1
|
Heath-Freudenthal A, Estrada A, von Alvensleben I, Julian CG. Surviving birth at high altitude. J Physiol 2024; 602:5463-5473. [PMID: 38520695 PMCID: PMC11418585 DOI: 10.1113/jp284554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
This Symposium Review examines challenges to surviving birth and infancy at high altitudes. Chronic exposure to the environmental hypoxia of high altitudes increases the incidence of maternal vascular disorders of pregnancy characterized by placental insufficiency, restricted fetal growth and preterm delivery, and impairs pulmonary vascular health during infancy. While each condition independently contributes to excess morbidity and mortality in early life, evidence indicates vascular disorders of pregnancy and infantile pulmonary vascular dysfunction are intertwined. By integrating our recent scientific and clinical observations in Bolivia with existing literature, we propose potential avenues to reduce the infant mortality burden at high altitudes and reduce pulmonary vascular disease in highland neonates, and emphasize the need for further research to address unresolved questions.
Collapse
Affiliation(s)
| | | | | | - Colleen G. Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, US
| |
Collapse
|
2
|
Leslie E, Gonzalez Bosc LV, Specht J, McKenna ZJ, Gridley R, Luna V, Jones DT, Lantz BJ, Moriwaki M, Hsiao YY, Gibson AL, Mermier C, Wilson SM, Deyhle MR. Impact of Maternal Exercise on Mice Offspring Development, Pulmonary Hypertension, and Vascular Remodeling in Chronic Hypoxia. Med Sci Sports Exerc 2024; 56:1867-1881. [PMID: 38768014 DOI: 10.1249/mss.0000000000003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE Chronic, high-altitude hypoxic exposure increases the risk of high-altitude pulmonary hypertension (PH). Emerging evidence shows maternal exercise may improve offspring resistance to disease throughout life. The purpose of this study is to determine if maternal exercise mitigates chronic hypoxic-induced changes in the offspring indicative of high-altitude PH development. METHODS Female adult C57BL/6J mice were randomly allocated to nonexercise or exercise conditions. Exercise consisted of voluntary running wheel exercise for 4 wk during the perinatal period. Three days after birth, the pups remained at low altitude (normoxia) or were exposed to hypobaric hypoxia of 450 mm Hg to simulate ~4500 m of altitude exposure until 8 wk of age. The study consisted of four groups: hypoxia + nonexercise pregnancy, hypoxia + exercise, or the respective normoxia conditions (normoxia + nonexercise or normoxia + exercise). Offspring body size, motor function, right ventricular systolic pressure (RVSP), and cardiopulmonary morphology were assessed after 8 wk in normoxia or hypoxia. RESULTS Both hypoxic groups had smaller body sizes, reduced motor function, increased hematocrit, RVSP, muscularization in medium-sized pulmonary arteries, as well as right ventricular hypertrophy and contractility compared with the normoxic groups ( P < 0.05). CONCLUSIONS Chronic hypoxia simulating 4500 m attenuated growth, lowered motor function, and elicited PH development. Voluntary maternal exercise did not significantly decrease RVSP in the offspring, which aligned with a lack of effect to attenuate abnormal body size and cardiopulmonary development due to chronic hypoxia. These findings are preliminary in nature, and more powered studies through larger group sizes are required to generalize the results to the population.
Collapse
Affiliation(s)
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Jonathan Specht
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Zachary J McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX
| | - Rebekah Gridley
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Vincent Luna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - David T Jones
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Benjamin J Lantz
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Mika Moriwaki
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM
| | - Yu-Yu Hsiao
- Department of Individual, Family, and Community Education, University of New Mexico, Albuquerque, NM
| | - Ann L Gibson
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Christine Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA
| | | |
Collapse
|
3
|
Navarrete Á, Inostroza M, Utrera A, Bezmalinovic A, González-Candia A, Rivera E, Godoy-Guzmán C, Herrera EA, García-Herrera C. Biomechanical effects of hemin and sildenafil treatments on the aortic wall of chronic-hypoxic lambs. Front Bioeng Biotechnol 2024; 12:1406214. [PMID: 39021365 PMCID: PMC11252865 DOI: 10.3389/fbioe.2024.1406214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction: Gestation under chronic hypoxia causes pulmonary hypertension, cardiovascular remodeling, and increased aortic stiffness in the offspring. To mitigate the neonatal cardiovascular risk, pharmacological treatments (such as hemin and sildenafil) have been proposed to improve pulmonary vasodilation. However, little is known about the effects of these treatments on the aorta. Therefore, we studied the effect of hemin and sildenafil treatments in the aorta of lambs gestated and raised at highlands, thereby subjected to chronic hypoxia. Methods: Several biomechanical tests were conducted in the descending thoracic aorta (DTA) and the distal abdominal aorta (DAA), assessing 3 groups of study of hypoxic animals: non-treated (Control) and treated either with hemin or sildenafil. Based on them, the stiffness level has been quantified in both zones, along with the physiological strain in the unloaded aortic duct. Furthermore, a morphological study by histology was conducted in the DTA. Results: Biomechanical results indicate that treatments trigger an increment of axial pre-stress and circumferential residual stress levels in DTA and DAA of lambs exposed to high-altitude chronic hypoxia, which reveals a vasodilatation improvement along with an anti-hypertensive response under this characteristic environmental condition. In addition, histological findings do not reveal significant differences in either structure or microstructural content. Discussion: The biomechanics approach emerges as a valuable study perspective, providing insights to explain the physiological mechanisms of vascular function. According to established results, alterations in the function of the aortic wall may not necessarily be explained by morphostructural changes, but rather by the characteristic mechanical state of the microstructural components that are part of the studied tissue. In this sense, the reported biomechanical changes are beneficial in mitigating the adverse effects of hypobaric hypoxia exposure during gestation and early postnatal life.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Matías Inostroza
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Alejandro Bezmalinovic
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | | | - Eugenio Rivera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Carlos Godoy-Guzmán
- Laboratorio de Ingeniería de Tejidos, Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio García-Herrera
- Laboratorio de Biomecánica y Biomateriales, Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
4
|
Leslie E, Gibson AL, Gonzalez Bosc LV, Mermier C, Wilson SM, Deyhle MR. Can Maternal Exercise Prevent High-Altitude Pulmonary Hypertension in Children? High Alt Med Biol 2023; 24:1-6. [PMID: 36695730 DOI: 10.1089/ham.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Leslie, Eric, Ann L. Gibson, Laura V. Gonzalez Bosc, Christine Mermier, Sean M. Wilson, and Michael R. Deyhle. Review: can maternal exercise prevent high-altitude pulmonary hypertension in children? High Alt Med Biol. 24:1-6, 2023.-Chronic high-altitude exposure reduces oxygen delivery to the fetus during pregnancy and causes pathologic pulmonary artery remodeling, This increases the risk of high-altitude pulmonary hypertension (PH), which is a particularly fatal disease that is difficult to treat. Therefore, finding ways to prevent high-altitude PH, including during the neonatal period, is preferable. Cardiorespiratory exercise can improve functional capacity and quality of life in patients with high-altitude PH. However, similar to other treatments and surgical procedures, the benefits are not enough to cure the disease after a diagnosis. Cardiorespiratory exercise by mothers during pregnancy (i.e., maternal exercise) has not been previously evaluated to prevent the development of high-altitude PH in children born and living at high altitude. This focused review describes the pathophysiology of high-altitude PH and the potential benefit of maternal exercise for preventing the disease caused by high-altitude pregnancies.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ann L Gibson
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christine Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico, USA
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Beñaldo FA, Araya-Quijada C, Ebensperger G, Herrera EA, Reyes RV, Moraga FA, Riquelme A, Gónzalez-Candia A, Castillo-Galán S, Valenzuela GJ, Serón-Ferré M, Llanos AJ. Cinaciguat (BAY-582667) Modifies Cardiopulmonary and Systemic Circulation in Chronically Hypoxic and Pulmonary Hypertensive Neonatal Lambs in the Alto Andino. Front Physiol 2022; 13:864010. [PMID: 35733986 PMCID: PMC9207417 DOI: 10.3389/fphys.2022.864010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neonatal pulmonary hypertension (NPHT) is produced by sustained pulmonary vasoconstriction and increased vascular remodeling. Soluble guanylyl cyclase (sGC) participates in signaling pathways that induce vascular vasodilation and reduce vascular remodeling. However, when sGC is oxidized and/or loses its heme group, it does not respond to nitric oxide (NO), losing its vasodilating effects. sGC protein expression and function is reduced in hypertensive neonatal lambs. Currently, NPHT is treated with NO inhalation therapy; however, new treatments are needed for improved outcomes. We used Cinaciguat (BAY-582667), which activates oxidized and/or without heme group sGC in pulmonary hypertensive lambs studied at 3,600 m. Our study included 6 Cinaciguat-treated (35 ug kg−1 day−1x 7 days) and 6 Control neonates. We measured acute and chronic basal cardiovascular variables in pulmonary and systemic circulation, cardiovascular variables during a superimposed episode of acute hypoxia, remodeling of pulmonary arteries and changes in the right ventricle weight, vasoactive functions in small pulmonary arteries, and expression of NO-sGC-cGMP signaling pathway proteins involved in vasodilation. We observed a decrease in pulmonary arterial pressure and vascular resistance during the acute treatment. In contrast, the pulmonary pressure did not change in the chronic study due to increased cardiac output, resulting in lower pulmonary vascular resistance in the last 2 days of chronic study. The latter may have had a role in decreasing right ventricular hypertrophy, although the direct effect of Cinaciguat on the heart should also be considered. During acute hypoxia, the pulmonary vascular resistance remained low compared to the Control lambs. We observed a higher lung artery density, accompanied by reduced smooth muscle and adventitia layers in the pulmonary arteries. Additionally, vasodilator function was increased, and vasoconstrictor function was decreased, with modifications in the expression of proteins linked to pulmonary vasodilation, consistent with low pulmonary vascular resistance. In summary, Cinaciguat, an activator of sGC, induces cardiopulmonary modifications in chronically hypoxic and pulmonary hypertensive newborn lambs. Therefore, Cinaciguat is a potential therapeutic tool for reducing pulmonary vascular remodeling and/or right ventricular hypertrophy in pulmonary arterial hypertension syndrome.
Collapse
Affiliation(s)
- Felipe A. Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Araya-Quijada
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernando A. Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Alexander Riquelme
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Research and Innovation Center Biomedical (CIIB), Faculty of Medicine, University of Los Andes, Santiago, Chile
| | - Guillermo J. Valenzuela
- Department of Women’s Health, Arrowhead Regional Medical Center, San Bernardino, CA, United States
| | - María Serón-Ferré
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aníbal J. Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
- *Correspondence: Aníbal J. Llanos,
| |
Collapse
|
6
|
Heath-Freudenthal A, Toledo-Jaldin L, von Alvensleben I, Lazo-Vega L, Mizutani R, Stalker M, Yasini H, Mendizabal F, Madera JD, Mundo W, Castro-Monrroy M, Houck JA, Moreno-Aramayo A, Miranda-Garrido V, Su EJ, Giussani DA, Abman SH, Moore LG, Julian CG. Vascular Disorders of Pregnancy Increase Susceptibility to Neonatal Pulmonary Hypertension in High-Altitude Populations. Hypertension 2022; 79:1286-1296. [PMID: 35437031 PMCID: PMC9098686 DOI: 10.1161/hypertensionaha.122.19078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preeclampsia and fetal growth restriction increase cardiopulmonary disease risk for affected offspring and occur more frequently at high-altitude (≥2500 m). Retrospective studies indicate that birth to a preeclampsia woman at high altitude increases the risk of pulmonary hypertension (PH) in later life. This prospective study asked whether preeclampsia with or without fetal growth restriction exaggerated fetal hypoxia and impaired angiogenesis in the fetal lung, leading to neonatal cardiopulmonary circulation abnormalities and neonatal or infantile PH. METHODS AND RESULTS We studied 79 maternal-infant pairs (39 preeclampsia, 40 controls) in Bolivia (3600-4100 m). Cord blood erythropoietin, hemoglobin, and umbilical artery and venous blood gases were measured as indices of fetal hypoxia. Maternal and cord plasma levels of angiogenic (VEGF [vascular endothelial growth factor]) and antiangiogenic (sFlt1 [soluble fms-like tyrosine kinase]) factors were determined. Postnatal echocardiography (1 week and 6-9 months) assessed pulmonary hemodynamics and PH. Preeclampsia augmented fetal hypoxia and increased the risk of PH in the neonate but not later in infancy. Pulmonary abnormalities were confined to preeclampsia cases with fetal growth restriction. Maternal and fetal plasma sFlt1 levels were higher in preeclampsia than controls and positively associated with PH. CONCLUSIONS The effect of preeclampsia with fetal growth restriction to increase fetal hypoxia and sFlt1 levels may impede normal development of the pulmonary circulation at high altitude, leading to adverse neonatal pulmonary vascular outcomes. Our observations highlight important temporal windows for the prevention of pulmonary vascular disease among babies born to highland residents or those with exaggerated hypoxia in utero or newborn life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hussna Yasini
- College of Liberal Arts and Sciences, University of Colorado Denver, Denver, Colorado
| | | | - Jesus Dorado Madera
- College of Liberal Arts and Sciences, University of Colorado Denver, Denver, Colorado
| | - William Mundo
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Julie A. Houck
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | - Emily J. Su
- Departments of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven H. Abman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lorna G. Moore
- Departments of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Colleen G. Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Castillo-Galán S, Parrau D, Hernández I, Quezada S, Díaz M, Ebensperger G, Herrera EA, Moraga FA, Iturriaga R, Llanos AJ, Reyes RV. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Front Physiol 2022; 12:765281. [PMID: 35082688 PMCID: PMC8784838 DOI: 10.3389/fphys.2021.765281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
Calcium signaling is key for the contraction, differentiation, and proliferation of pulmonary arterial smooth muscle cells. Furthermore, calcium influx through store-operated channels (SOCs) is particularly important in the vasoconstrictor response to hypoxia. Previously, we found a decrease in pulmonary hypertension and remodeling in normoxic newborn lambs partially gestated under chronic hypoxia, when treated with 2-aminoethyldiphenyl borinate (2-APB), a non-specific SOC blocker. However, the effects of 2-APB are unknown in neonates completely gestated, born, and raised under environmental hypoxia. Accordingly, we studied the effects of 2-APB-treatment on the cardiopulmonary variables in lambs under chronic hypobaric hypoxia. Experiments were done in nine newborn lambs gestated, born, and raised in high altitude (3,600 m): five animals were treated with 2-APB [intravenous (i.v.) 10 mg kg–1] for 10 days, while other four animals received vehicle. During the treatment, cardiopulmonary variables were measured daily, and these were also evaluated during an acute episode of superimposed hypoxia, 1 day after the end of the treatment. Furthermore, pulmonary vascular remodeling was assessed by histological analysis 2 days after the end of the treatment. Basal cardiac output and mean systemic arterial pressure (SAP) and resistance from 2-APB- and vehicle-treated lambs did not differ along with the treatment. Mean pulmonary arterial pressure (mPAP) decreased after the first day of 2-APB treatment and remained lower than the vehicle-treated group until the third day, and during the fifth, sixth, and ninth day of treatment. The net mPAP increase in response to acute hypoxia did not change, but the pressure area under the curve (AUC) during hypoxia was slightly lower in 2-APB-treated lambs than in vehicle-treated lambs. Moreover, the 2-APB treatment decreased the pulmonary arterial wall thickness and the α-actin immunoreactivity and increased the luminal area with no changes in the vascular density. Our findings show that 2-APB treatment partially reduced the contractile hypoxic response and reverted the pulmonary vascular remodeling, but this is not enough to normalize the pulmonary hemodynamics in chronically hypoxic newborn lambs.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Parrau
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ismael Hernández
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
The newborn sheep translational model for pulmonary arterial hypertension of the neonate at high altitude. J Dev Orig Health Dis 2021; 11:452-463. [PMID: 32705972 DOI: 10.1017/s2040174420000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic hypoxia during gestation induces greater occurrence of perinatal complications such as intrauterine growth restriction, fetal hypoxia, newborn asphyxia, and respiratory distress, among others. This condition may also cause a failure in the transition of the fetal to neonatal circulation, inducing pulmonary arterial hypertension of the neonate (PAHN), a syndrome that involves pulmonary vascular dysfunction, increased vasoconstrictor tone and pathological remodeling. As this syndrome has a relatively low prevalence in lowlands (~7 per 1000 live births) and very little is known about its prevalence and clinical evolution in highlands (above 2500 meters), our understanding is very limited. Therefore, studies on appropriate animal models have been crucial to comprehend the mechanisms underlying this pathology. Considering the strengths and weaknesses of any animal model of human disease is fundamental to achieve an effective and meaningful translation to clinical practice. The sheep model has been used to study the normal and abnormal cardiovascular development of the fetus and the neonate for almost a century. The aim of this review is to highlight the advances in our knowledge on the programming of cardiopulmonary function with the use of high-altitude newborn sheep as a translational model of PAHN.
Collapse
|
9
|
Mundo W, Wolfson G, Moore LG, Houck JA, Park D, Julian CG. Hypoxia-induced inhibition of mTORC1 activity in the developing lung: a possible mechanism for the developmental programming of pulmonary hypertension. Am J Physiol Heart Circ Physiol 2021; 320:H980-H990. [PMID: 33416457 PMCID: PMC7988757 DOI: 10.1152/ajpheart.00520.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Perinatal hypoxia induces permanent structural and functional changes in the lung and its pulmonary circulation that are associated with the development of pulmonary hypertension (PH) in later life. The mechanistic target of the rapamycin (mTOR) pathway is vital for fetal lung development and is implicated in hypoxia-associated PH, yet its involvement in the developmental programming of PH remains unclear. Pregnant C57/BL6 dams were placed in hyperbaric (760 mmHg) or hypobaric chambers during gestation (505 mmHg, day 15 through postnatal day 4) or from weaning through adulthood (420 mmHg, postnatal day 21 through 8 wk). Pulmonary hemodynamics and right ventricular systolic pressure (RVSP) were measured at 8 wk. mTOR pathway proteins were assessed in fetal (day 18.5) and adult lung (8 wk). Perinatal hypoxia induced PH during adulthood, even in the absence of a sustained secondary hypoxic exposure, as indicated by reduced pulmonary artery acceleration time (PAAT) and peak flow velocity through the pulmonary valve, as well as greater RVSP, right ventricular (RV) wall thickness, and RV/left ventricular (LV) weight. Such effects were independent of increased blood viscosity. In fetal lung homogenates, hypoxia reduced the expression of critical downstream mTOR targets, most prominently total and phosphorylated translation repressor protein (4EBP1), as well as vascular endothelial growth factor, a central regulator of angiogenesis in the fetal lung. In contrast, adult offspring of hypoxic dams tended to have elevated p4EBP1 compared with controls. Our data suggest that inhibition of mTORC1 activity in the fetal lung as a result of gestational hypoxia may interrupt pulmonary vascular development and thereby contribute to the developmental programming of PH.NEW & NOTEWORTHY We describe the first study to evaluate a role for the mTOR pathway in the developmental programming of pulmonary hypertension. Our findings suggest that gestational hypoxia impairs mTORC1 activation in the fetal lung and may impede pulmonary vascular development, setting the stage for pulmonary vascular disease in later life.
Collapse
Affiliation(s)
- William Mundo
- School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Gabriel Wolfson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Houck
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Do Park
- School of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Colleen G Julian
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
10
|
Leslie E, Lopez V, Anti NAO, Alvarez R, Kafeero I, Welsh DG, Romero M, Kaushal S, Johnson CM, Bosviel R, Blaženović I, Song R, Brito A, Frano MRL, Zhang L, Newman JW, Fiehn O, Wilson SM. Gestational long-term hypoxia induces metabolomic reprogramming and phenotypic transformations in fetal sheep pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2021; 320:L770-L784. [PMID: 33624555 DOI: 10.1152/ajplung.00469.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gestational long-term hypoxia increases the risk of myriad diseases in infants including persistent pulmonary hypertension. Similar to humans, fetal lamb lung development is susceptible to long-term intrauterine hypoxia, with structural and functional changes associated with the development of pulmonary hypertension including pulmonary arterial medial wall thickening and dysregulation of arterial reactivity, which culminates in decreased right ventricular output. To further explore the mechanisms associated with hypoxia-induced aberrations in the fetal sheep lung, we examined the premise that metabolomic changes and functional phenotypic transformations occur due to intrauterine, long-term hypoxia. To address this, we performed electron microscopy, Western immunoblotting, calcium imaging, and metabolomic analyses on pulmonary arteries isolated from near-term fetal lambs that had been exposed to low- or high-altitude (3,801 m) hypoxia for the latter 110+ days of gestation. Our results demonstrate that the sarcoplasmic reticulum was swollen with high luminal width and distances to the plasma membrane in the hypoxic group. Hypoxic animals were presented with higher endoplasmic reticulum stress and suppressed calcium storage. Metabolically, hypoxia was associated with lower levels of multiple omega-3 polyunsaturated fatty acids and derived lipid mediators (e.g., eicosapentaenoic acid, docosahexaenoic acid, α-linolenic acid, 5-hydroxyeicosapentaenoic acid (5-HEPE), 12-HEPE, 15-HEPE, prostaglandin E3, and 19(20)-epoxy docosapentaenoic acid) and higher levels of some omega-6 metabolites (P < 0.02) including 15-keto prostaglandin E2 and linoleoylglycerol. Collectively, the results reveal broad evidence for long-term hypoxia-induced metabolic reprogramming and phenotypic transformations in the pulmonary arteries of fetal sheep, conditions that likely contribute to the development of persistent pulmonary hypertension.
Collapse
Affiliation(s)
- Eric Leslie
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Vanessa Lopez
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Nana A O Anti
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Rafael Alvarez
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Isaac Kafeero
- Center for Health Disparities and Molecular Mechanisms, Loma Linda University School of Medicine, Loma Linda, California
| | - Donald G Welsh
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shawn Kaushal
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California
| | - Remy Bosviel
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Ivana Blaženović
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare," I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California.,Center for Health Research, California Polytechnic State University, San Luis Obispo, California.,Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - John W Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,Department of Nutrition, University of California, Davis, California.,USDA-ARS Western Human Nutrition Research Center, Davis, California
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California, Davis, California.,West Coast Metabolomics Center, University of California, Davis, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Advanced Imaging and Microscopy Core, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
11
|
Navarrete A, Chen Z, Aranda P, Poblete D, Utrera A, García-Herrera CM, Gonzalez-Candia A, Beñaldo FA, Ebensperger G, Reyes RV, Herrera EA, Llanos AJ. Study of the Effect of Treatment With Atrial Natriuretic Peptide (ANP) and Cinaciguat in Chronic Hypoxic Neonatal Lambs on Residual Strain and Microstructure of the Arteries. Front Bioeng Biotechnol 2020; 8:590488. [PMID: 33244466 PMCID: PMC7683788 DOI: 10.3389/fbioe.2020.590488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
In this study, we assessed the effects of Atrial Natriuretic Peptide (ANP) and Cinaciguat, as experimental medicines to treat neonatal lambs exposed to chronic hypoxic conditions. To compare the different treatments, the mechanical responses of aorta, carotid, and femoral arterial walls were analyzed by means of axial pre-stretch and ring-opening tests, through a study with n = 6 animals for each group analyzed. The axial pre-stretch test measures the level of shortening in different zones of the arteries when extracted from lambs, while the ring-opening test is used to quantify the degree of residual circumferential deformation in a given zone of an artery. In addition, histological studies were carried out to measure elastin, collagen, and smooth muscle cell (SMC) nuclei densities, both in control and treated groups. The results show that mechanical response is related with histological results, specifically in the proximal abdominal aorta (PAA) and distal carotid zones (DCA), where the cell nuclei content is related to a decrease of residual deformations. The opening angle and the elastic fibers of the aorta artery were statistically correlated (p < 0.05). Specifically, in PAA zone, there are significant differences of opening angle and cell nuclei density values between control and treated groups (p-values to opening angle: Control-ANP = 2 ⋅ 10-2, Control-Cinaciguat = 1 ⋅ 10-2; p-values to cell nuclei density: Control-ANP = 5 ⋅ 10-4, Control-Cinaciguat = 2 ⋅ 10-2). Respect to distal carotid zone (DCA), significant differences between Control and Cinaciguat groups were observed to opening angle (p-value = 4 ⋅ 10-2), and cell nuclei density (p-value = 1 ⋅ 10-2). Our findings add evidence that medical treatments may have effects on the mechanical responses of arterial walls and should be taken into account when evaluating the complete medical outcome.
Collapse
Affiliation(s)
- Alvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Zhuoming Chen
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Aranda
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniel Poblete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Alejandro Gonzalez-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Felipe A. Beñaldo
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Roberto V. Reyes
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Anibal J. Llanos
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Castillo-Galán S, Arenas GA, Reyes RV, Krause BJ, Iturriaga R. Stim-activated TRPC-ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulm Circ 2020; 10:13-22. [PMID: 33110495 PMCID: PMC7557718 DOI: 10.1177/2045894020941484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA), a breathing disorder featured by chronic intermittent
hypoxia (CIH) is associated with pulmonary hypertension (PH). Rodents exposed to CIH
develop pulmonary vascular remodeling and PH, but the pathogenic mechanisms are not well
known. Overexpression of Stim-activated Transient Receptor Potential Channels (TRPC) and
Calcium Release-Activated Calcium Channel Protein (ORAI) TRPC-ORAI Ca2+
channels (STOC) has been involved in pulmonary vascular remodeling and PH in sustained
hypoxia. However, it is not known if CIH may change STOC levels. Accordingly, we studied
the effects of CIH on the expression of STOC subunits in the lung and if these changes
paralleled the progression of the vascular pulmonary remodeling and PH in a preclinical
model of OSA. Male Sprague-Dawley rats (∼200 g) were exposed to CIH (5%O2, 12
times/h for 8 h) for 14, 21, and 28 days. We measured right ventricular systolic pressure
(RVSP), cardiac morphometry with MRI, pulmonary vascular remodeling, and wire-myographic
arterial responses to KCl and endothelin-1 (ET-1). Pulmonary RNA and protein STOC levels
of TRPC1, TRPC4, TRPC6, ORAI 1, ORAI 2, and STIM1 subunits were measured by qPCR and
western blot, and results were compared with age-matched controls. CIH elicited a
progressive increase of RVSP and vascular contractile responses to KCl and ET-1, leading
to vascular remodeling and augmented right ventricular ejection fraction, which was
significant at 28 days of CIH. The levels of TRPC1, TRPC4, TRPC 6, ORAI 1, and STIM 1
channels increased following CIH, and some of them paralleled morphologic and functional
changes. Our findings show that CIH increased pulmonary STOC expression, paralleling
vascular remodeling and PH.
Collapse
Affiliation(s)
- Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Murlewska J, Sylwestrzak O, Respondek-Liberska M. Unfavorable postnatal outcome with significant dilation of the fetal main pulmonary artery near term. Birth Defects Res 2020; 113:55-62. [PMID: 33094922 DOI: 10.1002/bdr2.1828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Fetal echocardiography in third trimester is relatively rare reported and there is no data, what is the clinical meaning of the main pulmonary artery (MPA) dilatation in third trimester or before the delivery in fetuses with congenital heart defect. We analyzed the neonatal follow-up in cases of significantly dilated MPA diameter to better understand its clinical significance. MATERIAL AND METHODS Retrospectively 238 healthy singleton fetuses were selected as a reference group. Consecutive percentiles for MPA diameter according to the gestational age were calculated. In second step, we selected cases whose MPA diameter measured at the level of three vessel trachea view (3VT view) was pointedly above 95th centile in third trimester of pregnancy, according to the obtained data of our healthy population. RESULTS There were 11 fetuses, with dilated MPA diameter (range 12-13.5 mm), who had last echocardiography performed at 37.6 weeks of gestation. There were 11 isolated heart defects: 7 cases with HLHS, 2 with d-TGA, and 2 cases with CoA. Mean neonatal weight was 3,345 g, with Apgar score 8-10. About 10 newborns out of 11 had cardiac surgery at the mean 12th day of the postnatal life and 8 of them died on the mean 23rd day. Autopsy was performed in 5 cases. In all of them histopathology reports described pulmonary hypertension in addition to cardiac structural abnormalities. CONCLUSION Severe dilation of the fetal MPA before the delivery suggested prenatal abnormal lung development and was a poor prognostic factor. In these cases postnatal pulmonary hypertension should be suspected.
Collapse
Affiliation(s)
- Julia Murlewska
- Department for Prenatal Cardiology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | - Maria Respondek-Liberska
- Department for Prenatal Cardiology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.,Department for Congenital Malformations and Prevention, Faculty of Public Health, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Reyes RV, Herrera EA, Ebensperger G, Sanhueza EM, Giussani DA, Llanos AJ. Perinatal cardiopulmonary adaptation to the thin air of the Alto Andino by a native Altiplano dweller, the llama. J Appl Physiol (1985) 2020; 129:152-161. [PMID: 32584666 DOI: 10.1152/japplphysiol.00800.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most mammals have a poor tolerance to hypoxia, and prolonged O2 restriction can lead to organ injury, particularly during fetal and early postnatal life. Nevertheless, the llama (Lama Glama) has evolved efficient mechanisms to adapt to acute and chronic perinatal hypoxia. One striking adaptation is the marked peripheral vasoconstriction measured in the llama fetus in response to acute hypoxia, which allows efficient redistribution of cardiac output toward the fetal heart and adrenal glands. This strong peripheral vasoconstrictor tone is triggered by a carotid body reflex and critically depends on α-adrenergic signaling. A second adaptation is the ability of the llama fetus to protect its brain against hypoxic damage. During hypoxia, in the llama fetus there is no significant increase in brain blood flow. Instead, there is a fall in brain O2 consumption and temperature, together with a decrease of Na+-K+-ATPase activity and Na+ channels expression, protecting against seizures and neuronal death. Finally, the newborn llama does not develop pulmonary hypertension in response to chronic hypoxia. In addition to maintaining basal pulmonary arterial pressure at normal levels the pulmonary arterial pressor response to acute hypoxia is lower in highland than in lowland llamas. The protection against hypoxic pulmonary arterial hypertension and pulmonary contractile hyperreactivity is partly due to increased hemoxygenase-carbon monoxide signaling and decreased Ca2+ sensitization in the newborn llama pulmonary vasculature. These three striking physiological adaptations of the llama allow this species to live and thrive under the chronic influence of the hypobaric hypoxia of life at high altitude.
Collapse
Affiliation(s)
- R V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - G Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - A J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
15
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
16
|
Zhang W, Feng X, Zhang Y, Sun M, Li L, Gao Q, Tang J, Zhang P, Lv J, Zhou X, Xu Z. Prenatal hypoxia inhibited propionate-evoked BK channels of mesenteric artery smooth muscle cells in offspring. J Cell Mol Med 2020; 24:3192-3202. [PMID: 31975557 PMCID: PMC7077603 DOI: 10.1111/jcmm.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
As a common complication of pregnancy, gestational hypoxia has been shown to predispose offspring to vascular dysfunction. Propionate, one of short‐chain fatty acids, exerts cardioprotective effects via reducing blood pressure. This study examined whether prenatal hypoxia impaired propionate‐stimulated large‐conductance Ca2+‐activated K+ (BK) channel activities in vascular smooth muscle cells (VSMCs) of offspring. Pregnant rats were exposed to hypoxia (10.5% oxygen) and normoxia (21% oxygen) from gestational day 7‐21. At 6 weeks of age, VSMCs in mesenteric arteries of offspring were analysed for BK channel functions and gene expressions. It was shown firstly that propionate could open significantly BK single channel in VSMCs in a concentration‐dependent manner. Antagonists of G protein βγ subunits and inositol trisphosphate receptor could completely suppress the activation of BK by propionate, respectively. Gαi/o and ryanodine receptor were found to participate in the stimulation on BK. Compared to the control, vasodilation and increments of BK NPo (the open probability) evoked by propionate were weakened in the offspring by prenatal hypoxia with down‐regulated Gβγ and PLCβ. It was indicated that prenatal hypoxia inhibited propionate‐stimulated BK activities in mesenteric VSMCs of offspring via reducing expressions of Gβγ and PLCβ, in which endoplasmic reticulum calcium release might be involved.
Collapse
Affiliation(s)
- Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Gonzaléz-Candia A, Candia AA, Figueroa EG, Feixes E, Gonzalez-Candia C, Aguilar SA, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Melatonin long-lasting beneficial effects on pulmonary vascular reactivity and redox balance in chronic hypoxic ovine neonates. J Pineal Res 2020; 68:e12613. [PMID: 31583753 DOI: 10.1111/jpi.12613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension of the neonate (PAHN) is a pathophysiological condition characterized by maladaptive pulmonary vascular remodeling and abnormal contractile reactivity. This is a multifactorial syndrome with chronic hypoxia and oxidative stress as main etiological drivers, and with limited effectiveness in therapeutic approaches. Melatonin is a neurohormone with antioxidant and vasodilator properties at the pulmonary level. Therefore, this study aims to test whether a postnatal treatment with melatonin during the neonatal period improves in a long-lasting manner the clinical condition of PAHN. Ten newborn lambs gestated and born at 3600 m were used in this study, five received vehicle and five received melatonin in daily doses of 1 mg kg-1 for the first 3 weeks of life. After 1 week of treatment completion, lung tissue and small pulmonary arteries (SPA) were collected for wire myography, molecular biology, and morphostructural analyses. Melatonin decreased pulmonary arterial pressure the first 4 days of treatment. At 1 month old, melatonin decreased the contractile response to the vasoconstrictors K+ , TX2 , and ET-1. Further, melatonin increased the endothelium-dependent and muscle-dependent vasodilation of SPA. Finally, the treatment decreased pulmonary oxidative stress by inducing antioxidant enzymes and diminishing pro-oxidant sources. In conclusion, melatonin improved vascular reactivity and oxidative stress at the pulmonary level in PAHN lambs gestated and born in chronic hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzaléz-Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro A Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Elisenda Feixes
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristopher Gonzalez-Candia
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Simón A Aguilar
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
19
|
Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA. Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal β-adrenergic stimulation of anesthetized juvenile American alligators ( Alligator mississippiensis). ACTA ACUST UNITED AC 2019; 222:jeb.205419. [PMID: 31548289 DOI: 10.1242/jeb.205419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The effects of the embryonic environment on juvenile phenotypes are widely recognized. We investigated the effect of embryonic hypoxia on the cardiovascular phenotype of 4-year-old American alligators (Alligator mississippiensis). We hypothesized that embryonic 10% O2 preconditions cardiac function, decreasing the reduction in cardiac contractility associated with acute 5% O2 exposure in juvenile alligators. Our findings indicate that dobutamine injections caused a 90% increase in systolic pressure in juveniles that were incubated in 21% and 10% O2, with the 10% O2 group responding with a greater rate of ventricular relaxation and greater left ventricle output compared with the 21% O2 group. Further, our findings indicate that juvenile alligators that experienced embryonic hypoxia have a faster rate of ventricular relaxation, greater left ventricle stroke volume and greater cardiac power following β-adrenergic stimulation, compared with juvenile alligators that did not experience embryonic hypoxia. When juveniles were exposed to 5% O2 for 20 min, normoxic-incubated juveniles had a 50% decline in left ventricle maximal rate of pressure development and maximal pressure; however, these parameters were unaffected and decreased less in the hypoxic-incubated juveniles. These data indicate that embryonic hypoxia in crocodilians alters the cardiovascular phenotype, changing the juvenile response to acute hypoxia and β-adrenergic stimulation.
Collapse
Affiliation(s)
- Brandt Smith
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Janna L Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
20
|
Moretta D, Papamatheakis DG, Morris DP, Giri PC, Blood Q, Murray S, Ramzy M, Romero M, Vemulakonda S, Lauw S, Longo LD, Zhang L, Wilson SM. Long-Term High-Altitude Hypoxia and Alpha Adrenoceptor-Dependent Pulmonary Arterial Contractions in Fetal and Adult Sheep. Front Physiol 2019; 10:1032. [PMID: 31555139 PMCID: PMC6723549 DOI: 10.3389/fphys.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Autonomic innervation of the pulmonary vasculature triggers vasomotor contractility predominately through activation of alpha-adrenergic receptors (α-ARs) in the fetal circulation. Long-term hypoxia (LTH) modulates pulmonary vasoconstriction potentially through upregulation of α1-AR in the vasculature. Our study aimed to elucidate the role of α-AR in phenylephrine (PE)-induced pulmonary vascular contractility, comparing the effects of LTH in the fetal and adult periods on α-AR subtypes and PE-mediated Ca2+ responses and contractions. To address this, we performed wire myography, Ca2+ imaging, and mRNA analysis of pulmonary arteries from ewes and fetuses exposed to LTH or normoxia. Postnatal maturation depressed PE-mediated contractile responses. α2-AR activation contracted fetal vessels; however, this was suppressed by LTH. α1A- and α1B-AR subtypes contributed to arterial contractions in all groups. The α1D-AR was also important to contractility in fetal normoxic vessels and LTH mitigated its function. Postnatal maturity increased the number of myocytes with PE-triggered Ca2+ responses while LTH decreased the percentage of fetal myocytes reacting to PE. The difference between myocyte Ca2+ responsiveness and vessel contractility suggests that fetal arteries are sensitized to changes in Ca2+. The results illustrate that α-adrenergic signaling and vascular function change during development and that LTH modifies adrenergic signaling. These changes may represent components in the etiology of pulmonary vascular disease and foretell the therapeutic potential of adrenergic receptor antagonists in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Dafne Moretta
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | | | - Daniel P Morris
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Paresh C Giri
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Quintin Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Samuel Murray
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Marian Ramzy
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Monica Romero
- Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Srilakshmi Vemulakonda
- Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sidney Lauw
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lawrence D Longo
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Advanced Imaging and Microscopy Core, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
21
|
Woodman AG, Noble RMN, Panahi S, Gragasin FS, Bourque SL. Perinatal iron deficiency combined with a high salt diet in adulthood causes sex-dependent vascular dysfunction in rats. J Physiol 2019; 597:4715-4728. [PMID: 31368136 DOI: 10.1113/jp278223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Perinatal iron deficiency causes changes in offspring mesenteric artery function in adulthood, particularly in males, which can be exacerbated by chronic intake of a high salt diet. Perinatal iron deficient male offspring exhibit enhanced conversion of big endothelin-1 to active endothelin-1, coinciding with decreased nitric oxide levels. Perinatal iron deficient male offspring have reduced nitric oxide-mediated endothelial-dependent vasodilatation coincident with increased vascular superoxide levels following consumption of a high salt diet. Perinatal iron deficiency has no apparent effects on vascular function in female offspring, even when fed a high salt diet. These results help us better understand underlying vascular mechanisms contributing to increased cardiovascular risk from perinatal stressors such as iron deficiency. ABSTRACT Pre- and immediate postnatal stressors, such as iron deficiency, can alter developmental trajectories and predispose offspring to long-term cardiovascular dysfunction. Here, we investigated the impact of perinatal iron deficiency on vascular function in the adult offspring, and whether these long-term effects were exacerbated by prolonged consumption of a high salt diet in adulthood. Female Sprague Dawley rats were fed either an iron-restricted or -replete diet prior to and throughout pregnancy. Six weeks prior to experimentation at 6 months of age, adult offspring were fed either a normal or high salt diet. Mesenteric artery responses to vasodilators and vasoconstrictors were assessed ex vivo by wire myography. Male perinatal iron deficient offspring exhibited decreased reliance on nitric oxide with methacholine-induced vasodilatation (interaction P = 0.03), coincident with increased superoxide levels when fed the high salt diet (P = 0.01). Male perinatal iron deficient offspring exhibit enhanced big endothelin-1 conversion to active endothelin-1 (P = 0.02) concomitant with decreased nitric oxide levels (P = 0.005). Female offspring vascular function was unaffected by perinatal iron deficiency, albeit the high salt diet was associated with impaired vasodilation and decreased nitric oxide production (P = 0.02), particularly in the perinatal iron deficient offspring. These findings implicate vascular dysfunction in the sex-specific programming of cardiovascular dysfunction in the offspring by perinatal iron deficiency.
Collapse
Affiliation(s)
- Andrew G Woodman
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Sareh Panahi
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Ferrante S Gragasin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Herrera EA, Ebensperger G, Hernández I, Sanhueza EM, Llanos AJ, Reyes RV. The role of nitric oxide signaling in pulmonary circulation of high- and low-altitude newborn sheep under basal and acute hypoxic conditions. Nitric Oxide 2019; 89:71-80. [PMID: 31063821 DOI: 10.1016/j.niox.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
Nitric oxide (NO) is the main vasodilator agent that drives the rapid decrease of pulmonary vascular resistance for the respiratory onset during the fetal to neonatal transition. Nevertheless, the enhanced NO generation by the neonatal pulmonary arterial endothelium does not prevent development of hypoxic pulmonary hypertension in species without an evolutionary story at high altitude. Therefore, this study aims to describe the limits of the NO function at high-altitude during neonatal life in the sheep as an animal model without tolerance to perinatal hypoxia. We studied the effect of blockade of NO synthesis with l-NAME in the cardiopulmonary response of lowland (580 m) and highland (3600 m) newborn lambs basally and under an episode of acute hypoxia. We also determined the pulmonary expression of proteins that mediate the actions of the NO vasodilator pathway in the pulmonary vasoactive tone and remodeling. We observed an enhanced nitrergic function in highland lambs under basal conditions, evidenced as a markedly greater increase in basal mean pulmonary arterial pressure (mPAP) and resistance (PVR) under blockade of NO synthesis. Further, acute hypoxic challenge in lowland lambs infused with l-NAME markedly increased their mPAP and PVR to values greater than baseline, whilst in highland animals under NO synthesis blockade, these variables did not show additional increase in response to low PO2. Highland animals showed increased pulmonary RhoA expression, decreased PSer188-RhoA fraction, increased PSer311-p65-NFқβ fraction and up-regulated smooth muscle α-actin, relative to lowland controls. Taken together our data suggest that NO-mediated vasodilation is important to keep a low pulmonary vascular resistance under basal conditions and acute hypoxia at low-altitude. At high-altitude, the enhanced nitrergic signaling partially prevents excessive pulmonary hypertension but does not protect against acute hypoxia. The decreased vasodilator efficacy of nitrergic tone in high altitude lambs could be in part due to increased RhoA signaling that opposes to NO action in the hypoxic pulmonary circulation.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Ismael Hernández
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile
| | - Emilia M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile
| | - Aníbal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile
| | - Roberto V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, RM, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, RM, Chile.
| |
Collapse
|
23
|
Song H, Telugu BP, Thompson LP. Sexual dimorphism of mitochondrial function in the hypoxic guinea pig placenta. Biol Reprod 2019; 100:208-216. [PMID: 30085007 PMCID: PMC6335207 DOI: 10.1093/biolre/ioy167] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Placental hypoxia can stimulate oxidative stress and mitochondrial dysfunction reducing placental efficiency and inducing fetal growth restriction (FGR). We hypothesized that chronic hypoxia inhibits mitochondrial function in the placenta as an underlying cause of cellular mechanisms contributing to FGR. Pregnant guinea pigs were exposed to either normoxia (NMX) or hypoxia (HPX; 10.5% O2) at 25 day gestation until term (65 day). Guinea pigs were anesthetized, and fetuses and placentas were excised at either mid (40 day) or late gestation (64 day), weighed, and placental tissue stored at -80°C until assayed. Mitochondrial DNA content, protein expression of respiratory Complexes I-V, and nitration and activity rates of Complexes I and IV were measured in NMX and HPX male (N = 6 in each treatment) and female (N = 6 in each treatment) placentas. Mitochondrial density was not altered by HPX in either mid- or late-term placentas. In mid gestation, HPX slightly increased expression of Complexes I-III and V in male placentas only, but had no effect on either Complex I or IV activity rates or nitrotyrosine expression. In late gestation, HPX significantly decreased CI/CIV activity rates and increased CI/CIV nitration in male but not female placentas exhibiting a sexual dimorphism. Complex I-V expression was reduced from mid to late gestation in both male and female placentas regardless of treatment. We conclude that chronic HPX decreases mitochondrial function by inhibiting Complex I/IV activity via increased peroxynitrite in a sex-related manner. Further, there may be a progressive decrease in energy metabolism of placental cell types with gestation that increases the vulnerability of placental function to intrauterine stress.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bhanu P Telugu
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland, USA
- Animal and Avian Science, University of Maryland, College Park, Maryland, USA
| | - Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Reyes RV, Díaz M, Ebensperger G, Herrera EA, Quezada SA, Hernandez I, Sanhueza EM, Parer JT, Giussani DA, Llanos AJ. The role of nitric oxide in the cardiopulmonary response to hypoxia in highland and lowland newborn llamas. J Physiol 2018; 596:5907-5923. [PMID: 29369354 PMCID: PMC6265547 DOI: 10.1113/jp274340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Perinatal hypoxia causes pulmonary hypertension in neonates, including humans. However, in species adapted to hypoxia, such as the llama, there is protection against pulmonary hypertension. Nitric oxide (NO) is a vasodilatator with an established role in the cardiopulmonary system of many species, but its function in the hypoxic pulmonary vasoconstrictor response in the newborn llama is unknown. Therefore, we studied the role of NO in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. We show that high- compared to lowland newborn llamas have a reduced pulmonary vasoconstrictor response to acute hypoxia. Protection against excessive pulmonary vasoconstriction in the highland llama is mediated via enhancement of NO pathways, including increased MYPT1 and reduced ROCK expression as well as Ca2+ desensitization. Blunting of pulmonary hypertensive responses to hypoxia through enhanced NO pathways may be an adaptive mechanism to withstand life at high altitude in the newborn llama. ABSTRACT Llamas are born in the Alto Andino with protection against pulmonary hypertension. The physiology underlying protection against pulmonary vasoconstrictor responses to acute hypoxia in highland species is unknown. We determined the role of nitric oxide (NO) in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. The cardiopulmonary function of newborn llamas born at low (580 m) or high altitude (3600 m) was studied under acute hypoxia, with and without NO blockade. In pulmonary arteries, we measured the reactivity to potassium and sodium nitroprusside (SNP), and in lung we determined the content of cGMP and the expression of the NO-related proteins: BKCa, PDE5, PSer92-PDE5, PKG-1, ROCK1 and 2, MYPT1, PSer695-MYPT1, PThr696-MYPT1, MLC20 and PSer19-MLC20. Pulmonary vascular remodelling was evaluated by morphometry and based on α-actin expression. High- compared to lowland newborn llamas showed lower in vivo pulmonary arterial pressor responses to acute hypoxia. This protection involved enhanced NO function, as NO blockade reverted the effect and the pulmonary arterial dilatator response to SNP was significantly enhanced in highland neonates. The pulmonary expression of ROCK2 and the phosphorylation of MLC20 were lower in high-altitude llamas. Conversely, MYPT1 was up-regulated whilst PSer695-MYPT1 and PThr695-MYPT1 did not change. Enhanced NO-dependent mechanisms were insufficient to prevent pulmonary arterial remodelling. Combined, the data strongly support that in the highland newborn llama reduced ROCK, increased MYPT1 expression and Ca2+ desensitization in pulmonary tissue allow an enhanced NO biology to limit hypoxic pulmonary constrictor responses. Blunting of hypoxic pulmonary hypertensive responses may be an adaptive mechanism to life at high altitude.
Collapse
Affiliation(s)
- Roberto V. Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de MedicinaUniversidad de ChileSantiagoChile
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Germán Ebensperger
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilio A. Herrera
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Sebastián A. Quezada
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Ismael Hernandez
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilia M. Sanhueza
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Julian T. Parer
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoCaliforniaUSA
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeUK
| | - Aníbal J. Llanos
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| |
Collapse
|
25
|
de Wijs‐Meijler DPM, Duncker DJ, Danser AHJ, Reiss IKM, Merkus D. Changes in the nitric oxide pathway of the pulmonary vasculature after exposure to hypoxia in swine model of neonatal pulmonary vascular disease. Physiol Rep 2018; 6:e13889. [PMID: 30375198 PMCID: PMC6205946 DOI: 10.14814/phy2.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neonatal pulmonary vascular disease (PVD) is increasingly recognized as a disease that complicates the cardiopulmonary adaptations after birth and predisposes to long-term cardiopulmonary disease. There is growing evidence that PVD is associated with disruptions in the nitric oxide (NO)-cGMP-phosphodiesterase 5 (PDE5) pathway. Examination of the functionality of different parts of this pathway is required for better understanding of the pathogenesis of neonatal PVD. For this purpose, the role of the NO-cGMP-PDE5 pathway in regulation of pulmonary vascular function was investigated in vivo, both at rest and during exercise, and in isolated pulmonary small arteries in vitro, in a neonatal swine model with hypoxia-induced PVD. Endothelium-dependent vasodilatation was impaired in piglets with hypoxia-induced PVD both in vivo at rest and in vitro. Moreover, the responsiveness to the NO-donor SNP was reduced in hypoxia-exposed piglets in vivo, while the relaxation to SNP and 8-bromo-cyclicGMP in vitro were unaltered. Finally, PDE5 inhibition-induced pulmonary vasodilatation was impaired in hypoxia-exposed piglets both in vitro and in vivo at rest. During exercise, however, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in hypoxia-exposed as compared to normoxia-exposed piglets. In conclusion, the impaired endothelium-dependent vasodilatation in piglets with hypoxia-induced PVD was accompanied by reduced responsiveness to NO, potentially caused by altered sensitivity and/or activity of soluble guanylyl cyclase (sGC), resulting in an impaired cGMP production. Our findings in a newborn animal model for neonatal PVD suggests that sGC stimulators/activators may be a novel treatment strategy to alleviate neonatal PVD.
Collapse
Affiliation(s)
- Daphne P. M. de Wijs‐Meijler
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Dirk J. Duncker
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| | - A. H. Jan Danser
- Division of PharmacologyDepartment of Internal MedicineErasmus MC University Medical Center RotterdamRotterdamThe Netherlands
| | - Irwin K. M. Reiss
- Division of NeonatologyDepartment of PediatricsSophia Children's HospitalErasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Daphne Merkus
- Division of Experimental CardiologyDepartment of CardiologyUniversity Medical Center RotterdamErasmus MCRotterdamThe Netherlands
| |
Collapse
|
26
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
27
|
Astorga CR, González-Candia A, Candia AA, Figueroa EG, Cañas D, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs. Front Physiol 2018; 9:185. [PMID: 29559926 PMCID: PMC5845624 DOI: 10.3389/fphys.2018.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia.
Collapse
Affiliation(s)
- Cristian R Astorga
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro González-Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro A Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniel Cañas
- Department of Mechanical Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Germán Ebensperger
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Aguilar M, González-Candia A, Rodríguez J, Carrasco-Pozo C, Cañas D, García-Herrera C, Herrera EA, Castillo RL. Mechanisms of Cardiovascular Protection Associated with Intermittent Hypobaric Hypoxia Exposure in a Rat Model: Role of Oxidative Stress. Int J Mol Sci 2018; 19:ijms19020366. [PMID: 29373484 PMCID: PMC5855588 DOI: 10.3390/ijms19020366] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022] Open
Abstract
More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.
Collapse
Affiliation(s)
- Miguel Aguilar
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| | - Jorge Rodríguez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4222, Australia.
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Daniel Cañas
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170125, Chile.
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago 9170125, Chile.
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
- International Center for Andean Studies, Universidad de Chile, Putre, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| |
Collapse
|
29
|
Alnemri AM. Black lung persistent pulmonary hypertension of the newborn. Saudi experience with sildenafil and nitric oxide. Saudi Med J 2017; 38:97-100. [PMID: 28042638 PMCID: PMC5278074 DOI: 10.15537/smj.2017.1.16223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objectives: To determine the clinical presentation, risk factors, diagnosis, and treatment outcome of Saudi infants with black lung persistent pulmonary hypertension of the newborn (PPHN). Methods: This is a retrospective review of all neonates with PPHN presented to the Armed Force Hospital Southern Region, Kingdom of Saudi Arabia from January 2012 to December 2014. Results: Ten term and near term infants presented with PPHN were included. Maternal diabetes and Down syndrome were the most common identified risk factors for PPHN in the study group. Nine infants were treated with oral sildenafil and did not require mechanical ventilation. Only one infant required mechanical ventilation and inhaled nitric oxide in addition to oral sildenafil. Conclusion: Most of the patients in this cohort with PPHN had risk factors, they did not require mechanical ventilation and responded well to oral sildenafil.
Collapse
Affiliation(s)
- AbdulRahman M Alnemri
- Neonatal Intensive Care Unit, and Coeliac Disease Research Chair, Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
30
|
Silpanisong J, Kim D, Williams JM, Adeoye OO, Thorpe RB, Pearce WJ. Chronic hypoxia alters fetal cerebrovascular responses to endothelin-1. Am J Physiol Cell Physiol 2017; 313:C207-C218. [PMID: 28566491 DOI: 10.1152/ajpcell.00241.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023]
Abstract
In utero hypoxia influences the structure and function of most fetal arteries, including those of the developing cerebral circulation. Whereas the signals that initiate this hypoxic remodeling remain uncertain, these appear to be distinct from the mechanisms that maintain the remodeled vascular state. The present study explores the hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular reactivity to endothelin-1 (ET-1), a potent vascular contractant and mitogen. In fetal lambs, chronic hypoxia (3,820-m altitude for the last 110 days of gestation) had no significant effect on plasma ET-1 levels or ETA receptor density in cerebral arteries but enhanced contractile responses to ET-1 in an ETA-dependent manner. In organ culture (24 h), 10 nM ET-1 increased medial thicknesses less in hypoxic than in normoxic arteries, and these increases were ablated by inhibition of PKC (chelerythrine) in both normoxic and hypoxic arteries but were attenuated by inhibition of CaMKII (KN93) and p38 (SB203580) in normoxic but not hypoxic arteries. As indicated by Ki-67 immunostaining, ET-1 increased medial thicknesses via hypertrophy. Measurements of colocalization between MLCK and SMαA revealed that organ culture with ET-1 also promoted contractile dedifferentiation in normoxic, but not hypoxic, arteries through mechanisms attenuated by inhibitors of PKC, CaMKII, and p38. These results support the hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular reactivity to ET-1 through pathways dependent upon PKC, CaMKII, and p38 that cause increased ET-1-mediated contractility, decreased ET-1-mediated smooth muscle hypertrophy, and a depressed ability of ET-1 to promote contractile dedifferentiation.
Collapse
Affiliation(s)
- Jinjutha Silpanisong
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Dahlim Kim
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - James M Williams
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Olayemi O Adeoye
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, California
| | - Richard B Thorpe
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - William J Pearce
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| |
Collapse
|
31
|
de Wijs-Meijler DP, Duncker DJ, Tibboel D, Schermuly RT, Weissmann N, Merkus D, Reiss IK. Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system. Pulm Circ 2017; 7:55-66. [PMID: 28680565 PMCID: PMC5448552 DOI: 10.1086/689748] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023] Open
Abstract
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called "fetal or perinatal programming." Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for ex-premature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future.
Collapse
Affiliation(s)
- Daphne P. de Wijs-Meijler
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dick Tibboel
- Intensive Care Unit, Department of Pediatric Surgery, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph T. Schermuly
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Department of Internal Medicine, Members of the German Center for Lung Research, Justus-Liebig-University, Giessen, Germany
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K.M. Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Thompson LP, Pence L, Pinkas G, Song H, Telugu BP. Placental Hypoxia During Early Pregnancy Causes Maternal Hypertension and Placental Insufficiency in the Hypoxic Guinea Pig Model. Biol Reprod 2016; 95:128. [PMID: 27806942 PMCID: PMC5315426 DOI: 10.1095/biolreprod.116.142273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/25/2022] Open
Abstract
Chronic placental hypoxia is one of the root causes of placental insufficiencies that result in pre-eclampsia and maternal hypertension. Chronic hypoxia causes disruption of trophoblast (TB) development, invasion into maternal decidua, and remodeling of maternal spiral arteries. The pregnant guinea pig shares several characteristics with humans such as hemomonochorial placenta, villous subplacenta, deep TB invasion, and remodeling of maternal arteries, and is an ideal animal model to study placental development. We hypothesized that chronic placental hypoxia of the pregnant guinea pig inhibits TB invasion and alters spiral artery remodeling. Time-mated pregnant guinea pigs were exposed to either normoxia (NMX) or three levels of hypoxia (HPX: 16%, 12%, or 10.5% O2) from 20 day gestation until midterm (39-40 days) or term (60-65 days). At term, HPX (10.5% O2) increased maternal arterial blood pressure (HPX 57.9 ± 2.3 vs. NMX 40.4 ± 2.3, P < 0.001), decreased fetal weight by 16.1% (P < 0.05), and increased both absolute and relative placenta weights by 10.1% and 31.8%, respectively (P < 0.05). At midterm, there was a significant increase in TB proliferation in HPX placentas as confirmed by increased PCNA and KRT7 staining and elevated ESX1 (TB marker) gene expression (P < 0.05). Additionally, quantitative image analysis revealed decreased invasion of maternal blood vessels by TB cells. In summary, this animal model of placental HPX identifies several aspects of abnormal placental development, including increased TB proliferation and decreased migration and invasion of TBs into the spiral arteries, the consequences of which are associated with maternal hypertension and fetal growth restriction.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Laramie Pence
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland
- Animal and Avian Science, University of Maryland, College Park, Maryland
| | - Gerald Pinkas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore, Maryland
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Bhanu P Telugu
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland
- Animal and Avian Science, University of Maryland, College Park, Maryland
| |
Collapse
|
33
|
Castillo-Galán S, Quezada S, Moraga FA, Ebensperger G, Herrera EA, Beñaldo F, Hernandez I, Ebensperger R, Ramirez S, Llanos AJ, Reyes RV. 2-AMINOETHYLDIPHENYLBORINATE MODIFIES THE PULMONARY CIRCULATION IN PULMONARY HYPERTENSIVE NEWBORN LAMBS WITH PARTIAL GESTATION AT HIGH ALTITUDE. Am J Physiol Lung Cell Mol Physiol 2016; 311:L788-L799. [PMID: 27542806 DOI: 10.1152/ajplung.00230.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Calcium signaling through store operated channels (SOC) is involved in hypoxic pulmonary hypertension. We determined whether a treatment with 2-aminoethyldiphenylborinate (2-APB), a compound with SOC blocker activity, reduces pulmonary hypertension and vascular remodeling. Twelve newborn lambs exposed to perinatal chronic hypoxia were studied, 6 of them received a 2-APB treatment and the other 6 received vehicle treatment, for 10 days in both cases. Throughout this period, we recorded cardiopulmonary variables and on day 11 we evaluated the response to an acute hypoxic challenge. Additionally, we assessed the vasoconstrictor and vasodilator function in isolated pulmonary arteries as well as their remodeling in lung slices. 2-APB reduced pulmonary arterial pressure at the third and tenth days, cardiac output between the fourth and eighth days, and pulmonary vascular resistance at the tenth day of treatment. The pulmonary vasoconstrictor response to acute hypoxia was reduced by the end of treatment. 2-APB also decreased maximal vasoconstrictor response to the thromboxane mimetic U46619 and endothelin-1 and increased maximal relaxation to 8-Br-cGMP. The maximal relaxation and potency to phosphodiesterase-5 and Rho-kinase inhibition with sildenafil and fasudil respectively, were also increased. Finally, 2-APB reduced the medial and adventitial layers' thickness, the expression of α-actin and the percentage of Ki67+ nuclei of small pulmonary arteries. Taken together, our results indicate that 2-APB reduces pulmonary hypertension, vasoconstrictor responses and pathological remodeling in pulmonary hypertensive lambs. We conclude that SOC targeting may be a useful strategy for the treatment of neonatal pulmonary hypertension, however, further testing of specific blockers is needed.
Collapse
Affiliation(s)
| | - Sebastián Quezada
- Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM)
| | | | - Germán Ebensperger
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | | | | | - Ismael Hernandez
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | - Renato Ebensperger
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | - Santiago Ramirez
- Facultad de Medicina, Universidad de Chile, Instituto de Ciencias Biomédicas (ICBM), Santiago, Chile
| | | | - Roberto V Reyes
- Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM)
| |
Collapse
|
34
|
Lopez NC, Ebensperger G, Herrera EA, Reyes RV, Calaf G, Cabello G, Moraga FA, Beñaldo FA, Diaz M, Parer JT, Llanos AJ. Role of the RhoA/ROCK pathway in high-altitude associated neonatal pulmonary hypertension in lambs. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1053-63. [PMID: 26911462 DOI: 10.1152/ajpregu.00177.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
Exposure to high-altitude chronic hypoxia during pregnancy may cause pulmonary hypertension in neonates, as a result of vasoconstriction and vascular remodeling. We hypothesized that susceptibility to pulmonary hypertension, due to an augmented expression and activity of the RhoA/Rho-kinase (ROCK) pathway in these neonates, can be reduced by daily administration of fasudil, a ROCK inhibitor. We studied 10 highland newborn lambs with conception, gestation, and birth at 3,600 m in Putre, Chile. Five highland controls (HLC) were compared with 5 highland lambs treated with fasudil (HL-FAS; 3 mg·kg(-1)·day(-1) iv for 10 days). Ten lowland controls were studied in Lluta (50 m; LLC). During the 10 days of fasudil daily administration, the drug decreased pulmonary arterial pressure (PAP) and resistance (PVR), basally and during a superimposed episode of acute hypoxia. HL-FAS small pulmonary arteries showed diminished muscular area and a reduced contractile response to the thromboxane analog U46619 compared with HLC. Hypoxia, but not fasudil, changed the protein expression pattern of the RhoA/ROCKII pathway. Moreover, HL-FAS lungs expressed less pMYPT1(T850) and pMYPT1T(696) than HLC, with a potential increase of the myosin light chain phosphatase activity. Finally, hypoxia induced RhoA, ROCKII, and PKG mRNA expression in PASMCs of HLC, but fasudil reduced them (HL-FAS) similarly to LLC. We conclude that fasudil decreases the function of the RhoA/ROCK pathway, reducing the PAP and PVR in chronically hypoxic highland neonatal lambs. The inhibition of ROCKs by fasudil may offer a possible therapeutic tool for the pulmonary hypertension of the neonates.
Collapse
Affiliation(s)
- Nandy C Lopez
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - German Ebensperger
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Gloria Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Gertrudis Cabello
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Felipe A Beñaldo
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Diaz
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Julian T Parer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Anibal J Llanos
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile;
| |
Collapse
|
35
|
Blum-Johnston C, Thorpe RB, Wee C, Romero M, Brunelle A, Blood Q, Wilson R, Blood AB, Francis M, Taylor MS, Longo LD, Pearce WJ, Wilson SM. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth. Am J Physiol Lung Cell Mol Physiol 2015; 310:L271-86. [PMID: 26637638 DOI: 10.1152/ajplung.00340.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca(2+)-activated K(+) (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca(2+). Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca(2+) signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼ 140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca(2+) responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-L-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, California
| | - Richard B Thorpe
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Chelsea Wee
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Monica Romero
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| | - Alexander Brunelle
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Quintin Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Rachael Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California;
| | - Arlin B Blood
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Birmingham, Alabama
| | - Lawrence D Longo
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
36
|
Herrera EA, Rojas RT, Krause BJ, Ebensperger G, Reyes RV, Giussani DA, Parer JT, Llanos AJ. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano. J Physiol 2015; 594:1231-45. [PMID: 26339865 DOI: 10.1113/jp271110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Rodrigo T Rojas
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Julian T Parer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, CA, USA
| | - Aníbal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Abstract
Hypoxia induces several responses at cardiovascular, pulmonary and reproductive levels, which may lead to chronic diseases. This is relevant in human populations exposed to high altitude (HA), in either chronic continuous (permanent inhabitants) or intermittent fashion (HA workers, tourists and mountaineers). In Chile, it is estimated that 1.000.000 people live at highlands and more than 55.000 work in HA shifts. Initial responses to hypoxia are compensatory and induce activation of cardioprotective mechanisms, such as those seen under intermittent hypobaric (IH) hypoxia, events that could mediate preconditioning. However, whenever hypoxia is prolonged, the chronic activation of cellular responses induces long-lasting modifications that may result in acclimatization or produce maladaptive changes with increase in cardiovascular risk. HA exposure during pregnancy induces hypoxia and oxidative stress, which in turn may promote cellular responses and epigenetic modifications resulting in severe impairment in growth and development. Sadly, this condition is accompanied with an increased fetal and neonatal morbi-mortality. Further, developmental hypoxia may program cardio-pulmonary circulations later in postnatal life, ending in vascular structural and functional alterations with augmented risk on pulmonary and cardiovascular failure. Additionally, permanent HA inhabitants have augmented risk and prevalence of chronic hypoxic pulmonary hypertension, right ventricular hypertrophy and cardiopulmonary remodeling. Similar responses are seen in adults that are intermittently exposed to chronic hypoxia (CH) such as shift workers in HA areas. The mechanisms involved determining the immediate, short and long-lasting effects are still unclear. For several years, the study of the responses to hypoxic insults and pharmacological targets has been the motivation of our group. This review describes some of the mechanisms underlying hypoxic responses and potential therapeutic approaches with antioxidants such as melatonin, ascorbate, omega 3 (Ω3) or compounds that increase the nitric oxide (NO) bioavailability.
Collapse
|
38
|
Julian CG, Gonzales M, Rodriguez A, Bellido D, Salmon CS, Ladenburger A, Reardon L, Vargas E, Moore LG. Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H565-73. [PMID: 26092986 DOI: 10.1152/ajpheart.00296.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
Abstract
Perinatal exposures exert a profound influence on physiological function, including developmental processes vital for efficient pulmonary gas transfer throughout the lifespan. We extend the concept of developmental programming to chronic mountain sickness (CMS), a debilitating syndrome marked by polycythemia, ventilatory impairment, and pulmonary hypertension that affects ∼10% of male high-altitude residents. We hypothesized that adverse perinatal oxygenation caused abnormalities of ventilatory and/or pulmonary vascular function that increased susceptibility to CMS in adulthood. Subjects were 67 male high-altitude (3,600-4,100 m) residents aged 18-25 yr with excessive erythrocytosis (EE, Hb concentration ≥18.3 g/dl), a preclinical form of CMS, and 66 controls identified from a community-based survey (n = 981). EE subjects not only had higher Hb concentrations and erythrocyte counts, but also lower alveolar ventilation, impaired pulmonary diffusion capacity, higher systolic pulmonary artery pressure, lower pulmonary artery acceleration time, and more frequent right ventricular hypertrophy, than controls. Compared with controls, EE subjects were more often born to mothers experiencing hypertensive complications of pregnancy and hypoxia during the perinatal period, with each increasing the risk of developing EE (odds ratio = 5.25, P = 0.05 and odds ratio = 6.44, P = 0.04, respectively) after other factors known to influence EE status were taken into account. Adverse perinatal oxygenation is associated with increased susceptibility to EE accompanied by modest abnormalities of the pulmonary circulation that are independent of increased blood viscosity. The association between perinatal hypoxia and EE may be due to disrupted alveolarization and microvascular development, leading to impaired gas exchange and/or pulmonary hypertension.
Collapse
Affiliation(s)
- Colleen Glyde Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado;
| | | | | | - Diva Bellido
- Bolivian Institute of High Altitude Biology, La Paz, Bolivia
| | | | - Anne Ladenburger
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, Utah
| | - Lindsay Reardon
- Department of Emergency Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; and
| | - Enrique Vargas
- Bolivian Institute of High Altitude Biology, La Paz, Bolivia
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
39
|
Torres F, González-Candia A, Montt C, Ebensperger G, Chubretovic M, Serón-Ferré M, Reyes RV, Llanos AJ, Herrera EA. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J Pineal Res 2015; 58:362-73. [PMID: 25736256 DOI: 10.1111/jpi.12222] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/26/2015] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial- and muscular-dependent pathways. This was associated with an enhanced nitric oxide-dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.
Collapse
Affiliation(s)
- Flavio Torres
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Providencia, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Niermeyer S, Andrade-M MP, Vargas E, Moore LG. Neonatal oxygenation, pulmonary hypertension, and evolutionary adaptation to high altitude (2013 Grover Conference series). Pulm Circ 2015; 5:48-62. [PMID: 25992270 PMCID: PMC4405714 DOI: 10.1086/679719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/21/2014] [Indexed: 01/30/2023] Open
Abstract
Andeans and Tibetans have less altitude reduction in birth weight than do shorter-resident groups, but only Tibetans are protected from pulmonary hypertension and chronic mountain sickness (CMS). We hypothesized that differences in neonatal oxygenation were involved, with arterial O2 saturation (SaO2) being highest in Tibetans, intermediate in Andeans, and lowest in Han or Europeans, and that improved oxygenation in Andeans relative to Europeans was accompanied by a greater postnatal decline in systolic pulmonary arterial pressures (Ppasys ). We studied 41 healthy (36 Andeans, 5 Europeans) and 9 sick infants at 3,600 m in Bolivia. The SaO2 in healthy babies was highest at 6-24 hours of postnatal age and then declined, whereas sick babies showed the opposite pattern. Compared to that of 30 Tibetan or Han infants studied previously at 3,600 m, SaO2 was higher in Tibetans than in Han or Andeans during wakefulness and active or quiet sleep. Tibetans, as well as Andeans, had higher values than Han while feeding. The SaO2's of healthy Andeans and Europeans were similar and, like those of Tibetans, remained at 85% or above, whereas Han values dipped below 70%. Andean and European Ppasys values were above sea-level norms and higher in sick than in healthy babies, but right heart pressure decreased across 4-6 months in all groups. We concluded that Tibetans had better neonatal oxygenation than Andeans at 3,600 m but that, counter to our hypothesis, neither was SaO2 higher nor Ppa lower in Andean than in European infants. Further, longitudinal studies in these 4 groups are warranted to determine whether neonatal oxygenation influences susceptibility to high-altitude pulmonary hypertension and CMS later in life.
Collapse
Affiliation(s)
- Susan Niermeyer
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Mario Patricio Andrade-M
- Division of Cardiology (Pediatrics), Caja Nacional de Salud and Clínica del Sur, La Paz, Bolivia
| | - Enrique Vargas
- Department of Respiratory Medicine, Cardiology, and Physiology, Instituto Boliviano de Biología de Altura, La Paz, Bolivia
| | - Lorna G. Moore
- Department of Obstetrics and Gynecology and Center for Women’s Health Research, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
41
|
Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:66-74. [PMID: 25446936 DOI: 10.1016/j.cbpa.2014.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
42
|
Herrera EA, Macchiavello R, Montt C, Ebensperger G, Díaz M, Ramírez S, Parer JT, Serón-Ferré M, Reyes RV, Llanos AJ. Melatonin improves cerebrovascular function and decreases oxidative stress in chronically hypoxic lambs. J Pineal Res 2014; 57:33-42. [PMID: 24811332 DOI: 10.1111/jpi.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/μm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Papamatheakis DG, Chundu M, Blood AB, Wilson SM. Prenatal programming of pulmonary hypertension induced by chronic hypoxia or ductal ligation in sheep. Pulm Circ 2014; 3:757-80. [PMID: 25006393 DOI: 10.1086/674767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/28/2013] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension of the newborn is caused by a spectrum of functional and structural abnormalities of the cardiopulmonary circuit. The existence of multiple etiologies and an incomplete understanding of the mechanisms of disease progression have hindered the development of effective therapies. Animal models offer a means of gaining a better understanding of the fundamental basis of the disease. To that effect, a number of experimental animal models are being used to generate pulmonary hypertension in the fetus and newborn. In this review, we compare the mechanisms associated with pulmonary hypertension caused by two such models: in utero ligation of the ductus arteriosus and chronic perinatal hypoxia in sheep fetuses and newborns. In this manner, we make direct comparisons between ductal ligation and chronic hypoxia with respect to the associated mechanisms of disease, since multiple studies have been performed with both models in a single species. We present evidence that the mechanisms associated with pulmonary hypertension are dependent on the type of stress to which the fetus is subjected. Such an analysis allows for a more thorough evaluation of the disease etiology, which can help focus clinical treatments. The final part of the review provides a clinical appraisal of current treatment strategies and lays the foundation for developing individualized therapies that depend on the causative factors.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Division of Pulmonary and Critical Care, University of California San Diego Health System, San Diego, California, USA
| | - Madalitso Chundu
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Arlin B Blood
- Department of Pediatrics Division of Neonatology, and Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Sean M Wilson
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
44
|
Ohanian J, Liao A, Forman SP, Ohanian V. Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2014; 2:2/5/e12015. [PMID: 24872355 PMCID: PMC4098743 DOI: 10.14814/phy2.12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. In this study, we have investigated remodeling of small arteries in a large animal model of aging, the sheep. We show that there is age‐related formation of neointima and increased collagen deposition that is accompanied by changes in sphingolipid metabolism resulting in ceramide accumulation in the tissues. These are the first data implicating sphingolipids as important mediators of vascular aging in small arteries. Given that aging is a major risk factor for cardiovascular disease, our study opens a new area for further research into the mechanisms that underlie vascular remodeling in aging.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon P Forman
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
45
|
Papamatheakis DG, Blood AB, Kim JH, Wilson SM. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr Vasc Pharmacol 2014; 11:616-40. [PMID: 24063380 DOI: 10.2174/1570161111311050006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 01/02/2023]
Abstract
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Center for Perinatal Biology, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, 92350 CA, USA.
| | | | | | | |
Collapse
|
46
|
Salinas CE, Blanco CE, Villena M, Giussani DA. High-Altitude Hypoxia and Echocardiographic Indices of Pulmonary Hypertension in Male and Female Chickens at Adulthood. Circ J 2014; 78:1459-1464. [DOI: 10.1253/circj.cj-13-1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Carlos E. Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés
| | - Carlos E. Blanco
- National Children’s Research Centre, Our Lady’s Children’s Hospital
| | - Mercedes Villena
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
47
|
Sun NL, Wang LY, Xi Y, Hu QZ. Effect of renin–angiotensin system on arterial function in persons with acute mountain sickness. Int J Cardiol 2013. [DOI: 10.1016/j.ijcard.2012.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Parrau D, Ebensperger G, Herrera EA, Moraga F, Riquelme RA, Ulloa CE, Rojas RT, Silva P, Hernandez I, Ferrada J, Diaz M, Parer JT, Cabello G, Llanos AJ, Reyes RV. Store-operated channels in the pulmonary circulation of high- and low-altitude neonatal lambs. Am J Physiol Lung Cell Mol Physiol 2013; 304:L540-8. [PMID: 23418093 DOI: 10.1152/ajplung.00024.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We determined whether store-operated channels (SOC) are involved in neonatal pulmonary artery function under conditions of acute and chronic hypoxia, using newborn sheep gestated and born either at high altitude (HA, 3,600 m) or low altitude (LA, 520 m). Cardiopulmonary variables were recorded in vivo, with and without SOC blockade by 2-aminoethyldiphenylborinate (2-APB), during basal or acute hypoxic conditions. 2-APB did not have effects on basal mean pulmonary arterial pressure (mPAP), cardiac output, systemic arterial blood pressure, or systemic vascular resistance in both groups of neonates. During acute hypoxia 2-APB reduced mPAP and pulmonary vascular resistance in LA and HA, but this reduction was greater in HA. In addition, isolated pulmonary arteries mounted in a wire myograph were assessed for vascular reactivity. HA arteries showed a greater relaxation and sensitivity to SOC blockers than LA arteries. The pulmonary expression of two SOC-forming subunits, TRPC4 and STIM1, was upregulated in HA. Taken together, our results show that SOC contribute to hypoxic pulmonary vasoconstriction in newborn sheep and that SOC are upregulated by chronic hypoxia. Therefore, SOC may contribute to the development of neonatal pulmonary hypertension. We propose SOC channels could be potential targets to treat neonatal pulmonary hypertension.
Collapse
Affiliation(s)
- Daniela Parrau
- Laboratorios de Fisiología y Fisiopatología del Desarrollo, y de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tsao PN, Wei SC. Prenatal hypoxia downregulates the expression of pulmonary vascular endothelial growth factor and its receptors in fetal mice. Neonatology 2013; 103:300-7. [PMID: 23548588 DOI: 10.1159/000347103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/02/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous reports showed that prenatal hypoxia delays the process of lung maturation. Vascular endothelial growth factor (VEGF) and its receptors were important for lung development. However, the role of VEGF and VEGF receptors in altered fetal lung development and maturation induced by prenatal hypoxia remains unknown. OBJECTIVES To elucidate the role of VEGF and VEGF receptors in altered fetal lung development and maturation induced by prenatal hypoxia. METHODS Lung sections of control and maternal hypoxic fetal mice were used for the determination of lung development and total RNA isolated from lung homogenates were used for determination of the expression patterns of VEGF, Flt-1, Flk-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, surfactant protein (SP)-A, SP-B, SP-C, and SP-D by quantitative real-time RT-PCR. RESULTS Prenatal hypoxia resulted in fetal mice body weight gain impairment, delayed fetal pulmonary aeration and maturation. Pulmonary SP-A, SP-B, SP-C, and SP-D mRNA were all decreased in the prenatal hypoxia group. In addition, we demonstrated that prenatal hypoxia inhibited the developmental increase of pulmonary HIF-1α and HIF-2α expression and resulted in decreasing VEGF and its receptors (Flt-1 and Flk-1) at the mRNA expression level and VEGF protein level in fetal lungs. These inhibitory effects persisted and progressed even when the dams were returned to air. CONCLUSIONS We suggest that prenatal hypoxia insults, at least in late gestation, influence pulmonary VEGF and VEGF receptor expression through the down-regulation of HIF pathways and impair fetal lung growth and maturation.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan, ROC.
| | | |
Collapse
|
50
|
Blood AB, Terry MH, Merritt TA, Papamatheakis DG, Blood Q, Ross JM, Power GG, Longo LD, Wilson SM. Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs. Am J Physiol Regul Integr Comp Physiol 2012; 304:R136-46. [PMID: 23152110 DOI: 10.1152/ajpregu.00126.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to chronic hypoxia during gestation predisposes infants to neonatal pulmonary hypertension, but the underlying mechanisms remain unclear. Here, we test the hypothesis that moderate continuous hypoxia during gestation causes changes in the rho-kinase pathway that persist in the newborn period, altering vessel tone and responsiveness. Lambs kept at 3,801 m above sea level during gestation and the first 2 wk of life were compared with those with gestation at low altitude. In vitro studies of isolated pulmonary arterial rings found a more forceful contraction in response to KCl and 5-HT in high-altitude compared with low-altitude lambs. There was no difference between the effects of blockers of various pathways of extracellular Ca(2+) entry in low- and high-altitude arteries. In contrast, inhibition of rho-kinase resulted in significantly greater attenuation of 5-HT constriction in high-altitude compared with low-altitude arteries. High-altitude lambs had higher baseline pulmonary artery pressures and greater elevations in pulmonary artery pressure during 15 min of acute hypoxia compared with low-altitude lambs. Despite evidence for an increased role for rho-kinase in high-altitude arteries, in vivo studies found no significant difference between the effects of rho-kinase inhibition on hypoxic pulmonary vasoconstriction in intact high-altitude and low-altitude lambs. We conclude that chronic hypoxia in utero results in increased vasopressor response to both acute hypoxia and serotonin, but that rho-kinase is involved only in the increased response to serotonin.
Collapse
Affiliation(s)
- Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA 92373, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|