix and collagen deposition by airway smooth muscle cells as well as their proliferation. Specifically in cells of asthma patients IgE increased the deposition of collagen-type-I, -III, –VII and fibronectin, but did not affect the deposition of collagens type-IV. IgE stimulated collagen type-I and type-VII deposition through IgE receptor-I and Erk1/2 MAPK. Proliferation and deposition of collagens type-III and fibronectin involved both IgE receptors as well as Erk1/2 and p38 MAPK. Pre-incubation (30 minutes) with Omalizumab prevented all remodelling effects completely. We observed no changes in gelatinase activity or their inhibitors. Conclusion & Clincal Relevance Our study provides the molecular biological mechanism by which IgE increases airway remodelling in asthma through increased airway smooth muscle cell proliferation and deposition of pro-inflammatory collagens and fibronectin. Blocking IgE action prevents several aspects of airway smooth muscle cell remodelling. Our findings may explain the recently described reduction of airway wall thickness in severe asthma patients treated with humanised anti-IgE antibodies.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
Redhu NS, Gounni AS. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther 2012; 26:86-94. [PMID: 22580035 DOI: 10.1016/j.pupt.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 12/27/2022]
Abstract
The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.
Collapse
Affiliation(s)
- Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, 419 Apotex Centre, 750 McDermot Ave, Winnipeg, Manitoba, Canada R3E 0T5
| | | |
Collapse
|
8
|
Deschildre A, Boileau S, Torres D, Leblond IT, Romero D, Decleyre IB, Thumerelle C, Santos C, Gosset P. Immunité innée, virus et exacerbation de l’asthme. REVUE FRANCAISE D ALLERGOLOGIE 2010. [DOI: 10.1016/j.reval.2010.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Gounni AS. The high-affinity IgE receptor (FcepsilonRI): a critical regulator of airway smooth muscle cells? Am J Physiol Lung Cell Mol Physiol 2006; 291:L312-21. [PMID: 16581830 DOI: 10.1152/ajplung.00005.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The airway smooth muscle (ASM) has been typically described as a contractile tissue, responding to neurotransmitters and inflammatory mediators. However, it has recently been recognized that ASM cells can also secrete cytokines and chemokines and express cell adhesion molecules that are important for the perpetuation and modulation of airway inflammation. Recent progress has revealed the importance of IgE Fc receptors in stimulating and modulating the function of these cells. In particular, the high-affinity receptor for IgE (FcepsilonRI) has been identified in primary human ASM cells in vitro and in vivo within bronchial biopsies of atopic asthmatic individuals. Moreover, activation of this receptor has been found to induce marked increases in the intracellular calcium concentrations and T helper 2 cytokines and chemokines release. This and other evidence discussed in this review provide an emerging view of FcepsilonR/IgE network as a critical modulator of ASM cell function in allergic asthma.
Collapse
|
10
|
van Rijt LS, van Kessel CHG, Boogaard I, Lambrecht BN. Respiratory viral infections and asthma pathogenesis: a critical role for dendritic cells? J Clin Virol 2005; 34:161-9. [PMID: 16126001 DOI: 10.1016/j.jcv.2005.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2005] [Indexed: 11/27/2022]
Abstract
BACKGROUND Respiratory viral infections can influence the course of asthma at different time points. Severe respiratory viral infections during early age are associated with a higher prevalence of asthma in later childhood. In established asthma, viral infections are a frequent cause of asthma exacerbation. OBJECTIVES The present review focuses on epidemiological and experimental animal data that can illuminate the mechanisms by which viral infections can lead to sensitization to antigen, and exacerbate ongoing allergic airway inflammation and focuses on the role played by dendritic cells (DCs). RESULTS In experimental rodent models of asthma, respiratory viral infection at the time of a first inhaled antigen exposure is described to induce Th2 sensitization and to enhance the allergic response to a second encounter with the same antigen. Virus infections can modulate airway dendritic cell function by upregulation of costimulatory molecule expression, enhanced recruitment, and by inducing an inflammatory environment, all leading to an enhanced antigen presentation and possibly changing the normal tolerogenic response to inhaled antigen into an immunogenic response. In established asthma, respiratory viral infections attract several inflammatory cells, alter receptor expression on airway smooth muscle and modulate neuroimmune mechanisms, possibly leading to exacerbation of disease. CONCLUSIONS Animal data suggest that the link between respiratory viral infections and increased asthma is causally related, the viral infection acting on the immune and structural cells to enhance antigen presentation and inflammatory cell recruitment.
Collapse
Affiliation(s)
- Leonie S van Rijt
- Erasmus University Medical Center, Room Ee2257a, Department of Pulmonary Medicine, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Contoli M, Caramori G, Mallia P, Johnston S, Papi A. Mechanisms of respiratory virus-induced asthma exacerbations. Clin Exp Allergy 2005; 35:137-45. [PMID: 15725183 DOI: 10.1111/j.1365-2222.2005.02163.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M Contoli
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
12
|
Howarth PH, Knox AJ, Amrani Y, Tliba O, Panettieri RA, Johnson M. Synthetic responses in airway smooth muscle. J Allergy Clin Immunol 2004; 114:S32-50. [PMID: 15309017 DOI: 10.1016/j.jaci.2004.04.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human airway smooth muscle (ASM) has several properties and functions that contribute to asthma pathogenesis, and increasing attention is being paid to its synthetic capabilities. ASM can promote the formation of the interstitial extracellular matrix, and in this respect, ASM from asthmatic subjects compared with normal subjects responds differently, both qualitatively and quantitatively. Thus, ASM cells are important regulating cells that potentially contribute to the known alterations within the extracellular matrix in asthma. In addition, through integrin-directed signaling, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells. ASM also functions as a rich source of biologically active chemokines and cytokines that are capable of perpetuating airway inflammation in asthma and chronic obstructive pulmonary disease by promoting recruitment, activation, and trafficking of inflammatory cells in the airway milieu. Emerging evidence shows that airway remodeling may also be a result of the autocrine action of secreted inflammatory mediators, including T(H)2 cytokines, growth factors, and COX-2-dependent prostanoids. Finally, ASM cells contain both beta(2)-adrenergic receptors and glucocorticoid receptors and may represent a key target for beta(2)-adrenergic receptor agonist/corticosteroid interactions. Combinations of long-acting beta(2)-agonists and corticosteroids appear to have additive and/or synergistic effects in inhibiting inflammatory mediator release and the migration and proliferation of ASM cells.
Collapse
Affiliation(s)
- Peter H Howarth
- Respiratory Cell and Molecular Biology, Southampton General Hospital, Southampton, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Hakonarson H, Grunstein MM. Autocrine regulation of airway smooth muscle responsiveness. Respir Physiol Neurobiol 2003; 137:263-76. [PMID: 14516731 DOI: 10.1016/s1569-9048(03)00152-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bronchial asthma is characterized by airway inflammation, exaggerated airway narrowing to bronchoconstrictor agonists, and attenuated beta-adrenoceptor-mediated airway relaxation. Various cytokines/chemokines have been implicated in the pathogenesis of the airway inflammatory response, and certain cytokines, most notably including specific Th2-type cytokines and IL-1beta, have been shown to directly regulate airway smooth muscle (ASM) responsiveness. Recent evidence supports the concept that the ASM itself has the capacity to endogenously express a number of these cytokines under specific conditions of ASM sensitization. Moreover, these cytokines were found to act in an autocrine manner on the ASM to evoke the 'pro-asthmatic' phenotype of altered airway responsiveness. This cytokine-driven autocrine signaling mechanism in ASM may be triggered by either Fc receptor activation in the atopic (IgE-mediated) sensitized state or by ASM exposure to specific viral respiratory pathogens, most notably including rhinovirus. Furthermore, the autocrine-induced changes in ASM responsiveness are attributed to altered receptor-coupled transmembrane signaling in the sensitized ASM, resulting in perturbed expression and release of second messenger molecules that regulate ASM contraction and relaxation. Collectively, this evidence identifies mechanisms intrinsic to the ASM itself, including autocrine pro-inflammatory signaling and altered receptor/G protein-coupled second messenger activation, that importantly contribute to phenotypic expression of the changes in ASM responsiveness that characterize the asthmatic state.
Collapse
Affiliation(s)
- Hakon Hakonarson
- Division of Pulmonary Medicine, Research Institute, Abramson's Pediatric Research Center, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
14
|
Abstract
Using sensitive diagnostic methodologies, epidemiologic studies during the past decade have allowed the identification of human rhinoviruses (RVs), generally recognized as "common cold viruses," as major asthma precipitants. This association was further established by evaluating the impact of RV infection in airway obstruction and inflammation during naturally acquired or experimentally induced RV colds. There is now strong evidence that RVs can infect and propagate not only in the upper but also in the lower airways. Bronchial and pulmonary epithelia infected by RVs are rich sources of inflammatory mediators, which may initiate or augment airway inflammation and obstruction. Furthermore, in an atopic environment, responses to the virus are skewed by and toward an "atopic," Th2-like balance, which may further enhance inflammation and exacerbate asthma.
Collapse
Affiliation(s)
- Nikolaos G Papadopoulos
- Allergy Unit, Second Pediatric Clinic, University of Athens, 13 Levadias Street, 115 27 Goudi, Athens, Greece.
| | | |
Collapse
|
15
|
Grunstein MM, Hakonarson H, Leiter J, Chen M, Whelan R, Grunstein JS, Chuang S. IL-13-dependent autocrine signaling mediates altered responsiveness of IgE-sensitized airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002; 282:L520-8. [PMID: 11839548 DOI: 10.1152/ajplung.00343.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In testing the hypothesis that interleukin-4 receptor alpha-subunit (IL-4R alpha)-coupled signaling mediates altered airway smooth muscle (ASM) responsiveness in the atopic sensitized state, isolated rabbit tracheal ASM segments were passively sensitized with immunoglobulin E (IgE) immune complexes, both in the absence and presence of an IL-4R alpha blocking antibody (anti-IL-4R alpha Ab). Relative to control ASM, IgE-sensitized tissues exhibited enhanced isometric constrictor responses to administered ACh and attenuated relaxation responses to isoproterenol. These proasthmatic-like effects were prevented in IgE-sensitized ASM that were pretreated with anti-IL-4R alpha Ab. In complementary experiments, IgE-sensitized cultured human ASM cells exhibited upregulated expression of IL-13 mRNA and protein, whereas IL-4 expression was undetected. Moreover, extended studies demonstrated that 1) exogenous IL-13 administration to naïve ASM elicited augmented contractility to ACh and impaired relaxation to isoproterenol, 2) these effects of IL-13 were prevented by pretreating the tissues with an IL-5 receptor blocking antibody, and 3) IL-13 administration induced upregulated mRNA expression and release of IL-5 protein from cultured ASM cells. Collectively, these findings provide new evidence demonstrating that the altered responsiveness of IgE-sensitized ASM is largely attributed to activation of an intrinsic Th2-type autocrine mechanism involving IL-13/IL-4R alpha-coupled release and action of IL-5 in the sensitized ASM itself.
Collapse
Affiliation(s)
- M M Grunstein
- Division of Pulmonary Medicine, Joseph Stokes, Jr. Research Institute, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Amrani Y, Panettieri RA. Modulation of calcium homeostasis as a mechanism for altering smooth muscle responsiveness in asthma. Curr Opin Allergy Clin Immunol 2002; 2:39-45. [PMID: 11964749 DOI: 10.1097/00130832-200202000-00007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Airway hyperresponsiveness remains a defining characteristic of asthma. Traditional views assert that airway smooth muscle is an important structural effector cell in the bronchi that modulates bronchomotor tone induced by contractile agonists. New evidence, however, suggests that abnormalities in airway smooth muscle functions, induced by variety of extracellular stimuli, may play an important role in the development of airway hyperresponsiveness. Studies using isolated bronchial preparations or cultured cells show that inflammatory mediators and cytokines may alter calcium homeostasis in airway smooth muscle and render the cells nonspecifically hyperreactive to agonists.
Collapse
Affiliation(s)
- Yassine Amrani
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, 848 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
17
|
Grunstein MM, Hakonarson H, Whelan R, Yu Z, Grunstein JS, Chuang S. Rhinovirus elicits proasthmatic changes in airway responsiveness independently of viral infection. J Allergy Clin Immunol 2001; 108:997-1004. [PMID: 11742279 DOI: 10.1067/mai.2001.120276] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rhinovirus (RV), the principal pathogen responsible for the common cold, is importantly implicated in triggering attacks of asthma secondary to changes in airway responsiveness. OBJECTIVE Because the airway histopathologic features of RV infection are relatively modest, we tested the hypothesis that RV can directly elicit proasthmatic-like changes in airway smooth muscle (ASM) responsiveness independently of actual viral infection and its associated cytopathic effects. METHODS Isolated ASM tissues and cultured ASM cells were inoculated with either infectious or noninfectious (UV-irradiated) RV16 and RV2, the latter serotypes belonging to the "major" and "minor" groups of RV subtypes, respectively. ASM constrictor and relaxant responsiveness, G(i) protein expression, and proinflammatory cytokine release were subsequently compared under the different treatment conditions. RESULTS In contrast to RV2, which had no effect, RV16 inoculation elicited enhanced ASM contractility and impaired relaxation to cholinergic and beta-adrenergic agonists, respectively, in association with increased ASM membrane G(i) protein expression and induced release of the proinflammatory cytokines IL-5 and IL-1beta. These proasthmatic-like effects were also observed in ASM exposed to UV-irradiated RV16, wherein viral replication was completely inhibited. In contrast, pretreatment of ASM with a neutralizing antibody directed against ICAM-1, the host receptor for the "major" group of RVs, completely abrogated the proasthmatic effects of RV16. CONCLUSIONS The results demonstrate that (1) RV16 elicits proasthmatic changes in ASM responsiveness that can occur independently of actual viral infection of the ASM and (2) the effects of RV16 are attributed solely to binding of the virus to its host receptor (ICAM-1) on the ASM cell surface. Collectively, these findings support the notion that RV-induced exacerbation of wheezing in asthmatic individuals can occur even in the absence of any cytopathology associated with viral infection.
Collapse
Affiliation(s)
- M M Grunstein
- Division of Pulmonary Medicine, Joseph Stokes, Jr, Research Institute, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
18
|
Hakonarson H, Halapi E, Whelan R, Gulcher J, Stefansson K, Grunstein MM. Association between IL-1beta/TNF-alpha-induced glucocorticoid-sensitive changes in multiple gene expression and altered responsiveness in airway smooth muscle. Am J Respir Cell Mol Biol 2001; 25:761-71. [PMID: 11726403 DOI: 10.1165/ajrcmb.25.6.4628] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The pleiotropic cytokines interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha have been implicated in the pathophysiology of asthma. To elucidate the role of these cytokines in the pro-asthmatic state, the effects of IL-1beta and TNF-alpha on airway smooth muscle (ASM) responsiveness and ASM expression of multiple genes, assessed by high-density oligonucleotide array analysis, were examined in the absence and presence of the glucocorticoid dexamethasone (DEX). Administration of IL-1beta/TNF-alpha increased ASM contractility to acetylcholine and impaired ASM relaxation to isoproterenol. These pro-asthmatic- like changes in ASM responsiveness were associated with IL-1beta/ TNF-alpha-induced mRNA expression of a host of proinflammatory genes that regulate transcription, cytokines and chemokines, cellular adhesion molecules, and various signal transduction molecules that regulate ASM responsiveness. In the presence of DEX, the changes induced in ASM responsiveness were abrogated, and most of the IL-1beta/TNF-alpha-mediated changes in proinflammatory gene expression were repressed, although mRNA expression of a small number of genes was enhanced by DEX. Collectively, the observations support the concept that, together with its role as a regulator of airway tone, in response to IL-1beta/TNF-alpha, the ASM expresses a host of glucocorticoid-sensitive genes that contribute to the altered structure and function of the airways in the pro-asthmatic state. We speculate that glucocorticoid-sensitive, cytokine-induced pathways involved in ASM cell signaling represent important targets for new therapeutic interventions.
Collapse
|