1
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Markasz L, Mobini-Far H, Sindelar R. Collagen type IV alpha 1 chain (COL4A1) expression in the developing human lung. BMC Pulm Med 2024; 24:75. [PMID: 38331745 PMCID: PMC10851591 DOI: 10.1186/s12890-024-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Collagen type IV alpha 1 chain (COL4A1) in the basement membrane is an important component during lung development, as suggested from animal models where COL4A1 has been shown to regulate alveolarization and angiogenesis. Less is known about its role in human lung development. Our aim was to study COL4A1 expression in preterm infants with different lung maturational and clinical features. METHODS COL4A1 expression in 115 lung samples from newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age [PNA]) was studied by immunohistochemistry combined with digital image analysis. Cluster analysis was performed to find subgroups according to immunohistologic and clinical data. RESULTS Patients were automatically categorized into 4 Groups depending on their COL4A1 expression. Expression of COL4A1 was mainly extracellular in Group 1, low in Group 2, intracellular in Group 3, and both extra- and intracellular in Group 4. Intracellular/extracellular ratio of COL4A1 expression related to PNA showed a distinctive postnatal maturational pattern on days 1-7, where intracellular expression of COL4A1 was overrepresented in extremely preterm infants. CONCLUSIONS COL4A1 expression seems to be highly dynamic during the postnatal life due to a possible rapid remodeling of the basement membrane. Intracellular accumulation of COL4A1 in the lungs of extremely premature infants occurs more frequently between 1 and 7 postnatal days than during the first 24 hours. In view of the lung arrest described in extremely preterm infants, the pathological and/or developmental role of postnatally increased intracellular COL4A1 as marker for basement membrane turnover, needs to be further investigated.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala, SE-751 85, Sweden.
| | - Hamid Mobini-Far
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala, SE-751 85, Sweden
| |
Collapse
|
3
|
Cantu A, Cantu Gutierrez M, Zhang Y, Dong X, Lingappan K. Endothelial to mesenchymal transition in neonatal hyperoxic lung injury: role of sex as a biological variable. Physiol Genomics 2023; 55:345-354. [PMID: 37395632 PMCID: PMC10625841 DOI: 10.1152/physiolgenomics.00037.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by an arrest in alveolarization, abnormal vascular development, and variable interstitial fibroproliferation in the premature lung. Endothelial to mesenchymal transition (EndoMT) may be a source of pathological fibrosis in many organ systems. Whether EndoMT contributes to the pathogenesis of BPD is not known. We tested the hypothesis that pulmonary endothelial cells will show increased expression of EndoMT markers upon exposure to hyperoxia and that sex as a biological variable will modulate differences in expression. Wild-type (WT) and Cdh5-PAC CreERT2 (endothelial reporter) neonatal male and female mice (C57BL6) were exposed to hyperoxia (0.95 [Formula: see text]) either during the saccular stage of lung development (95% [Formula: see text]; postnatal day 1-5 [PND1-5]) or through the saccular and early alveolar stages of lung development (75% [Formula: see text]; PND1-14). Expression of EndoMT markers was measured in whole lung and endothelial cell mRNA. Sorted lung endothelial cells (from room air- and hyperoxia-exposed lungs) were subjected to bulk RNA-Seq. We show that exposure of the neonatal lung to hyperoxia leads to upregulation of key markers of EndoMT. Furthermore, using lung sc-RNA-Seq data from neonatal lung we were able to show that all endothelial cell subpopulations including the lung capillary endothelial cells show upregulation of EndoMT-related genes. Markers related to EndoMT are upregulated in the neonatal lung upon exposure to hyperoxia and show sex-specific differences. Mechanisms mediating EndoMT in the injured neonatal lung can modulate the response of the neonatal lung to hyperoxic injury and need further investigation.NEW & NOTEWORTHY We show that neonatal hyperoxia exposure increased EndoMT markers in the lung endothelial cells and this biological process exhibits sex-specific differences.
Collapse
Affiliation(s)
- Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Manuel Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Yuhao Zhang
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Xiaoyu Dong
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Kurihara C, Sakurai R, Chuang TD, Waring AJ, Walther FJ, Rehan VK. Combination of pioglitazone, a PPARγ agonist, and synthetic surfactant B-YL prevents hyperoxia-induced lung injury in adult mice lung explants. Pulm Pharmacol Ther 2023; 80:102209. [PMID: 36907545 PMCID: PMC10205668 DOI: 10.1016/j.pupt.2023.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
INTRODUCTION Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-β signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates β-catenin and LEF-1) and TGF-β (upregulation of key TGF-β signaling intermediates TGF-β type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1β, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.
Collapse
Affiliation(s)
- Chie Kurihara
- Harbor-UCLA Medical Center, Department of Pediatrics, Torrance, CA, USA; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Reiko Sakurai
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Frans J Walther
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Virender K Rehan
- Harbor-UCLA Medical Center, Department of Pediatrics, Torrance, CA, USA; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
5
|
Storti M, Faietti ML, Murgia X, Catozzi C, Minato I, Tatoni D, Cantarella S, Ravanetti F, Ragionieri L, Ciccimarra R, Zoboli M, Vilanova M, Sánchez-Jiménez E, Gay M, Vilaseca M, Villetti G, Pioselli B, Salomone F, Ottonello S, Montanini B, Ricci F. Time-resolved transcriptomic profiling of the developing rabbit's lungs: impact of premature birth and implications for modelling bronchopulmonary dysplasia. Respir Res 2023; 24:80. [PMID: 36922832 PMCID: PMC10015812 DOI: 10.1186/s12931-023-02380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor β, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.
Collapse
Affiliation(s)
- Matteo Storti
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Maria Laura Faietti
- Department of Analytic and Early Formulations, Chiesi Farmaceutici S.P.A., R&D, 43122, Parma, Italy
| | | | - Chiara Catozzi
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Ilaria Minato
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy
| | - Danilo Tatoni
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Department of Medical Biotechnologies, University of Siena, 53100, Siena, Italy
| | - Simona Cantarella
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Division of RNA Biology and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Luisa Ragionieri
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Sciences, University of Parma, 43124, Parma, Italy
| | - Mar Vilanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Ester Sánchez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Barbara Pioselli
- Department of Analytic and Early Formulations, Chiesi Farmaceutici S.P.A., R&D, 43122, Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy
| | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy. .,Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124, Parma, Italy.
| | - Francesca Ricci
- Department of Experimental Pharmacology and Translational Science, R&D, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy. .,Head of Neonatology and Pulmonary Rare Disease, Preclinical Pharmacology, Chiesi Farmaceutici S.P.A., 43122, Parma, Italy.
| |
Collapse
|
6
|
Jiang J, Wang J, Li C, Mo L, Huang D. P311 knockdown alleviates hyperoxia-induced injury by inactivating the Smad3 signaling pathway in type II alveolar epithelial cells. Mol Cell Biochem 2023; 478:277-284. [PMID: 35779227 DOI: 10.1007/s11010-022-04500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/06/2022] [Indexed: 02/02/2023]
Abstract
P311 is associated with alveolar formation and development. However, the role and possible mechanism of P311 in hyperoxia-induced injury in type II alveolar epithelial cells (AEC II) need to be elucidated. In our study, rat AEC II (RLE-6TN) were exposure to normoxia (21% O2 and 5% CO2) or hyperoxia (95% O2 and 5% CO2) for 24 h, followed by determination of P311 expression. After knockdown of P311 and hyperoxic treatment, cell viability, cell cycle progression, apoptosis and the Smad3 signaling pathway were examined. Rat AEC II were pretreated with SIS3 HCl for 4 h and then subjected to P311 overexpression plasmid transfection and hyperoxic exposure. Then, cell viability, apoptosis and the Smad3 signaling pathway were determined. The results showed that hyperoxic exposure significantly elevated P311 levels in rat AEC II. P311 knockdown increased cell viability, accelerated cell cycle progression and inhibited apoptosis, as well as suppression of the Smad3 signaling pathway in hyperoxia-exposed AEC II. Additionally, we found that P311 overexpression enhanced the effects of hyperoxia. Interestingly, SIS3 HCl incubation blocked the effects of P311 overexpression on rat AEC II function under hyperoxic condition, as evidenced by an increase in cell viability, and suppressions of apoptosis and the Smad3 signaling pathway. These results indicate that P311 knockdown may ameliorate hyperoxia-induced injury by inhibiting the Smad3 signaling pathway in rat AEC II. P311 may be a novel target for the treatment of hyperoxia-induced lung injury and even bronchopulmonary dysplasia (BPD).
Collapse
Affiliation(s)
- Jun Jiang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Juan Wang
- Department of Pediatrics, Affiliated Hospital of Hebei University, Handan, China
| | - Cen Li
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Lianqin Mo
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Dong Huang
- Department of Pediatric Intensive Care Unit, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
7
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
8
|
Kidney Injuries and Evolution of Chronic Kidney Diseases Due to Neonatal Hyperoxia Exposure Based on Animal Studies. Int J Mol Sci 2022; 23:ijms23158492. [PMID: 35955627 PMCID: PMC9369080 DOI: 10.3390/ijms23158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth interrupts the development and maturation of the kidneys during the critical growth period. The kidneys can also exhibit structural defects and functional impairment due to hyperoxia, as demonstrated by various animal studies. Furthermore, hyperoxia during nephrogenesis impairs renal tubular development and induces glomerular and tubular injuries, which manifest as renal corpuscle enlargement, renal tubular necrosis, interstitial inflammation, and kidney fibrosis. Preterm birth along with hyperoxia exposure induces a pathological predisposition to chronic kidney disease. Hyperoxia-induced kidney injuries are influenced by several molecular factors, including hypoxia-inducible factor-1α and interleukin-6/Smad2/transforming growth factor-β, and Wnt/β-catenin signaling pathways; these are key to cell proliferation, tissue inflammation, and cell membrane repair. Hyperoxia-induced oxidative stress is characterized by the attenuation or the induction of multiple molecular factors associated with kidney damage. This review focuses on the molecular pathways involved in the pathogenesis of hyperoxia-induced kidney injuries to establish a framework for potential interventions.
Collapse
|
9
|
Daily Intraperitoneal Administration of Rosiglitazone Does Not Improve Lung Function or Alveolarization in Preterm Rabbits Exposed to Hyperoxia. Pharmaceutics 2022; 14:pharmaceutics14071507. [PMID: 35890402 PMCID: PMC9320886 DOI: 10.3390/pharmaceutics14071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.
Collapse
|
10
|
Yang X, Jiang S, Deng X, Luo Z, Chen A, Yu R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front Nutr 2022; 9:924036. [PMID: 35923207 PMCID: PMC9340220 DOI: 10.3389/fnut.2022.924036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe chronic lung illness that affects neonates, particularly premature infants. It has far-reaching consequences for infant health and their families due to intractable short- and long-term repercussions. Premature infant survival and long-term quality of life are severely harmed by BPD, which is characterized by alveolarization arrest and hypoplasia of pulmonary microvascular cells. BPD can be caused by various factors, with oxidative stress (OS) being the most common. Premature infants frequently require breathing support, which results in a hyperoxic environment in the developing lung and obstructs lung growth. OS can damage the lungs of infants by inducing cell death, inhibiting alveolarization, inducing inflammation, and impairing pulmonary angiogenesis. Therefore, antioxidant therapy for BPD relieves OS and lung injury in preterm newborns. Many antioxidants have been found in human milk, including superoxide dismutase, glutathione peroxidase, glutathione, vitamins, melatonin, short-chain fatty acids, and phytochemicals. Human milk oligosaccharides, milk fat globule membrane, and lactoferrin, all unique to human milk, also have antioxidant properties. Hence, human milk may help prevent OS injury and improve BPD prognosis in premature infants. In this review, we explored the role of OS in the pathophysiology of BPD and related signaling pathways. Furthermore, we examined antioxidants in human milk and how they could play a role in BPD to understand whether human milk could prevent and treat BPD.
Collapse
Affiliation(s)
- Xianpeng Yang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zichen Luo
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ailing Chen
- Translational Medicine Laboratory, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Ailing Chen
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Renqiang Yu
| |
Collapse
|
11
|
Hocq C, Vanhoutte L, Guilloteau A, Massolo AC, Van Grambezen B, Carkeek K, Piersigilli F, Danhaive O. Early diagnosis and targeted approaches to pulmonary vascular disease in bronchopulmonary dysplasia. Pediatr Res 2022; 91:804-815. [PMID: 33674739 DOI: 10.1038/s41390-021-01413-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Pulmonary hypertension has emerged as a life-threatening disease in preterm infants suffering from bronchopulmonary dysplasia (BPD). Its development is closely linked to respiratory disease, as vasculogenesis and alveologenesis are closely interconnected. Once clinically significant, BPD-associated pulmonary hypertension (BPD-PH) can be challenging to manage, due to poor reversibility and multiple comorbidities frequently associated. The pulmonary vascular disease process underlying BPD-PH is the result of multiple innate and acquired factors, and emerging evidence suggests that it progressively develops since birth and, in certain instances, may begin as early as fetal life. Therefore, early recognition and intervention are of great importance in order to improve long-term outcomes. Based on the most recent knowledge of BPD-PH pathophysiology, we review state-of-the-art screening and diagnostic imaging techniques currently available, their utility for clinicians, and their applicability and limitations in this specific population. We also discuss some biochemical markers studied in humans as a possible complement to imaging for the detection of pulmonary vascular disease at its early stages and the monitoring of its progression. In the second part, we review pharmacological agents currently available for BPD-PH treatment or under preclinical investigation, and discuss their applicability, as well as possible approaches for early-stage interventions in fetuses and neonates. IMPACT: BPD-associated PH is a complex disease involving genetic and epigenetic factors, as well as environmental exposures starting from fetal life. The value of combining multiple imaging and biochemical biomarkers is emerging, but requires larger, multicenter studies for validation and diffusion. Since "single-bullet" approaches have proven elusive so far, combined pharmacological regimen and cell-based therapies may represent important avenues for research leading to future cure and prevention.
Collapse
Affiliation(s)
- Catheline Hocq
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Laetitia Vanhoutte
- Division of Pediatric Cardiology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Axelle Guilloteau
- Division of Clinical Pharmacy, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Anna Claudia Massolo
- Department of Surgical and Medical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Bénédicte Van Grambezen
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Kate Carkeek
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Fiammetta Piersigilli
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Olivier Danhaive
- Division of Neonatology, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium. .,Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
12
|
Zhong Y, Mahoney RC, Khatun Z, Chen HH, Nguyen CT, Caravan P, Roberts JD. Lysyl oxidase regulation and protein aldehydes in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2022; 322:L204-L223. [PMID: 34878944 PMCID: PMC8794022 DOI: 10.1152/ajplung.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During newborn lung injury, excessive activity of lysyl oxidases (LOXs) disrupts extracellular matrix (ECM) formation. Previous studies indicate that TGFβ activation in the O2-injured mouse pup lung increases lysyl oxidase (LOX) expression. But how TGFβ regulates this, and whether the LOXs generate excess pulmonary aldehydes are unknown. First, we determined that O2-mediated lung injury increases LOX protein expression in TGFβ-stimulated pup lung interstitial fibroblasts. This regulation appeared to be direct; this is because TGFβ treatment also increased LOX protein expression in isolated pup lung fibroblasts. Then using a fibroblast cell line, we determined that TGFβ stimulates LOX expression at a transcriptional level via Smad2/3-dependent signaling. LOX is translated as a pro-protein that requires secretion and extracellular cleavage before assuming amine oxidase activity and, in some cells, reuptake with nuclear localization. We found that pro-LOX is processed in the newborn mouse pup lung. Also, O2-mediated injury was determined to increase pro-LOX secretion and nuclear LOX immunoreactivity particularly in areas populated with interstitial fibroblasts and exhibiting malformed ECM. Then, using molecular probes, we detected increased aldehyde levels in vivo in O2-injured pup lungs, which mapped to areas of increased pro-LOX secretion in lung sections. Increased activity of LOXs plays a critical role in the aldehyde generation; an inhibitor of LOXs prevented the elevation of aldehydes in the O2-injured pup lung. These results reveal new mechanisms of TGFβ and LOX in newborn lung disease and suggest that aldehyde-reactive probes might have utility in sensing the activation of LOXs in vivo during lung injury.
Collapse
Affiliation(s)
- Ying Zhong
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Rose C. Mahoney
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts
| | - Zehedina Khatun
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Howard H. Chen
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher T. Nguyen
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Caravan
- 4Harvard Medical School, Harvard University, Cambridge, Massachusetts,5Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts,6Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts,7The Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts
| | - Jesse D. Roberts
- 1Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, Massachusetts,2Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts,3Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts,4Harvard Medical School, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
13
|
Schmiedl A, Wagener I, Jungen M, von Hörsten S, Stephan M. Lung development and immune status under chronic LPS exposure in rat pups with and without CD26/DPP4 deficiency. Cell Tissue Res 2021; 386:617-636. [PMID: 34606000 PMCID: PMC8595150 DOI: 10.1007/s00441-021-03522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/05/2021] [Indexed: 11/26/2022]
Abstract
Dipeptidyl-peptidase IV (CD26), a multifactorial integral type II protein, is expressed in the lungs during development and is involved in inflammation processes. We tested whether daily LPS administration influences the CD26-dependent retardation in morphological lung development and induces alterations in the immune status. Newborn Fischer rats with and without CD26 deficiency were nebulized with 1 µg LPS/2 ml NaCl for 10 min from days postpartum (dpp) 3 to 9. We used stereological methods and fluorescence activated cell sorting (FACS) to determine morphological lung maturation and alterations in the pulmonary leukocyte content on dpp 7, 10, and 14. Daily LPS application did not change the lung volume but resulted in a significant retardation of alveolarization in both substrains proved by significantly lower values of septal surface and volume as well as higher mean free distances in airspaces. Looking at the immune status after LPS exposure compared to controls, a significantly higher percentage of B lymphocytes and decrease of CD4+CD25+ T cells were found in both subtypes, on dpp7 a significantly higher percentage of CD4 T+ cells in CD26+ pups, and a significantly higher percentage of monocytes in CD26- pups. The percentage of T cells was significantly higher in the CD26-deficient group on each dpp. Thus, daily postnatal exposition to low doses of LPS for 1 week resulted in a delay in formation of secondary septa, which remained up to dpp 14 in CD26- pups. The retardation was accompanied by moderate parenchymal inflammation and CD26-dependent changes in the pulmonary immune cell composition.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625, Hannover, Germany.
| | - Inga Wagener
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Meike Jungen
- Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy University Hospital Erlangen and Preclinical Experimental Center (PETZ), Friedrich-Alexander-University Erlangen-Nürnberg, Bavaria, Germany
| | - Michael Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
14
|
Yang M, Gao XR, Meng YN, Shen F, Chen YP. ETS1 Ameliorates Hyperoxia-Induced Alveolar Epithelial Cell Injury by Regulating the TGM2-Mediated Wnt/β-Catenin Pathway. Lung 2021; 199:681-690. [PMID: 34817668 DOI: 10.1007/s00408-021-00489-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Bronchopulmonary dysplasia (BPD) is a chronic lung disease that affects newborns who need oxygen therapy, and high-concentration oxygen therapy may cause neonatal morbidity and mortality in newborns. E26 oncogene homologue 1 (ETS1) and transglutaminase 2 (TGM2) have been reported to be associated with lung cell injury. However, the mechanism of ETS1 in regulating BPD is still unclear. METHODS Hyperoxia-induced A549 cells to simulate hyperoxia-induced alveolar epithelial cell injury. MTT assays and colony formation assays were performed to investigate the proliferation of A549 cells. Flow cytometry was carried out to quantify the apoptosis of A549 cells. The expression levels of ETS1 and TGM2 were quantified by qRT-PCR. The protein expression levels of ETS1, TGM2, β-catenin, c-Jun and MET were measured by western blot. Overexpression of ETS1, overexpression of TGM2, overexpression of ETS1 with downregulation of TGM2 and overexpression of TGM2 with inhibition of Wnt/β-catenin pathway were performed to investigate the role of ETS1, TGM2 and Wnt/β-catenin pathways in hyperoxia-induced alveolar epithelial cell injury. RESULTS Hyperoxia decreased the proliferation and promoted the apoptosis of cells in a time-dependent manner. Moreover, overexpression of ETS1 rescued the effect of hyperoxia on proliferation and apoptosis. In addition, overexpression of TGM2 participated in the regulation of hyperoxia-induced proliferation and apoptosis. ETS1 regulated hyperoxia-induced alveolar epithelial cell injury through the Wnt/β-catenin pathway via TGM2. CONCLUSION ETS1 ameliorates hyperoxia-induced alveolar epithelial cell injury through the TGM2-mediated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Xi-Rong Gao
- Neonate Department, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ni Meng
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China
| | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, Hunan Province, China
| | - Yan-Ping Chen
- Department of Respiratory, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
15
|
Huang LT, Chou HC, Chen CM. Inhibition of FABP4 attenuates hyperoxia-induced lung injury and fibrosis via inhibiting TGF-β signaling in neonatal rats. J Cell Physiol 2021; 237:1509-1520. [PMID: 34708870 DOI: 10.1002/jcp.30622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease characterized by interrupted alveologenesis and alveolar simplification caused by oxygen therapy in premature infants. Metabolic dysfunction is involved in the pathogenesis of BPD. Fatty acid-binding protein 4 (FABP4) is significantly increased in specific lung tissues in patients with BPD. Therefore, we investigated whether BMS309403, an FABP4 inhibitor that can mitigate tissue fibrosis, can regulate pulmonary fibrotic processes in newborn rats exposed to hyperoxia. Newborn rat pups were exposed to room air (RA; 21% O2 ) or 85% O2 from 5 to 14 days of age and were then allowed to recover in RA until 29 days of age. They received intraperitoneal injection with placebo (phosphate-buffered saline [PBS]) or BMS 309403 (0.5 mg or 1.0 mg kg-1 d-1 ) every other day from 4 to 14 days of age then were divided into O2 plus PBS or low dose or high dose and RA plus PBS or low dose or high dose groups. We assessed lung histology and evaluated lung collagen I, FABP4 as well as TGF-β1 expression at 14 and 29 days of age. In the hyperoxia injury-recovery model, prophylactic BMS309403 treatment reduced mean linear intercept values and FABP4 expression (p < 0.001). Prophylactic BMS309403 treatment mitigated pulmonary fibrosis and TGF-β1 expression immediately after hyperoxia exposure (p < 0.05). The attenuation of hyperoxia-induced alveolar developmental impairment and pulmonary fibrosis by FABP4 inhibition indicated that such inhibition has potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021; 22:ijms222011006. [PMID: 34681665 PMCID: PMC8540649 DOI: 10.3390/ijms222011006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/13/2023] Open
Abstract
In utero, the fetus and its lungs develop in a hypoxic environment, where HIF-1α and VEGFA signaling constitute major determinants of further development. Disruption of this homeostasis after preterm delivery and extrauterine exposure to high fractions of oxygen are among the key events leading to bronchopulmonary dysplasia (BPD). Reactive oxygen species (ROS) production constitutes the initial driver of pulmonary inflammation and cell death, altered gene expression, and vasoconstriction, leading to the distortion of further lung development. From preclinical studies mainly performed on rodents over the past two decades, the deleterious effects of oxygen toxicity and the injurious insults and downstream cascades arising from ROS production are well recognized. This article provides a concise overview of disease drivers and different therapeutic approaches that have been successfully tested within experimental models. Despite current studies, clinical researchers are still faced with an unmet clinical need, and many of these strategies have not proven to be equally effective in clinical trials. In light of this challenge, adapting experimental models to the complexity of the clinical situation and pursuing new directions constitute appropriate actions to overcome this dilemma. Our review intends to stimulate research activities towards the understanding of an important issue of immature lung injury.
Collapse
|
17
|
Abstract
BACKGROUND Premature infants often require oxygen (O2) therapy for respiratory distress syndrome; however, excessive use of O2 can cause clinical conditions such as bronchopulmonary dysplasia. Although many treatment methods are currently available, they are not effective in preventing bronchopulmonary dysplasia. Herein, we explored the role of tripartite motif protein 72 (TRIM72), a factor involved in repairing alveolar epithelial wounds, in regulating alveolar cells upon hyperoxia exposure. METHODS In this in vivo study, we used Sprague-Dawley rat pups that were reared in room air or 85% O2 for 2 weeks after birth. The lungs were excised for histological analyses, and TRIM72 expression was assessed on postnatal days 7 and 14. For in vitro experiments, RLE-6TN cells (i.e., rat alveolar type II epithelial cells) and A549 cells (i.e., human lung carcinoma epithelial cells) were exposed to 85% O2 for 5 days. The cells were then analyzed for cell viability, and TRIM72 expression was determined. RESULTS Exposure to hyperoxia reduced body and lung weight, increased mean linear intercept values, and upregulated TRIM72 expression. In vitro study results revealed increased or decreased lung cell viability upon hyperoxia exposure depending on the suppression or overexpression of TRIM72, respectively. CONCLUSION Hyperoxia upregulates TRIM72 expression in neonatal rat lung tissue; moreover, it initiates TRIM72-dependent alveolar epithelial cell death, leading to hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Tseng CK, Liu TT, Lin TC, Cheng CP. Expression of heme oxygenase-1 in type II pneumocytes protects against heatstroke-induced lung damage. Cell Stress Chaperones 2021; 26:67-76. [PMID: 32844330 PMCID: PMC7736423 DOI: 10.1007/s12192-020-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022] Open
Abstract
Heatstroke (HS) is an acute clinical disease characterized by abnormal hyperthermia and multi-organ dysfunction. Heme oxygenase (HO)-1, also called heat shock protein (HSP)32, is induced by hyperthermia and also plays protective roles in many lung disease models. Based on this phenomenon, we investigated the protective role of endogenous HO-1 in heat-induced lung damage in rats. Male Sprague-Dawley (SD) rats were separated into three groups: (a) normothermic sham, (b) HS, and (c) SnPP (inhibitor of HO-1) pretreatment rats. In the HS group, rats were killed at various time points (1, 3, 6, and 12 h after heat exposure) in order to analyze messenger ribonucleic acid (mRNA) and protein levels. Lung sections were examined for tissue damage and localization of HO-1 using immunofluorescence double labeling. We found that HS induced lung pathology (congested and thickened lung septa). The level of HO-1 mRNA was increased at 1 h, and the protein level peaked at 6 h after heat exposure. Pretreatment with SnPP (tin-protoporphyrin IX, 30 mg/kg, intraperitoneal injection for 1 h before heat exposure) aggravated the lung damage. Furthermore, we demonstrated HO-1 expression in lung type II pneumocytes. Our results suggest that endogenous HO-1 is protective against HS-induced lung damage. Induction of HO-1 may be a potential therapeutic strategy for treating heat-related diseases.
Collapse
Affiliation(s)
- Chin-Kun Tseng
- Tri-Service General Hospital Songsang Branch, National Defense Medical Center, Taipei, Taiwan
- Department Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tsung-Ta Liu
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
- Nursing Department, Center for General Education, Kang-Ning University, Tainan, Taiwan
| | - Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, No.161, Sec. 6, Min-Chuan E. Rd., Neihu, 114, Taipei, Taiwan.
| |
Collapse
|
19
|
Zysman M, Baptista BR, Essari LA, Taghizadeh S, Thibault de Ménonville C, Giffard C, Issa A, Franco-Montoya ML, Breau M, Souktani R, Aissat A, Caeymaex L, Lizé M, Van Nhieu JT, Jung C, Rottier R, Cruzeiro MD, Adnot S, Epaud R, Chabot F, Lanone S, Boczkowski J, Boyer L. Targeting p16 INK4a Promotes Lipofibroblasts and Alveolar Regeneration after Early-Life Injury. Am J Respir Crit Care Med 2020; 202:1088-1104. [PMID: 32628504 DOI: 10.1164/rccm.201908-1573oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: Promoting endogenous pulmonary regeneration is crucial after damage to restore normal lungs and prevent the onset of chronic adult lung diseases.Objectives: To investigate whether the cell-cycle inhibitor p16INK4a limits lung regeneration after newborn bronchopulmonary dysplasia (BPD), a condition characterized by the arrest of alveolar development, leading to adult sequelae.Methods: We exposed p16INK4a-/- and p16INK4a ATTAC (apoptosis through targeted activation of caspase 8) transgenic mice to postnatal hyperoxia, followed by pneumonectomy of the p16INK4a-/- mice. We measured p16INK4a in blood mononuclear cells of preterm newborns, 7- to 15-year-old survivors of BPD, and the lungs of patients with BPD.Measurements and Main Results: p16INK4a concentrations increased in lung fibroblasts after hyperoxia-induced BPD in mice and persisted into adulthood. p16INK4a deficiency did not protect against hyperoxic lesions in newborn pups but promoted restoration of the lung architecture by adulthood. Curative clearance of p16INK4a-positive cells once hyperoxic lung lesions were established restored normal lungs by adulthood. p16INK4a deficiency increased neutral lipid synthesis and promoted lipofibroblast and alveolar type 2 (AT2) cell development within the stem-cell niche. Besides, lipofibroblasts support self-renewal of AT2 cells into alveolospheres. Induction with a PPARγ (peroxisome proliferator-activated receptor γ) agonist after hyperoxia also increased lipofibroblast and AT2 cell numbers and restored alveolar architecture in hyperoxia-exposed mice. After pneumonectomy, p16INK4a deficiency again led to an increase in lipofibroblast and AT2 cell numbers in the contralateral lung. Finally, we observed p16INK4a mRNA overexpression in the blood and lungs of preterm newborns, which persisted in the blood of older survivors of BPD.Conclusions: These data demonstrate the potential of targeting p16INK4a and promoting lipofibroblast development to stimulate alveolar regeneration from childhood to adulthood.
Collapse
Affiliation(s)
- Maéva Zysman
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Bruno Ribeiro Baptista
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Pneumologie, Centre Hospitalier Universitaire, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laure-Aléa Essari
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Pneumologie, Centre Hospitalier Universitaire, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sara Taghizadeh
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zheijiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | - Amelle Issa
- Centre de Recherche Clinique, Centre de Ressource Biologique, Centre Hospitalier Intercommunal, Creteil, France
| | | | | | | | - Abdel Aissat
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Laurence Caeymaex
- Soins Intensifs Néonataux, Centre Hospitalier Intercommunal, Creteil, France
| | - Muriel Lizé
- Molecular and Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Goettingen, Germany
| | - Jeanne Tran Van Nhieu
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Pathologie, Hôpital Henri Mondor, AP-HP, Hôpital Henri Mondor, Creteil, France
| | - Camille Jung
- Centre de Recherche Clinique, Centre de Ressource Biologique, Centre Hospitalier Intercommunal, Creteil, France
| | - Robert Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marcio Do Cruzeiro
- INSERM U1016, Institut Cochin, Paris, France.,UMR 8104, Centre National de la Recherche Scientifique, Paris, France.,Université Paris Descartes, Sorbonne, Paris, France
| | - Serge Adnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Physiologie, Hôpital Henri Mondor, AP-HP, Creteil, France; and
| | - Ralph Epaud
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Pédiatrie, Centre des Maladies Respiratoire Rares, Centre Hospitalier Intercommunal, Creteil, France
| | - François Chabot
- Service de Pneumologie, Centre Hospitalier Universitaire, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | - Laurent Boyer
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,Service de Physiologie, Hôpital Henri Mondor, AP-HP, Creteil, France; and
| |
Collapse
|
20
|
Gong J, Feng Z, Peterson AL, Carr JF, Vang A, Braza J, Choudhary G, Dennery PA, Yao H. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol 2020; 252:411-422. [PMID: 32815166 DOI: 10.1002/path.5534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-β inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, PR China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
21
|
Yadav A, Rana U, Michalkiewicz T, Teng R, Konduri GG. Decreased AMP-activated protein kinase (AMPK) function and protective effect of metformin in neonatal rat pups exposed to hyperoxia lung injury. Physiol Rep 2020; 8:e14587. [PMID: 32959498 PMCID: PMC7507093 DOI: 10.14814/phy2.14587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023] Open
Abstract
We investigated the hypothesis that exposure of lungs at the saccular stage of development to hyperoxia leads to persistent growth arrest and dysfunction of 5'AMP-activated protein kinase (AMPK), a key energy sensor in the cell. We exposed neonatal rat pups from postnatal day 1- day 10 (P1-P10) to ≥90% oxygen or control normoxia. Pups were euthanized at P4 or P10 or recovered in normoxia until euthanasia at P21. Half of the pups in each group received AMPK activator, metformin, or saline intraperitoneally from P1 to P10. Lung histology, morphometric analysis, immunofluorescence, and immunoblots were done for changes in lung structure at P10 and P21 and AMPK function at P4, P10, and P21. Phosphorylation of AMPK (p-AMPK) was decreased in lungs at P10 and P21 in hyperoxia-exposed pups. Metformin increased the levels of p-AMPK and PGC-1α, a downstream AMPK target which regulates mitochondrial biogenesis, at P4, P10, and P21 in hyperoxia pups. Lung ATP levels decreased during hyperoxia and were increased by metformin at P10 and P21. Radial alveolar count and alveolar septal tips were decreased and mean linear intercept increased in hyperoxia-exposed pups at P10 and the changes persisted at P21; these were improved by metformin. Lung capillary number was decreased in hyperoxia-exposed pups at P10 and P21 and was restored by metformin. Hyperoxia leads to impaired AMPK function, energy balance and alveolar simplification. The AMPK activator, metformin improves AMPK function and alveolar and vascular growth in this rat pup model of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Abha Yadav
- Neonatology DivisionUniversity of Pittsburgh Medical Center Pinnacle HospitalHarrisburgPAUSA
| | - Ujala Rana
- Department of PediatricsMedical College of Wisconsin and Children's Research InstituteChildren's WisconsinMilwaukeeWIUSA
| | - Teresa Michalkiewicz
- Department of PediatricsMedical College of Wisconsin and Children's Research InstituteChildren's WisconsinMilwaukeeWIUSA
| | - Ru‐Jeng Teng
- Department of PediatricsMedical College of Wisconsin and Children's Research InstituteChildren's WisconsinMilwaukeeWIUSA
| | - Girija G. Konduri
- Department of PediatricsMedical College of Wisconsin and Children's Research InstituteChildren's WisconsinMilwaukeeWIUSA
| |
Collapse
|
22
|
Gelfand CA, Sakurai R, Wang Y, Liu Y, Segal R, Rehan VK. Inhaled vitamin A is more effective than intramuscular dosing in mitigating hyperoxia-induced lung injury in a neonatal rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2020; 319:L576-L584. [PMID: 32755324 DOI: 10.1152/ajplung.00266.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prevention of bronchopulmonary dysplasia (BPD) in premature-birth babies continues to be an unmet medical need. Intramuscular vitamin A is currently employed in preterm neonates to prevent BPD but requires intramuscular injections in fragile neonates. We hypothesized that noninvasive inhaled delivery of vitamin A, targeted to lung, would be a more effective and tolerable strategy. We employed our well-established hyperoxia-injury neonatal rat model, exposing newborn rats to 7 days of constant extreme (95% O2) hyperoxia, comparing vitamin A dosed every 48 h via either aerosol inhalation or intramuscular injection with normoxic untreated healthy animals and vehicle-inhalation hyperoxia groups as positive and negative controls, respectively. Separately, similar vitamin A dosing of normoxia-dwelling animals was performed. Analyses after day 7 included characterization of alveolar histomorphology and protein biomarkers of alveolar maturation [surfactant protein C (SP-C), peroxisome proliferator-activated receptor (PPAR) γ, cholinephosphate cytidylyl transferase, vascular endothelial growth factor and its receptor, FLK-1, and retinoid X receptors (RXR-α, -β, and -γ], apoptosis (Bcl2 and Bax) key injury repair pathway data including protein markers (ALK-5 and β-catenin) and neutrophil infiltration, and serum vitamin A levels. Compared with intramuscular dosing, inhaled vitamin A significantly enhanced biomarkers of alveolar maturation, mitigated hyperoxia-induced lung damage, and enhanced surfactant protein levels, suggesting that it may be more efficacious in preventing BPD in extremely premature infants than the traditionally used IM dosing regimen. We speculate lung-targeted inhaled vitamin A may also be an effective therapy against other lung damaging conditions leading to BPD or, more generally, to acute lung injury.
Collapse
Affiliation(s)
| | - Reiko Sakurai
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, Torrance, California
| | - Ying Wang
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, Torrance, California
| | - Yitian Liu
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, Torrance, California
| | - Robert Segal
- Advent Therapeutics, Inc., Doylestown, Pennsylvania
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, Torrance, California
| |
Collapse
|
23
|
Paturi B, Ryan RM, Nielsen L, Wang H, Kumar VHS. Effects of antioxidant MnTBAP on angiogenesis in newborn mice with hyperoxic lung injury. J Neonatal Perinatal Med 2020; 14:53-60. [PMID: 32804105 DOI: 10.3233/npm-200483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxygen toxicity mediated by reactive oxygen species (ROS) plays an essential role in the development of bronchopulmonary dysplasia in premature infants. By reducing oxidative stress, antioxidants protect the immature lung. We studied the effects of MnTBAP, a catalytic antioxidant on angiogenesis and alveolar growth following neonatal hyperoxia. METHODS Newborn mouse litters randomized to room air (RA) or >95% O2 for 72 hours from day 4 (D4) to D7 to receive either MnTBAP (10 mg/kg/d) or saline intraperitoneally (every 24 h for three doses). Lungs harvested for angiogenic gene expression, protein expression, and histopathology post-hyperoxia exposure. Radial alveolar count (RAC), mean linear intercept (MLI) and vessel density assessed by histopathology. RESULTS Angiogenic gene expression was significantly lower in the hyperoxia group compared to the RA group. The protein expression for VEGF and its receptor, VEGFR1, was significantly lower following treatment with MnTBAP compared to hyperoxia alone. Expression of VEGFR2, Angiopoietin-1 and TIE2, were substantially higher in the RA groups compared to hyperoxia groups with or without MnTBAP. Hyperoxia groups demonstrated alveolar simplification. MnTBAP reduced vessel density and failed to improve alveolar growth following hyperoxia. CONCLUSIONS MnTBAP, a catalytic antioxidant, does not offer protection from hyperoxia-induced alveolar impairment. The lack of angiogenic upregulation by MnTBAP may contribute to alveolar simplification in newborn mice.
Collapse
Affiliation(s)
- B Paturi
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R M Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - L Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - H Wang
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - V H S Kumar
- Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
24
|
Signaling Pathways Involved in the Development of Bronchopulmonary Dysplasia and Pulmonary Hypertension. CHILDREN-BASEL 2020; 7:children7080100. [PMID: 32824651 PMCID: PMC7465273 DOI: 10.3390/children7080100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
The alveolar and vascular developmental arrest in the premature infants poses a major problem in the management of these infants. Although, with the current management, the survival rate has improved in these infants, but bronchopulmonary dysplasia (BPD) is a serious complication associated with a high mortality rate. During the neonatal developmental period, these infants are vulnerable to stress. Hypoxia, hyperoxia, and ventilation injury lead to oxidative and inflammatory stress, which induce further damage in the lung alveoli and vasculature. Development of pulmonary hypertension (PH) in infants with BPD worsens the prognosis. Despite considerable progress in the management of premature infants, therapy to prevent BPD is not yet available. Animal experiments have shown deregulation of multiple signaling factors such as transforming growth factorβ (TGFβ), connective tissue growth factor (CTGF), fibroblast growth factor 10 (FGF10), vascular endothelial growth factor (VEGF), caveolin-1, wingless & Int-1 (WNT)/β-catenin, and elastin in the pathogenesis of BPD. This article reviews the signaling pathways entailed in the pathogenesis of BPD associated with PH and the possible management.
Collapse
|
25
|
Addis DR, Molyvdas A, Ambalavanan N, Matalon S, Jilling T. Halogen exposure injury in the developing lung. Ann N Y Acad Sci 2020; 1480:30-43. [PMID: 32738176 DOI: 10.1111/nyas.14445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Owing to a high-volume industrial usage of the halogens chlorine (Cl2 ) and bromine (Br2 ), they are stored and transported in abundance, creating a risk for accidental or malicious release to human populations. Despite extensive efforts to understand the mechanisms of toxicity upon halogen exposure and to develop specific treatments that could be used to treat exposed individuals or large populations, until recently, there has been little to no effort to determine whether there are specific features and or the mechanisms of halogen exposure injury in newborns or children. We established a model of neonatal halogen exposure and published our initial findings. In this review, we aim to contrast and compare the findings in neonatal mice exposed to Br2 with the findings published on adult mice exposed to Br2 and the neonatal murine models of bronchopulmonary dysplasia. Despite remarkable similarities across these models in overall alveolar architecture, there are distinct functional and apparent mechanistic differences that are characteristic of each model. Understanding the mechanistic and functional features that are characteristic of the injury process in neonatal mice exposed to halogens will allow us to develop countermeasures that are appropriate for, and effective in, this unique population.
Collapse
Affiliation(s)
- Dylan R Addis
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,UAB Comprehensive Cardiovascular Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Division of Molecular and Translational Biomedicine, Pulmonary Injury and Repair Center, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,Department of Pediatrics, the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
26
|
WNT5a-ROR Signaling Is Essential for Alveologenesis. Cells 2020; 9:cells9020384. [PMID: 32046118 PMCID: PMC7072327 DOI: 10.3390/cells9020384] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
WNT5a is a mainly “non-canonical” WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. Germline deletion of Wnt5a disrupts embryonic lung development. However, the temporal-specific function of WNT5a remains unknown. In this study, we generated a conditional loss-of-function mouse model (Wnt5aCAG) and examined the specific role of Wnt5a during the saccular and alveolar phases of lung development. The lack of Wnt5a in the saccular phase blocked distal airway expansion and attenuated differentiation of endothelial and alveolar epithelial type I (AT1) cells and myofibroblasts. Postnatal Wnt5a inactivation disrupted alveologenesis, producing a phenotype resembling human bronchopulmonary dysplasia (BPD). Mutant lungs showed hypoalveolization, but endothelial and epithelial differentiation was unaffected. The major impact of Wnt5a inactivation on alveologenesis was on myofibroblast differentiation and migration, with reduced expression of key regulatory genes. These findings were validated in vitro using isolated lung fibroblasts. Conditional inactivation of the WNT5a receptors Ror1 and Ror2 in alveolar myofibroblasts recapitulated the Wnt5aCAG phenotype, demonstrating that myofibroblast defects are the major cause of arrested alveologenesis in Wnt5aCAG lungs. Finally, we show that WNT5a is reduced in human BPD lung samples, indicating the clinical relevance and potential role for WNT5a in pathogenesis of BPD.
Collapse
|
27
|
Li C, Lee MK, Gao F, Webster S, Di H, Duan J, Yang CY, Bhopal N, Peinado N, Pryhuber G, Smith SM, Borok Z, Bellusci S, Minoo P. Secondary crest myofibroblast PDGFRα controls the elastogenesis pathway via a secondary tier of signaling networks during alveologenesis. Development 2019; 146:dev.176354. [PMID: 31331942 PMCID: PMC6703710 DOI: 10.1242/dev.176354] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Abstract
Postnatal alveolar formation is the most important and the least understood phase of lung development. Alveolar pathologies are prominent in neonatal and adult lung diseases. The mechanisms of alveologenesis remain largely unknown. We inactivated Pdgfra postnatally in secondary crest myofibroblasts (SCMF), a subpopulation of lung mesenchymal cells. Lack of Pdgfra arrested alveologenesis akin to bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. The transcriptome of mutant SCMF revealed 1808 altered genes encoding transcription factors, signaling and extracellular matrix molecules. Elastin mRNA was reduced, and its distribution was abnormal. Absence of Pdgfra disrupted expression of elastogenic genes, including members of the Lox, Fbn and Fbln families. Expression of EGF family members increased when Tgfb1 was repressed in mouse. Similar, but not identical, results were found in human BPD lung samples. In vitro, blocking PDGF signaling decreased elastogenic gene expression associated with increased Egf and decreased Tgfb family mRNAs. The effect was reversible by inhibiting EGF or activating TGFβ signaling. These observations demonstrate the previously unappreciated postnatal role of PDGFA/PDGFRα in controlling elastogenic gene expression via a secondary tier of signaling networks composed of EGF and TGFβ.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Matt K Lee
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Feng Gao
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Sha Webster
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Helen Di
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jiang Duan
- Department of Pediatrics, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chang-Yo Yang
- Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Navin Bhopal
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Neil Peinado
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Susan M Smith
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Saverio Bellusci
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA.,Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), 35392, Giessen, Germany
| | - Parviz Minoo
- Department of Pediatrics, Division of Newborn Medicine, University of Southern California and Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| |
Collapse
|
28
|
Lu X, Gong J, Dennery PA, Yao H. Endothelial-to-mesenchymal transition: Pathogenesis and therapeutic targets for chronic pulmonary and vascular diseases. Biochem Pharmacol 2019; 168:100-107. [PMID: 31251941 DOI: 10.1016/j.bcp.2019.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is a process of transdifferentiation where endothelial cells gradually adopt the phenotypic characteristics of mesenchymal cells. This phenomenon was first discovered in embryonic heart development. The mechanisms underlying EndoMT are due to the activation of transforming growth factor-β, bone morphogenetic protein, Wingless/Integrated, or Notch signaling pathways. The EndoMT can be modulated by pathological processes, including inflammation, disturbed shear stress, vascular stiffness, and metabolic dysregulation. Recent studies have shown that EndoMT is implicated in the pathogenesis of chronic lung diseases, including pulmonary hypertension and lung fibrosis. Lung pathology of bronchopulmonary dysplasia can be mimicked in rodents exposed to hyperoxia as neonates. Although hyperoxic exposure reduces an endothelial cell marker platelet and endothelial cell adhesion molecule but increases a mesenchymal cell biomarker α-smooth muscle actin in vitro in human pulmonary endothelial cells, there is no direct evidence showing EndoMT in the development of bronchopulmonary dysplasia. Both pulmonary hypertension and lung fibrosis occur in long-term survivors with bronchopulmonary dysplasia. In this review, we discuss the EndoMT and its modulation by pathological processes. We then focus on the role of EndoMT in the pathogenesis of these chronic lung diseases, and discuss therapeutic approaches targeting the EndoMT using its negative regulators.
Collapse
Affiliation(s)
- Xuexin Lu
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Respiratory and Critical Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States.
| |
Collapse
|
29
|
Lecarpentier Y, Gourrier E, Gobert V, Vallée A. Bronchopulmonary Dysplasia: Crosstalk Between PPARγ, WNT/β-Catenin and TGF-β Pathways; The Potential Therapeutic Role of PPARγ Agonists. Front Pediatr 2019; 7:176. [PMID: 31131268 PMCID: PMC6509750 DOI: 10.3389/fped.2019.00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a serious pulmonary disease which occurs in preterm infants. Mortality remains high due to a lack of effective treatment, despite significant progress in neonatal resuscitation. In BPD, a persistently high level of canonical WNT/β-catenin pathway activity at the canalicular stage disturbs the pulmonary maturation at the saccular and alveolar stages. The excessive thickness of the alveolar wall impairs the normal diffusion of oxygen and carbon dioxide, leading to hypoxia. Transforming growth factor (TGF-β) up-regulates canonical WNT signaling and inhibits the peroxysome proliferator activated receptor gamma (PPARγ). This profile is observed in BPD, especially in animal models. Following a premature birth, hypoxia activates the canonical WNT/TGF-β axis at the expense of PPARγ. This gives rise to the differentiation of fibroblasts into myofibroblasts, which can lead to pulmonary fibrosis that impairs the respiratory function after birth, during childhood and even adulthood. Potential therapeutic treatment could target the inhibition of the canonical WNT/TGF-β pathway and the stimulation of PPARγ activity, in particular by the administration of nebulized PPARγ agonists.
Collapse
Affiliation(s)
- Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Elizabeth Gourrier
- Service de néonatologie, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Vincent Gobert
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hôtel-Dieu Hospital, AP-HP Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
30
|
Pasha AB, Chen XQ, Zhou GP. Bronchopulmonary dysplasia: Pathogenesis and treatment. Exp Ther Med 2018; 16:4315-4321. [PMID: 30542380 PMCID: PMC6257511 DOI: 10.3892/etm.2018.6780] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease of infancy, which mostly affects premature infants with significant morbidity and mortality. Premature infants who require to be treated for conditions including respiratory distress syndrome have a higher risk of developing BPD. In spite of the improvement in clinical methods, the incidence of BPD has not reduced. In the present review, the pathogenesis of BPD is described along with the treatments available at present and the role of nursing in the management of BPD. Emerging preventive therapies for BPD are also discussed, including the use of recombinant human superoxide dismutase, which has been proven effective in reducing respiratory injury and its long-term effects.
Collapse
Affiliation(s)
- Asfia Banu Pasha
- Department of Pediatrics, The First Affiliated Hospital, School of International Education, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital, School of International Education, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital, School of International Education, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
Abstract
Over 50 years after its first description, Bronchopulmonary Dysplasia (BPD) remains a devastating pulmonary complication in preterm infants with respiratory failure and develops in 30-50% of infants less than 1000-gram birth weight. It is thought to involve ventilator- and oxygen-induced damage to an immature lung that results in an inflammatory response and ends in aberrant lung development with dysregulated angiogenesis and alveolarization. Significant morbidity and mortality are associated with this most common chronic lung disease of childhood. Thus, any therapies that decrease the incidence or severity of this condition would have significant impact on morbidity, mortality, human costs, and healthcare expenditure. It is clear that an inflammatory response and the elaboration of growth factors and cytokines are associated with the development of BPD. Numerous approaches to control the inflammatory process leading to the development of BPD have been attempted. This review will examine the anti-inflammatory approaches that are established or hold promise for the prevention or treatment of BPD.
Collapse
Affiliation(s)
- Rashmin C Savani
- Center for Pulmonary & Vascular Biology, Division of Neonatal-Perinatal Medicine, The Department of Pediatrics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
32
|
Du L, Roberts JD. Transforming growth factor-β downregulates sGC subunit expression in pulmonary artery smooth muscle cells via MEK and ERK signaling. Am J Physiol Lung Cell Mol Physiol 2018; 316:L20-L34. [PMID: 30260287 DOI: 10.1152/ajplung.00319.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TGFβ activation during newborn lung injury decreases the expression of pulmonary artery smooth muscle cell (PASMC)-soluble guanylate cyclase (sGC), a critical mediator of nitric oxide signaling. Using a rat PASMC line (CS54 cells), we determined how TGFβ downregulates sGC expression. We found that TGFβ decreases sGC expression through stimulating its type I receptor; TGFβ type I receptor (TGFβR1) inhibitors prevented TGFβ-1-mediated decrease in sGCα1 subunit mRNA levels in the cells. However, TGFβR1-Smad mechanisms do not regulate sGC; effective knockdown of Smad2 and Smad3 expression and function did not protect sGCα1 mRNA levels during TGFβ-1 exposure. A targeted small-molecule kinase inhibitor screen suggested that MEK signaling regulates sGC expression in TGFβ-stimulated PASMC. TGFβ activates PASMC MEK/ERK signaling; CS54 cell treatment with TGFβ-1 increased MEK and ERK phosphorylation in a biphasic, time- and dose-dependent manner. Moreover, MEK/ERK activity appears to be required for TGFβ-mediated sGC expression inhibition in PASMC; MEK and ERK inhibitors protected sGCα1 mRNA expression in TGFβ-1-treated CS54 cells. Nuclear ERK activity is sufficient for sGC regulation; heterologous expression of a nucleus-retained, constitutively active ERK2-MEK1 fusion protein decreased CS54 cell sGCα1 mRNA levels. The in vivo relevance of this TGFβ-MEK/ERK-sGC downregulation pathway is suggested by the detection of ERK activation and sGCα1 protein expression downregulation in TGFβ-associated mouse pup hyperoxic lung injury, and the determination that ERK decreases sGCα1 protein expression in TGFβ-1-treated primary PASMC obtained from mouse pups. These studies identify MEK/ERK signaling as an important pathway by which TGFβ regulates sGC expression in PASMC.
Collapse
Affiliation(s)
- Lili Du
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School, Cambridge, Massachusetts
| | - Jesse D Roberts
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital , Boston, Massachusetts.,Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital , Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital , Boston, Massachusetts.,Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
33
|
Lipoxin A 4 Attenuates Bronchopulmonary Dysplasia via Upregulation of Let-7c and Downregulation of TGF-β 1 Signaling Pathway. Inflammation 2018; 40:2094-2108. [PMID: 28819748 DOI: 10.1007/s10753-017-0649-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transforming growth factor-β (TGF-β) superfamily members are key regulators for lung development and progress of bronchopulmonary dysplasia (BPD). The mechanisms by which lipoxin A4 (LXA4) attenuates development of BPD have not been clarified. Neonatal murine BPD models were inducted by hyperoxia treatment. Neonatal mice were exposed to room air or 85% O2 hyperoxia with or without treatment with 5S,6R-methyl-LXA4 or anti-TGF-β antibodies. Mouse lung epithelial cells (MLE-12 cells) and mouse embryonic fibroblasts (NIH/3T3 cells) were cultured in room air or 85% O2 followed by treatment of LXA4, anti-TGF-β antibodies, and let-7c mimic/anti-microRNA transfections. Treatment with 5S,6R-methyl-LXA4 and anti-TGF-β antibodies both attenuated the mice alveolar simplification induced by hyperoxia. Hyperoxia treatment significantly altered pulmonary basal mRNA and protein expressions of several important extracellular matrix (ECM) and ECM remodeling proteins including fibronectin, α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase-1 (TIMP-1), elastin, tenascin C, collagen I, and matrix metalloproteinase-1 (MMP-1). 5S,6R-methyl-LXA4 and anti-TGF-β antibodies suppressed the mRNA and protein expressions of TGF-β1 and TGF-βR1 but not TGF-βR2 in the lungs exposed to hyperoxia. Treatment with LXA4 and anti-TGF-β antibodies alleviated hyperoxia-induced injury of the NIH/3T3 cells identified by morphologic observation and flow cytometry, and expressions of ECM, ECM remodeling proteins, and TGF-β1 signaling pathway, but reversed by transfection with let-7c anti-miRNA. LXA4 upregulated the let-7c expression in MLE-12 cells, transfection with let-7c anti-miRNA, inhibited the LXA4-induced let-7c expression in MLE-12 cells exposed to hyperoxia and reduced the relative luciferase activity of let-7c binding with let-7c binding sites of the TGF-βR1 3' UTR. Treatment with 5S,6R-methyl-LXA4 and anti-TGF-β antibodies significantly improved histology, ECM, and ECM remodeling proteins in the lungs isolated from the murine BPD model induced by hyperoxia. The LXA4-imparted protective effects on hyperoxia-induced lung injury are mediated by upregulation of let-7c and inhibition of TGF-β1 and subsequent downregulation of TGF-β1 signaling pathway.
Collapse
|
34
|
Abstract
The common relationships among a great variety of biological phenomena seem enigmatic when considered solely at the level of the phenotype. The deep connections in physiology, for example, between the effects of maternal food restriction in utero and the subsequent incidence of metabolic syndrome in offspring, the effects of microgravity on cell polarity and reproduction in yeast, stress effects on jellyfish, and their endless longevity, or the relationship between nutrient abundance and the colonial form in slime molds, are not apparent by phenotypic observation. Yet all of these phenomena are ultimately determined by the Target of Rapamycin (TOR) gene and its associated signaling complexes. In the same manner, the unfolding of evolutionary physiology can be explained by a comparable application of the common principle of cell-cell signaling extending across complex developmental and phylogenetic traits. It is asserted that a critical set of physiologic and phenotypic adaptations emanated from a few crucial, ancestral receptor gene duplications that enabled the successful terrestrial transition of vertebrates from water to land. In combination, mTor and its cognate receptors and a few crucial genetic duplications provide a mechanistic common denominator across a diverse spectrum of biological responses. The proper understanding of their purpose yields a unified concept of physiology and its evolutionary development. © 2018 American Physiological Society. Compr Physiol 8:761-771, 2018.
Collapse
Affiliation(s)
- John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | | |
Collapse
|
35
|
Sun Y, Fu J, Xue X, Yang H, Wu L. BMP7 regulates lung fibroblast proliferation in newborn rats with bronchopulmonary dysplasia. Mol Med Rep 2018; 17:6277-6284. [PMID: 29512787 PMCID: PMC5928605 DOI: 10.3892/mmr.2018.8692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the expression of bone morphogenetic protein (BMP) 7 in a newborn rat model of bronchopulmonary dysplasia (BPD) and the biological effects of BMP7 on newborn rat lung fibroblast (LF) cells. For this purpose, a total of 196 newborn rats were randomly and equally assigned to a model group and a control group. Lung tissue was collected at days 3, 7, 14 and 21 for histological analysis. The location and expression of BMP7 was examined by immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. A total of 38 full‑term newborn rats on the day of birth were sacrificed and LF cells were isolated and treated with BMP7. The biological effects of BMP7 on LF cells were assessed by cell proliferation and cell cycle analysis. The findings demonstrated that abnormal alveolar development due to BPD was gradually intensified in the model group over time. Immunohistochemical staining revealed that the location of BMP7 in lung tissue was altered. Immunohistochemistry and RT‑qPCR assays demonstrated a gradual decrease in BMP7 expression in the model group induced by hyperoxia. MTT assays demonstrated that BMP7 inhibited LF cells and the inhibitory effect was dose‑dependent and time‑dependent. Flow cytometry revealed that the inhibitory effect of BMP7 in LF cells was causing cell cycle arrest at the G1 phase. The present study demonstrated that BMP7 may serve an important role in alveolar development in a BPD model. BMP7 may be involved in abnormal alveolar development through the regulation of LF proliferation.
Collapse
Affiliation(s)
- Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Linlin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
36
|
Sakurai R, Lee C, Shen H, Waring AJ, Walther FJ, Rehan VK. A Combination of the Aerosolized PPAR-γ Agonist Pioglitazone and a Synthetic Surfactant Protein B Peptide Mimic Prevents Hyperoxia-Induced Neonatal Lung Injury in Rats. Neonatology 2018; 113:296-304. [PMID: 29428947 PMCID: PMC5980711 DOI: 10.1159/000486188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/09/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite improvements in perinatal care, bronchopulmonary dysplasia (BPD) in extremely premature infants has not decreased. Postnatal surfactant therapy provides symptomatic relief from respiratory distress syndrome, but does not translate into a reduction in BPD. Therefore, the search for effective interventions to prevent BPD continues. OBJECTIVES Since PPAR-γ agonists have been demonstrated to promote neonatal lung maturation and injury repair, we hypothesized that a formulation of a PPAR-γ agonist, pioglitazone (PGZ) and a synthetic lung surfactant (a surfactant protein B peptide mimic, B-YL) combined would stimulate lung maturation and block hyperoxia-induced neonatal lung injury more effectively than either modality alone. METHODS One-day-old Sprague-Dawley rat pups were administered PGZ + B-YL via nebulization every 24 h for up to 72 h. The pups were exposed to either 21 or 95% O2, and then sacrificed. Their lungs were examined for markers of lung maturation (levels of PPAR-γ, SP-C and choline-phosphate cytidylyltransferase [CCT-α] and [3H]triolein uptake) and injury repair (bronchoalveolar lavage cell count and protein content, and levels of LEF-1, fibronectin, ALK5, and β-catenin) by Western blot analysis. RESULTS Markers of alveolar epithelial/mesenchymal maturation (PPAR-γ, SP-C, CCT-α, and triolein uptake) increased significantly in the PGZ + B-YL group, more than with either drug alone. Similarly, markers of hyperoxia-induced lung injury were blocked effectively with PGZ + B-YL treatment. CONCLUSIONS Nebulized PPAR-γ agonist PGZ with a synthetic lung surfactant accelerates lung maturation and prevents neonatal hyperoxia-induced lung injury more than either modality alone, with the potential to provide more effective prevention of BPD.
Collapse
Affiliation(s)
- Reiko Sakurai
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Cindy Lee
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Humphrey Shen
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Alan J Waring
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Frans J Walther
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Virender K Rehan
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Torrance, California, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
37
|
Schmid A, Sailland J, Novak L, Baumlin N, Fregien N, Salathe M. Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways. FEBS Lett 2017; 591:3493-3506. [PMID: 28921507 PMCID: PMC5683904 DOI: 10.1002/1873-3468.12851] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Wnt signaling is essential for the differentiation of airway epithelial cells during development. Here, we examined the role of Wnt signaling during redifferentiation of ciliated airway epithelial cells in vitro at the air liquid interface as a model of airway epithelial repair. Phases of proliferation and differentiation were defined. Markers of squamous metaplasia and epithelial ciliation were followed while enhancing β‐catenin signaling by blocking glycogen synthase kinase 3β with SB216763 and shRNA as well as inhibiting canonical WNT signaling with apical application of Dickkopf 1 (Dkk1). Our findings indicate that enhanced β‐catenin signaling decreases the number of ciliated cells and causes squamous changes in the epithelium, whereas treatment with DDk1 leads to an increased number of ciliated cells.
Collapse
Affiliation(s)
- Andreas Schmid
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Juliette Sailland
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Lisa Novak
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| | - Nevis Fregien
- Department of Cell Biology, University of Miami School of Medicine, FL, USA
| | - Matthias Salathe
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami School of Medicine, FL, USA
| |
Collapse
|
38
|
Balancing anti-inflammatory and anti-oxidant responses in murine bone marrow derived macrophages. PLoS One 2017; 12:e0184469. [PMID: 28886148 PMCID: PMC5590945 DOI: 10.1371/journal.pone.0184469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/24/2017] [Indexed: 11/29/2022] Open
Abstract
Rationale The underlying pathophysiology of bronchopulmonary dysplasia includes a macrophage-mediated host response orchestrated by anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARγ) and anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf2). These have not yet been studied in combination. This study tested the hypothesis that combined inflammatory and oxidative stressors would interact and change PPARγ- and Nrf2-regulated gene expression and antioxidant capacity. Therefore, we investigated the effect of dual stimulation with lipopolysaccharide and hyperoxia in murine bone marrow-derived macrophages (BMDM). Methods Sub-confluent BMDM from wild-type C57BL/6J mice were treated with lipopolysaccharide (LPS) 1ug/mL for 2 hours followed by room air (21% oxygen) or hyperoxia (95% oxygen) for 24 hours. Taqman real time-polymerase chain reaction gene expression assays, total antioxidant capacity assays, and Luminex assays were performed. Results Supernatants of cultured BMDM contained significant antioxidant capacity. In room air, LPS treatment decreased expression of PPARγ and Nrf2, and increased expression of tumor necrosis factor-alpha and heme oxygenase-1; similar findings were observed under hyperoxic conditions. LPS treatment decreased cellular total antioxidant capacity in room air but not in hyperoxia. Increased expression of sulfiredoxin-1 in response to hyperoxia was not observed in LPS-treated cells. Dual stimulation with LPS treatment and exposure to hyperoxia did not have synergistic effects on gene expression. Cellular total antioxidant capacity was not changed by hyperoxia exposure. Conclusions Our hypothesis was supported and we demonstrate an interaction between inflammatory and oxidative stressors in a model system of bronchopulmonary dysplasia pathogenesis. The protective anti-oxidant effect of cell culture media may have protected the cells from the most deleterious effects of hyperoxia.
Collapse
|
39
|
Lakshmi SP, Reddy AT, Reddy RC. Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements. Biochem J 2017; 474:1531-1546. [PMID: 28100650 PMCID: PMC5544130 DOI: 10.1042/bcj20160943] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/26/2022]
Abstract
Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ down-regulation is prominent in fibrosis and mediated, via previously unknown SMAD-signaling mechanisms. Here, we show that TGF-β induces the association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive co-repressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated the partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity.
Collapse
Affiliation(s)
- Sowmya P Lakshmi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, U.S.A
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, U.S.A
| | - Aravind T Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, U.S.A
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, U.S.A
| | - Raju C Reddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, U.S.A.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, U.S.A
| |
Collapse
|
40
|
Ota C, Baarsma HA, Wagner DE, Hilgendorff A, Königshoff M. Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling. Mol Cell Pediatr 2016; 3:34. [PMID: 27718180 PMCID: PMC5055515 DOI: 10.1186/s40348-016-0062-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the most common chronic lung diseases in infants caused by pre- and/or postnatal lung injury. BPD is characterized by arrested alveolarization and vascularization due to extracellular matrix remodeling, inflammation, and impaired growth factor signaling. WNT signaling is a critical pathway for normal lung development, and its altered signaling has been shown to be involved in the onset and progression of incurable chronic lung diseases in adulthood, such as chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). In this review, we summarize the impact of WNT signaling on different stages of lung development and its potential contribution to developmental lung diseases, especially BPD, and chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Chiharu Ota
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany.
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| | - Darcy E Wagner
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany.,The Perinatal Center, Campus Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
41
|
Jin M, Lee J, Lee KY, Jin Z, Pak JH, Kim HS. Alteration of TGF-β-ALK-Smad signaling in hyperoxia-induced bronchopulmonary dysplasia model of newborn rats. Exp Lung Res 2016; 42:354-364. [PMID: 27618520 DOI: 10.1080/01902148.2016.1226448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a main chronic lung disease commonly occurs in preterm infants. BPD is characterized by impaired alveolarization and vascularization of the developing lung. Transforming growth factor-β (TGF-β) signaling pathway is known to play an important role during lung vascular development. In the present study, we examined whether the regulation of TGF-β-ALK-Smad signaling pathway influence on the disruption of pulmonary vascular development in newborn rats as hyperoxia-induced BPD model. MATERIALS AND METHODS Newborn rats were continuously exposed to 21% or 85% O2 for 7 days, and subsequently kept in normoxic condition for another 14 days. Lung tissues harvested at each time point were evaluated for the expression of TGF-β1, ALK1, ALK5, phosphorylated Smad1/5, phosphorylated Smad2/3, VEGF, and endoglin, as accessed by both biochemical and immunohistological analyses. RESULTS Double-fluorescence immunohistochemical staining indicated these molecules were mainly expressed in pulmonary endothelial cells. The expression of TGF-β1 and ALK5 mRNA and protein were significantly increased in D5 hyperoxia group, while that of ALK1 mRNA and protein were significantly decreased. The level of phosphorylated Smad1/5 was significantly decreased in D7 hyperoxia group, whereas that of phosphorylated Smad2/3 was oppositely increased. In addition, the expression of vascular endothelial growth factor (VEGF) mRNA was increased at D1 with subsequent decrease in D7 hyperoxia group. There was no significantly difference in endoglin expression in entire experimental period. CONCLUSION These results indicate that exposure to hyperoxia altered the balance between TGF-β-ALK1-Smad1/5 and TGF-β-ALK5-Smad2/3 pathways in pulmonary endothelial cells, which may ultimately lead to the development of BPD.
Collapse
Affiliation(s)
- Meihua Jin
- a Department of Pediatrics , Yanbian University Hospital , Yanji , Jilin Province , China
| | - Juyoung Lee
- b Department of Pediatrics , Inha University College of Medicine , Incheon , Korea
| | - Kyung-Yup Lee
- c Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| | - Zhengyong Jin
- a Department of Pediatrics , Yanbian University Hospital , Yanji , Jilin Province , China
| | - Jhang Ho Pak
- d Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul , Korea
| | - Han-Suk Kim
- c Department of Pediatrics , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
42
|
Lacy SH, Woeller CF, Thatcher TH, Maddipati KR, Honn KV, Sime PJ, Phipps RP. Human lung fibroblasts produce proresolving peroxisome proliferator-activated receptor-γ ligands in a cyclooxygenase-2-dependent manner. Am J Physiol Lung Cell Mol Physiol 2016; 311:L855-L867. [PMID: 27612965 DOI: 10.1152/ajplung.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shannon H Lacy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Collynn F Woeller
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Thomas H Thatcher
- Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Krishna Rao Maddipati
- Lipidomics Core Facility, Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan; and
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, Michigan
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; .,Division of Pulmonary Diseases and Critical Care, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.,Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
43
|
Inhibition of β-catenin signaling protects against CTGF-induced alveolar and vascular pathology in neonatal mouse lung. Pediatr Res 2016; 80:136-44. [PMID: 26991260 DOI: 10.1038/pr.2016.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common and serious chronic lung disease of premature infants. Connective tissue growth factor (CTGF) plays an important role in tissue development and remodeling. We have previously shown that targeted overexpression of CTGF in alveolar type II epithelial cells results in BPD-like pathology and activates β-catenin in neonatal mice. METHODS Utilizing this transgenic mouse model and ICG001, a specific pharmacological inhibitor of β-catenin, we tested the hypothesis that β-catenin signaling mediates the effects of CTGF in the neonatal lung. Newborn CTGF mice and control littermates received ICG001 (10 mg/kg/dose) or placebo (dimethyl sulfoxide, equal volume) by daily i.p. injection from postnatal day 5 to 15. Alveolarization, vascular development, and pulmonary hypertension (PH) were analyzed. RESULTS Administration of ICG001 significantly downregulated expression of cyclin D1, collagen 1a1, and fibronectin, which are the known target genes of β-catenin signaling in CTGF lungs. Inhibition of β-catenin signaling improved alveolar and vascular development and decreased pulmonary vascular remodeling. More importantly, the improved vascular development and vascular remodeling led to a decrease in PH. CONCLUSION β-Catenin signaling mediates the autocrine and paracrine effects of CTGF in the neonatal lung. Inhibition of CTGF-β-catenin signaling may provide a novel therapy for BPD.
Collapse
|
44
|
Challenges, priorities and novel therapies for hypoxemic respiratory failure and pulmonary hypertension in the neonate. J Perinatol 2016; 36 Suppl 2:S32-6. [PMID: 27225964 DOI: 10.1038/jp.2016.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/31/2023]
Abstract
Future priorities for the management of hypoxemic respiratory failure (HRF) and pulmonary hypertension include primary prevention of neonatal lung diseases, 'precision medicine' and translating promising clinical and preclinical research into novel therapies. Promising areas of investigation include noninvasive ventilation strategies, emerging pulmonary vasodilators (for example, cinaciguat, intravenous bosentan, rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ agonists) and hemodynamic support (arginine vasopressin). Research challenges include the optimal timing for primary prevention interventions and development of validated biomarkers that predict later disease or serve as surrogates for long-term respiratory outcomes. Differentiating respiratory disease endotypes using biomarkers and experimental therapies tailored to the underlying pathobiology are central to the concept of 'precision medicine' (that is, prevention and treatment strategies that take individual variability into account). The ideal biomarker should be expressed early in the neonatal course to offer an opportunity for effective and targeted interventions to modify outcomes. The feasibility of this approach will depend on the identification and validation of accurate, rapid and affordable point-of-care biomarker tests. Trials targeting patient-specific pathobiology may involve less risk than traditional randomized controlled trials that enroll all at-risk neonates. Such approaches would reduce trial costs, potentially with fewer negative trials and improved health outcomes. Initiatives such as the Prematurity and Respiratory Outcomes Program, supported by the National Heart, Lung, and Blood Institute, provide a framework to develop refined outcome measures and early biomarkers that will enhance our understanding of novel, mechanistic therapeutic targets that can be tested in clinical trials in neonates with HRF.
Collapse
|
45
|
Liu H, Mastriani E, Yan ZQ, Yin SY, Zeng Z, Wang H, Li QH, Liu HY, Wang X, Bao HX, Zhou YJ, Kou JJ, Li D, Li T, Liu J, Liu Y, Yin L, Qiu L, Gong L, Liu SL. SOX7 co-regulates Wnt/β-catenin signaling with Axin-2: both expressed at low levels in breast cancer. Sci Rep 2016; 6:26136. [PMID: 27188720 PMCID: PMC4870566 DOI: 10.1038/srep26136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
SOX7 as a tumor suppressor belongs to the SOX F gene subfamily and is associated with a variety of human cancers, including breast cancer, but the mechanisms involved are largely unclear. In the current study, we investigated the interactions between SOX7 and AXIN2 in their co-regulation on the Wnt/β-catenin signal pathway, using clinical specimens and microarray gene expression data from the GEO database, for their roles in breast cancer. We compared the expression levels of SOX7 and other co-expressed genes in the Wnt/β-catenin pathway and found that the expression of SOX7, SOX17 and SOX18 was all reduced significantly in the breast cancer tissues compared to normal controls. AXIN2 had the highest co-relativity with SOX7 in the Wnt/β-catenin signaling pathway. Clinicopathological analysis demonstrated that the down-regulated SOX7 was significantly correlated with advanced stages and poorly differentiated breast cancers. Consistent with bioinformatics predictions, SOX7 was correlated positively with AXIN2 and negatively with β-catenin, suggesting that SOX7 and AXIN2 might play important roles as co-regulators through the Wnt-β-catenin pathway in the breast tissue to affect the carcinogenesis process. Our results also showed Smad7 as the target of SOX7 and AXIN2 in controlling breast cancer progression through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huidi Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Emilio Mastriani
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zi-Qiao Yan
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Si-Yuan Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zheng Zeng
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Qing-Hai Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Yu Liu
- Pathology Department, The First Hospital of Qiqihaer City, Qiqihaer, 161006, China
| | - Xiaoyu Wang
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Xia Bao
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yu-Jie Zhou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Jun-Jie Kou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dongsheng Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ting Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianrui Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yongfang Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lin Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li Qiu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Liling Gong
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
46
|
Ji B, Zhao GZ, Sakurai R, Cao Y, Zhang ZJ, Wang D, Yan MN, Rehan VK. Effect of Maternal Electroacupuncture on Perinatal Nicotine Exposure-Induced Lung Phenotype in Offspring. Lung 2016; 194:535-46. [PMID: 27179524 DOI: 10.1007/s00408-016-9899-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pregnant women exposed to tobacco smoke predispose the offspring to many adverse consequences including an altered lung development and function. There is no effective therapeutic intervention to block the effects of smoke exposure on the developing lung. Clinical and animal studies demonstrate that acupuncture can modulate a variety of pathophysiological processes, including those involving the respiratory system; however, whether acupuncture affects the lung damage caused by perinatal smoke exposure is not known. METHODS To determine the effect of acupuncture on perinatal nicotine exposure on the developing lung, pregnant rat dams were administered (1) saline, (2) nicotine, or (3) nicotine + electroacupuncture (EA). Nicotine was administered (1 mg/kg subcutaneously) once a day and EA was applied to both "Zusanli" (ST 36) points. Both interventions were administered from gestational day 6 to postnatal day 21 (PND21), following which pups were sacrificed. Lungs, blood, and brain were collected to examine markers of lung injury, repair, and hypothalamic pituitary adrenal (HPA) axis. RESULTS Concomitant EA application blocked nicotine-induced changes in lung morphology, lung peroxisome proliferator-activated receptor γ and wingless-int signaling, two key lung developmental signaling pathways, hypothalamic pituitary adrenal axis (hypothalamic corticotropic releasing hormone and lung glucocorticoid receptor levels), and plasma β-endorphin levels. CONCLUSIONS Electroacupuncture blocks the nicotine-induced changes in lung developmental signaling pathways and the resultant myogenic lung phenotype, known to be present in the affected offspring. We conclude that EA is a promising novel intervention against the smoke exposed lung damage to the developing lung.
Collapse
Affiliation(s)
- Bo Ji
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | | | - Reiko Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA, 90502, USA
| | - Yu Cao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zi-Jian Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ming-Na Yan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA, 90502, USA.
| |
Collapse
|
47
|
Jagarapu J, Kelchtermans J, Rong M, Chen S, Hehre D, Hummler S, Faridi MH, Gupta V, Wu S. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats. Am J Respir Cell Mol Biol 2016; 53:793-801. [PMID: 25909334 DOI: 10.1165/rcmb.2014-0422oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants.
Collapse
Affiliation(s)
- Jawahar Jagarapu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Jelte Kelchtermans
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Min Rong
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Shaoyi Chen
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Dorothy Hehre
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Stefanie Hummler
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Mohd Hafeez Faridi
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Vineet Gupta
- 2 Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Shu Wu
- 1 Department of Pediatrics, Division of Neonatology, Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| |
Collapse
|
48
|
Panikkanvalappil SR, James M, Hira SM, Mobley J, Jilling T, Ambalavanan N, El-Sayed MA. Hyperoxia Induces Intracellular Acidification in Neonatal Mouse Lung Fibroblasts: Real-Time Investigation Using Plasmonically Enhanced Raman Spectroscopy. J Am Chem Soc 2016; 138:3779-88. [DOI: 10.1021/jacs.5b13177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sajanlal R. Panikkanvalappil
- Laser
Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Masheika James
- Department
of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Steven M. Hira
- Laser
Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - James Mobley
- Department
of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Tamas Jilling
- Department
of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Namasivayam Ambalavanan
- Department
of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Mostafa A. El-Sayed
- Laser
Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Department
of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
49
|
Balany J, Bhandari V. Understanding the Impact of Infection, Inflammation, and Their Persistence in the Pathogenesis of Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:90. [PMID: 26734611 PMCID: PMC4685088 DOI: 10.3389/fmed.2015.00090] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The concerted interaction of genetic and environmental factors acts on the preterm human immature lung with inflammation being the common denominator leading to the multifactorial origin of the most common chronic lung disease in infants – bronchopulmonary dysplasia (BPD). Adverse perinatal exposure to infection/inflammation with added insults like invasive mecha nical ventilation, exposure to hyperoxia, and sepsis causes persistent immune dysregulation. In this review article, we have attempted to analyze and consolidate current knowledge about the role played by persistent prenatal and postnatal inflammation in the pathogenesis of BPD. While some parameters of the early inflammatory response (neutrophils, cytokines, etc.) may not be detectable after days to weeks of exposure to noxious stimuli, they have already initiated the signaling pathways of the inflammatory process/immune cascade and have affected permanent defects structurally and functionally in the BPD lungs. Hence, translational research aimed at prevention/amelioration of BPD needs to focus on dampening the inflammatory response at an early stage to prevent the cascade of events leading to lung injury with impaired healing resulting in the pathologic pulmonary phenotype of alveolar simplification and dysregulated vascularization characteristic of BPD.
Collapse
Affiliation(s)
- Jherna Balany
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine , Philadelphia, PA , USA
| |
Collapse
|
50
|
Richter J, Toelen J, Nagatomo T, Jimenez J, Vanoirbeek J, Deprest J. Transplacental Administration of Rosiglitazone Attenuates Hyperoxic Lung Injury in a Preterm Rabbit Model. Fetal Diagn Ther 2015; 39:297-305. [PMID: 26375032 DOI: 10.1159/000439199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Continuous improvements in perinatal care have allowed the survival of increasingly more prematurely born infants. The establishment of respiration in an extremely immature yet still developing lung results in chronic lung injury with significant mortality and morbidity. We experimentally evaluated a novel medical strategy to prevent hyperoxia-induced lung injury by prenatal rosiglitazone. MATERIALS AND METHODS Pregnant rabbits were injected with saline or rosiglitazone (3 mg/kg) 48 and 24 h prior to preterm delivery at 28 days of gestation (term = 31 days). The pups were held in normoxia (21% O2) or hyperoxia (>95% O2), and assessment was done at three different time points (1 h, 24 h and 7 days). RESULTS The administration of rosiglitazone resulted in a significant decrease in tissue damping (resistance) on day 7. Furthermore, significantly increased expression of vascular endothelial growth factor, fetal liver kinase 1 and surfactant protein B immediately after delivery was noted by immunohistochemistery. On day 7, there was a more mature lung parenchymal architecture in rosiglitazone-exposed pups. DISCUSSION In a preterm rabbit model, prenatal maternal administration of rosiglitazone attenuates neonatal hyperoxic lung injury and results in a more mature pulmonary parenchyma.
Collapse
Affiliation(s)
- Jute Richter
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|