1
|
Taniguchi H, Akiyama N, Ishihara K. Effects of dietary protein contents and habitual endurance exercise on supplemental leucine oxidation in mice. Biosci Biotechnol Biochem 2018; 83:728-737. [PMID: 30582438 DOI: 10.1080/09168451.2018.1559026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of dietary protein contents and regular exercise on the oxidation of supplemented leucine were examined. In the short-term study, male BALB/cCrSlc mice were fed diets containing 0, 10, 20, 35, and 60% protein: energy ratios for 1 week. In the long-term study, exercised and sedentary mice were fed diets containing 20, 35, and 60% protein ratios for 9 weeks. After the feeding periods, the mice were a bolus administered oral supplements of l-[1-13C] leucine. Expired gas was analyzed, and oxidized leucine was expressed as a relative 13CO2/12CO2 ratio. In the short-term study, the peak 13CO2/12CO2 ratio significantly increased with diet protein concentrations. Moreover, the long-term study also showed that the peak 13CO2/12CO2 ratio was significantly increased by high protein diets in both exercised and sedentary mice. Our results indicate that supplemental leucine oxidation is associated with consumption of a high-protein diet, irrespective of exercise status. Abbreviations: AUC: area under the curve; EX: exercise; RQ: respiratory quotient; SED: sedentary; VO2/W: oxygen uptake per body weight.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- a Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan.,b Faculty of Agriculture , Ryukoku University , Shiga , Japan
| | - Nao Akiyama
- b Faculty of Agriculture , Ryukoku University , Shiga , Japan
| | - Kengo Ishihara
- b Faculty of Agriculture , Ryukoku University , Shiga , Japan
| |
Collapse
|
2
|
Matsumura S, Ishikawa F, Sasaki T, Odanaka M, Manio MCC, Fushiki T, Inoue K. Voluntary Corn Oil Ingestion Increases Energy Expenditure and Interscapular UCP1 Expression Through the Sympathetic Nerve in C57BL/6 Mice. Mol Nutr Food Res 2018; 62:e1800241. [DOI: 10.1002/mnfr.201800241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Tsutomu Sasaki
- Department of Neurology; Graduate School of Medicine; Osaka University; Yamadaoka 2-2, Suita Osaka 565-0871 Japan
| | - Mayuki Odanaka
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Mark Christian C. Manio
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Tohru Fushiki
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| |
Collapse
|
3
|
Takagi H, Ikehara T, Kashiwagi Y, Hashimoto K, Nanchi I, Shimazaki A, Nambu H, Yukioka H. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice. Endocrinology 2018; 159:3007-3019. [PMID: 29931154 DOI: 10.1210/en.2018-00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Because acetyl-coenzyme A (CoA) carboxylase (ACC) 2 negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose use because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose use via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tatsuya Ikehara
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Kumi Hashimoto
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Isamu Nanchi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuyuki Shimazaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohide Nambu
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
4
|
Osaka T. 2-Deoxy-D-glucose-induced hypothermia in anesthetized rats: Lack of forebrain contribution and critical involvement of the rostral raphe/parapyramidal regions of the medulla oblongata. Brain Res Bull 2015; 116:73-80. [PMID: 26146232 DOI: 10.1016/j.brainresbull.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/14/2023]
Abstract
Systemic or central administration of 2-deoxy-d-glucose (2DG), a competitive inhibitor of glucose utilization, induces hypothermia in awake animals and humans. This response is mediated by the central nervous system, though the neural mechanism involved is largely unknown. In this study, I examined possible involvement of the forebrain, which contains the hypothalamic thermoregulatory center, and the medullary rostral raphe/parapyramidal regions (rRPa/PPy), which mediate hypoxia-induced heat-loss responses, in 2DG-induced hypothermia in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. The intravenous injection of 2DG (250mgkg(-1)) elicited an increase in tail skin temperature and decreases in body core temperature and the respiratory exchange ratio, though it did not induce any significant change in the metabolic rate. These results indicate that the hypothermic response was caused by an increase in heat loss, but not by a decrease in heat production and that it was accompanied by a decrease in carbohydrate utilization and/or an increase in lipid utilization as energy substrates. Complete surgical transection of the brainstem between the hypothalamus and the midbrain had no effect on the 2DG-induced hypothermic responses, suggesting that the hindbrain, but not the forebrain, was sufficient for the responses. However, pretreatment of the rRPa/PPy with the GABAA receptor blocker bicuculline methiodide, but not with vehicle saline, greatly attenuated the 2DG-induced responses, suggesting that the 2DG-induced hypothermia was mediated, at least in part, by GABAergic neurons in the hindbrain and activation of GABAA receptors on cutaneous sympathetic premotor neurons in the rRPa/PPy.
Collapse
Affiliation(s)
- Toshimasa Osaka
- Department of Nutritional Science, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku 162-8636, Japan.
| |
Collapse
|
5
|
Sakamoto K, Okahashi T, Matsumura S, Okafuji Y, Adachi SI, Tsuzuki S, Inoue K, Fushiki T. The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem 2014; 79:658-63. [PMID: 25516200 DOI: 10.1080/09168451.2014.991688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion. Administration of non-selective and mu-selective opioid receptor antagonists more strongly inhibited the preference of fat than sucrose. While the preference of fat was reduced to the same level as water by the antagonist administration that of sucrose was still greater than water. Our results suggest that the preference of fat relies strongly on the opioid system, while that of sucrose is regulated by other mechanisms in addition to the opioid system.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fujitani M, Matsumura S, Masuda D, Yamashita S, Fushiki T, Inoue K. CD36, but not GPR120, is required for efficient fatty acid utilization during endurance exercise. Biosci Biotechnol Biochem 2014; 78:1871-8. [PMID: 25070011 DOI: 10.1080/09168451.2014.940835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fatty acids (FA) are an important energy source during exercise. In addition to its role as an energy supply for skeletal muscle, FA may activate signaling pathways that regulate gene expression. FA translocase/cluster of differentiation 36 (CD36) and G protein-coupled receptor GPR120 are long-chain FA receptors. In this study, we investigated the impact of CD36 or GPR120 deletion on energy metabolism during exercise. CD36 has been reported to facilitate cellular transport and oxidation of FA during endurance exercise. We show that CD36 deletion decreased exogenous FA oxidation during exercise, using a combination of (13)C-labeled FA oxidation measurement and indirect calorimetry. In contrast, GPR120 deletion had no observable effect on energy metabolism during exercise. Our results further substantiate that CD36-mediated FA transport plays an essential role in efficient FA oxidation during exercise.
Collapse
Affiliation(s)
- Mina Fujitani
- a Laboratory of Nutrition Chemistry, Graduate School of Agriculture , Kyoto University , Sakyou-ku , Japan
| | | | | | | | | | | |
Collapse
|
7
|
Fushiki T. Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci Biotechnol Biochem 2014; 78:363-9. [DOI: 10.1080/09168451.2014.905186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Potential mechanisms underlying the high palatability of fat can be assessed by reviewing animal studies on fat detection and brain patterns during reward behavior. Fatty acids are likely recognized by receptors on taste buds, with the signals transmitted to the brain through taste nerves. Ingested oil is broken down and absorbed in the gastrointestinal tract, which also sends signals to the brain through unknown mechanisms. Information from both sensory receptors and peripheral tissue is integrated by the brain, resulting in a strong appetite for fatty foods via a reward system. Understanding mechanisms of fat recognition will prove valuable in the development of strategies to manage the high palatability of foods.
Collapse
Affiliation(s)
- Tohru Fushiki
- Division of Food Science & Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Godinot N, Yasumatsu K, Barcos M, Pineau N, Ledda M, Viton F, Ninomiya Y, le Coutre J, Damak S. Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice. Neuroscience 2013; 250:20-30. [DOI: 10.1016/j.neuroscience.2013.06.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
9
|
MORI N, KURATA M, YAMAZAKI H, HOSOKAWA H, NADAMOTO T, INOUE K, FUSHIKI T. Intragastric Administration of Allyl Isothiocyanate Reduces Hyperglycemia in Intraperitoneal Glucose Tolerance Test (IPGTT) by Enhancing Blood Glucose Consumption in Mice. J Nutr Sci Vitaminol (Tokyo) 2013; 59:56-63. [DOI: 10.3177/jnsv.59.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Abstract
There is considerable disagreement regarding what constitutes a healthy diet. Ever since the influential work of Cannon and Richter, it was debated whether the 'wisdom of the body' will automatically direct us to the foods we need for healthy lives or whether we must carefully learn to eat the right foods, particularly in an environment of plenty. Although it is clear that strong mechanisms have evolved to prevent consumption of foods that have previously made us sick, it is less clear whether reciprocal mechanisms exist that reinforce the consumption of healthy diets. Here, we review recent progress in providing behavioural evidence for the regulation of intake and selection of proteins, carbohydrates and fats. We examine new developments in sensory physiology enabling recognition of macronutrients both pre- and post-ingestively. Finally, we propose a general model for central neural processing of nutrient-specific appetites. We suggest that the same basic neural circuitry responsible for the homoeostatic regulation of total energy intake is also used to control consumption of specific macro- and micronutrients. Similar to salt appetite, specific appetites for other micro- and macronutrients may be encoded by unique molecular changes in the hypothalamus. Gratification of such specific appetites is then accomplished by engaging the brain motivational system to assign the highest reward prediction to exteroceptive cues previously associated with consuming the missing ingredient. A better understanding of these nutrient-specific neural processes could help design drugs and behavioural strategies that promote healthier eating.
Collapse
|
11
|
Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, Nomura M, Yanase T, Otsu K, Usuda N, Matsumura S, Inoue K, Fushiki T, Kojima Y, Hashimoto T, Sakai F, Hirose F, Osumi T. Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 2012; 287:23852-63. [PMID: 22532565 DOI: 10.1074/jbc.m111.328708] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles storing neutral lipids, including triacylglycerol (TAG) and cholesterol ester. The properties of LDs vary greatly among tissues, and LD-binding proteins, the perilipin family in particular, play critical roles in determining such diversity. Overaccumulation of TAG in LDs of non-adipose tissues may cause lipotoxicity, leading to diseases such as diabetes and cardiomyopathy. However, the physiological significance of non-adipose LDs in a normal state is poorly understood. To address this issue, we generated and characterized mice deficient in perilipin 5 (Plin5), a member of the perilipin family particularly abundant in the heart. The mutant mice lacked detectable LDs, containing significantly less TAG in the heart. Particulate structures containing another LD-binding protein, Plin2, but negative for lipid staining, remained in mutant mice hearts. LDs were recovered by perfusing the heart with an inhibitor of lipase. Cultured cardiomyocytes from Plin5-null mice more actively oxidized fatty acid than those of wild-type mice. Production of reactive oxygen species was increased in the mutant mice hearts, leading to a greater decline in heart function with age. This was, however, reduced by the administration of N-acetylcysteine, a precursor of an antioxidant, glutathione. Thus, we conclude that Plin5 is essential for maintaining LDs at detectable sizes in the heart, by antagonizing lipase(s). LDs in turn prevent excess reactive oxygen species production by sequestering fatty acid from oxidation and hence suppress oxidative burden to the heart.
Collapse
Affiliation(s)
- Kenta Kuramoto
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Oral fatty acid signaling and intestinal lipid processing: support and supposition. Physiol Behav 2011; 105:27-35. [PMID: 21324328 DOI: 10.1016/j.physbeh.2011.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 01/22/2023]
Abstract
There is increasing recognition that specialized processes once thought to be relatively isolated to the oral cavity (e.g., taste) and intestine (e.g., nutrient absorption) are better characterized as common and continuous. This is exemplified by accumulating evidence linking oral detection of dietary fats to their intestinal processing. This review first summarizes this literature focusing on purported gustatory signaling by free fatty acid stimulation and enterocyte lipid storage and mobilization in humans. It then willfully speculates on the possible functions of this integrated system. It is proposed that it may aid absorption of fat soluble nutrients, enhance acute energy intake, sustain intestinal function during long inter-meal intervals, modulate appetite and/or detoxify ingested compounds including free fatty acids.
Collapse
|
13
|
Goetzman ES. Modeling Disorders of Fatty Acid Metabolism in the Mouse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:389-417. [DOI: 10.1016/b978-0-12-384878-9.00010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity. Physiol Behav 2010; 101:370-5. [PMID: 20619281 DOI: 10.1016/j.physbeh.2010.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 12/20/2022]
Abstract
We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.
Collapse
|
15
|
Balkovetz DF, Chumley P, Amlal H. Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis. Am J Physiol Renal Physiol 2009; 297:F604-11. [PMID: 19587148 DOI: 10.1152/ajprenal.00043.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis (CMA) is associated with an inhibition of fluid reabsorption in the renal proximal tubule. The effects of CMA on paracellular transport across the renal epithelial tight junction (TJ) is unknown. Claudin-2 is a transmembrane TJ-associated protein which confers TJ paracellular permeability to Na(+). We examined the effects of CMA on the expression of TJ transport proteins using both in vivo and in vitro models of CMA. The results showed downregulation of claudin-2 mRNA and protein expression in the cortex of rats subjected to the NH(4)Cl loading model of CMA. Madin-Darby canine kidney (MDCK) and HK-2 cells are models of renal epithelial cells and express claudin-2 protein in their TJ. We examined the effects of acidic pH exposure on the expression of claudin-2 in MDCK and HK-2 renal epithelial cells. Exposure of MDCK cells to pH 6.96 medium caused a significant and reversible decrease in claudin-2 protein abundance. A dose-response analysis of acidic medium exposure of MDCK and HK-2 cells demonstrated a downregulation of claudin-2 protein. The downregulation effect of acidic pH is specific to claudin-2 expression as the expression of other TJ-associated proteins (i.e., claudin-1, -3, -4, and -7, occludin, and zonula occludens-1) remained unchanged compared with control pH (7.40). Collectively, these data demonstrate that CMA downregulates the expression of claudin-2 likely through a direct effect of acidic pH. Potential physiological significance of these changes is discussed.
Collapse
Affiliation(s)
- Daniel F Balkovetz
- Dept. of Medicine, 1530 3rd. Ave. South, LHRB 642, Univ. of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| | | | | |
Collapse
|
16
|
Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M, Maruyama T, Otagiri M. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 2008; 295:F1871-80. [DOI: 10.1152/ajprenal.00013.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic accumulation of plasma advanced oxidation protein products (AOPPs) promotes renal fibrosis. However, the mechanism at the cellular level has not been clarified. In the present study, endocytic assay of human proximal tubular cells (HK-2 cells) demonstrated that AOPPs-human serum albumin (HSA) (in vitro preparations of chloramine- modified HSA) were significantly endocytosed in a dose-dependent manner at a higher level than HSA. The expression of CD36, a transmembrane protein of the class B scavenger receptor, in HK-2 cells was confirmed in the immunoblot analysis. In a cellular assay using overexpressing human CD36 in Chinese hamster ovary (CHO) cells, AOPPs-HSA were significantly endocytosed by CD36-CHO cells but not by mock-CHO cells. Furthermore, the endocytic association and degradation of AOPPs-HSA by HK-2 cells was significantly inhibited by anti-CD36 antibody treatment, suggesting that CD36 is partly involved in the uptake of AOPPs-HSA by HK-2 cells. AOPPs-HSA upregulated the expression of CD36 in a dose-dependent manner. In addition, AOPPs-HSA upregulated the generation of intracellular reactive oxygen species and the secretion of transforming growth factor (TGF)-β1 in HK-2 cells, whereas anti-CD36 antibody neutralizes the upregulation of TGF-β1. These results suggest that AOPPs-HSA may cause renal tubular injury via the CD36 pathway.
Collapse
|