1
|
Salavatian S, Wong B, Kuwabara Y, Fritz JR, Varghese CG, Howard-Quijano K, Armour JA, Foreman RD, Ardell JL, Mahajan A. Comparing the Memory Effects of 50-Hz Low-Frequency and 10-kHz High-Frequency Thoracic Spinal Cord Stimulation on Spinal Neural Network in a Myocardial Infarction Porcine Model. Neuromodulation 2024; 27:1177-1186. [PMID: 39078348 DOI: 10.1016/j.neurom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE This study evaluated the effects of cessation of both conventional low-frequency (50 Hz) and high-frequency (10 kHz) spinal cord stimulation (SCS) on the cardiospinal neural network activity in pigs with myocardial infarction (MI). The objective is to provide an insight into the memory effect of SCS. MATERIALS AND METHODS In nine Yorkshire pigs, chronic MI was created by delivering microspheres to the left circumflex coronary artery. Five weeks after MI, anesthetized pigs underwent sternotomy to expose the heart for performing acute ischemia intervention, and laminectomy to expose the T1-T4 spinal regions for extracellular in vivo neural recording and SCS. Cardiac ischemic-sensitive neurons were identified by selective responsiveness to left anterior descending (LAD) coronary artery occlusion. SCS episodes were delivered in a random order between low- (50 Hz) and high- (10 kHz) frequency, for 1 minute, at 90% of the motor threshold current. Neural firing and synchrony of ischemic-sensitive spinal neurons were evaluated before vs after SCS. RESULTS Using a 64-channel microelectrode array, 2711 spinal neurons were recorded extracellularly. LAD ischemia excited 228 neurons that were labeled as ischemic-responsive neurons. The cessation of 50-Hz SCS caused a higher activation than did inhibition of ischemic-responsive neurons (41 activated vs 19 inhibited), whereas the cessation of 10-kHz SCS caused an opposite response with higher inhibition (11 activated vs 28 inhibited, p < 0.01 vs 50 Hz). Termination of low-frequency SCS caused an increase in ischemic-responsive neuronal firing rate compared with high-frequency SCS (50 Hz: 0.39 Hz ± 0.16 Hz, 10 kHz: -0.11 Hz ± 0.057 Hz, p < 0.01). In addition, SCS delivered at 50 Hz increased the number of synchronized pairs of neurons by 205 pairs, whereas high-frequency SCS decreased the number of synchronized pairs by 345 pairs (p < 0.01). CONCLUSIONS High-frequency (10 kHz) stimulation provides persistent suppression of the ischemia-sensitive neurons after termination of SCS. In contrast, the spinal neural network reverted to excitatory state after termination of low-frequency (50 Hz) stimulation.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Wong
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Fritz
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher G Varghese
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Andrew Armour
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey L Ardell
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kuwabara Y, Wong B, Mahajan A, Salavatian S. Pharmacologic, Surgical, and Device-Based Cardiac Neuromodulation. Card Electrophysiol Clin 2024; 16:315-324. [PMID: 39084724 DOI: 10.1016/j.ccep.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The cardiac autonomic nervous system plays a key role in maintaining normal cardiac physiology, and once disrupted, it worsens the cardiac disease states. Neuromodulation therapies have been emerging as new treatment options, and various techniques have been introduced to mitigate autonomic nervous imbalances to help cardiac patients with their disease conditions and symptoms. In this review article, we discuss various neuromodulation techniques used in clinical settings to treat cardiac diseases.
Collapse
Affiliation(s)
- Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Wong
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zuhair M, Keene D, Kanagaratnam P, Lim PB. Percutaneous Neuromodulation for Atrial Fibrillation. Card Electrophysiol Clin 2024; 16:281-296. [PMID: 39084721 DOI: 10.1016/j.ccep.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Percutaneous neuromodulation is emerging as a promising therapeutic approach for atrial fibrillation (AF). This article explores techniques such as ganglionated plexi (GP) ablation, and vagus nerve stimulation, pinpointing their potential in modulating AF triggers and maintenance. Noninvasive methods, such as transcutaneous low-level tragus stimulation, offer innovative treatment pathways, with early trials indicating a significant reduction in AF burden. GP ablation may address autonomic triggers, and the potential for GP ablation in neuromodulation is discussed. The article stresses the necessity for more rigorous clinical trials to validate the safety, reproducibility, and efficacy of these neuromodulation techniques in AF treatment.
Collapse
Affiliation(s)
- Mohamed Zuhair
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK.
| | - Daniel Keene
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Prapa Kanagaratnam
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| | - Phang Boon Lim
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12, UK
| |
Collapse
|
5
|
Eraky AM, Yerramalla Y, Khan A, Mokhtar Y, Alamrosy M, Farag A, Wright A, Grounds M, Gregorich NM. Beta-Blockers as an Immunologic and Autonomic Manipulator in Critically Ill Patients: A Review of the Recent Literature. Int J Mol Sci 2024; 25:8058. [PMID: 39125627 PMCID: PMC11311757 DOI: 10.3390/ijms25158058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The autonomic nervous system plays a key role in maintaining body hemostasis through both the sympathetic and parasympathetic nervous systems. Sympathetic overstimulation as a reflex to multiple pathologies, such as septic shock, brain injury, cardiogenic shock, and cardiac arrest, could be harmful and lead to autonomic and immunologic dysfunction. The continuous stimulation of the beta receptors on immune cells has an inhibitory effect on these cells and may lead to immunologic dysfunction through enhancing the production of anti-inflammatory cytokines, such as interleukin-10 (IL-10), and inhibiting the production of pro-inflammatory factors, such as interleukin-1B IL-1B and tissue necrotizing factor-alpha (TNF-alpha). Sympathetic overstimulation-induced autonomic dysfunction may also happen due to adrenergic receptor insensitivity or downregulation. Administering anti-adrenergic medication, such as beta-blockers, is a promising treatment to compensate against the undesired effects of adrenergic surge. Despite many misconceptions about beta-blockers, beta-blockers have shown a promising effect in decreasing mortality in patients with critical illness. In this review, we summarize the recently published articles that have discussed using beta-blockers as a promising treatment to decrease mortality in critically ill patients, such as patients with septic shock, traumatic brain injury, cardiogenic shock, acute decompensated heart failure, and electrical storm. We also discuss the potential pathophysiology of beta-blockers in various types of critical illness. More clinical trials are encouraged to evaluate the safety and effectiveness of beta-blockers in improving mortality among critically ill patients.
Collapse
Affiliation(s)
- Akram M. Eraky
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
- Medical Education Department, Kansas City University, Kansas City, MO 64106, USA
| | - Yashwanth Yerramalla
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Adnan Khan
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Yasser Mokhtar
- Critical Care Medicine, Freeman Health System, Joplin, MO 64804, USA; (Y.Y.); (A.K.); (Y.M.)
| | - Mostafa Alamrosy
- Cardiology and Angiology Unit, Department of Clinical and Experimental Internal Medicine, Medical Research Institute, Alexandria University, Alexandria 5422031, Egypt;
| | - Amr Farag
- Critical Care Medicine, Portsmouth University Hospital, Portsmouth PO6 3LY, UK;
| | - Alisha Wright
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Matthew Grounds
- Emergency Medicine, Freeman Health System, Joplin, MO 64804, USA; (A.W.); (M.G.)
| | - Nicole M. Gregorich
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA;
| |
Collapse
|
6
|
Tonko JB, Lambiase PD. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc Res 2024; 120:114-131. [PMID: 38195920 PMCID: PMC10936753 DOI: 10.1093/cvr/cvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Ventricular arrhythmias in cardiac channelopathies are linked to autonomic triggers, which are sub-optimally targeted in current management strategies. Improved molecular understanding of cardiac channelopathies and cellular autonomic signalling could refine autonomic therapies to target the specific signalling pathways relevant to the specific aetiologies as well as the central nervous system centres involved in the cardiac autonomic regulation. This review summarizes key anatomical and physiological aspects of the cardiac autonomic nervous system and its impact on ventricular arrhythmias in primary inherited arrhythmia syndromes. Proarrhythmogenic autonomic effects and potential therapeutic targets in defined conditions including the Brugada syndrome, early repolarization syndrome, long QT syndrome, and catecholaminergic polymorphic ventricular tachycardia will be examined. Pharmacological and interventional neuromodulation options for these cardiac channelopathies are discussed. Promising new targets for cardiac neuromodulation include inhibitory and excitatory G-protein coupled receptors, neuropeptides, chemorepellents/attractants as well as the vagal and sympathetic nuclei in the central nervous system. Novel therapeutic strategies utilizing invasive and non-invasive deep brain/brain stem stimulation as well as the rapidly growing field of chemo-, opto-, or sonogenetics allowing cell-specific targeting to reduce ventricular arrhythmias are presented.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, London, UK
- Department for Cardiology, Bart’s Heart Centre, West Smithfield EC1A 7BE, London, UK
| |
Collapse
|
7
|
Giannino G, Braia V, Griffith Brookles C, Giacobbe F, D'Ascenzo F, Angelini F, Saglietto A, De Ferrari GM, Dusi V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. BIOLOGY 2024; 13:105. [PMID: 38392323 PMCID: PMC10887082 DOI: 10.3390/biology13020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
The cardiac autonomic nervous system (CANS) plays a pivotal role in cardiac homeostasis as well as in cardiac pathology. The first level of cardiac autonomic control, the intrinsic cardiac nervous system (ICNS), is located within the epicardial fat pads and is physically organized in ganglionated plexi (GPs). The ICNS system does not only contain parasympathetic cardiac efferent neurons, as long believed, but also afferent neurons and local circuit neurons. Thanks to its high degree of connectivity, combined with neuronal plasticity and memory capacity, the ICNS allows for a beat-to-beat control of all cardiac functions and responses as well as integration with extracardiac and higher centers for longer-term cardiovascular reflexes. The present review provides a detailed overview of the current knowledge of the bidirectional connection between the ICNS and the most studied cardiac pathologies/conditions (myocardial infarction, heart failure, arrhythmias and heart transplant) and the potential therapeutic implications. Indeed, GP modulation with efferent activity inhibition, differently achieved, has been studied for atrial fibrillation and functional bradyarrhythmias, while GP modulation with efferent activity stimulation has been evaluated for myocardial infarction, heart failure and ventricular arrhythmias. Electrical therapy has the unique potential to allow for both kinds of ICNS modulation while preserving the anatomical integrity of the system.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Carola Griffith Brookles
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Andrea Saglietto
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, 10124 Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, 10126 Torino, Italy
| |
Collapse
|
8
|
Yilmaz Y, Uçar C, Yildiz S. Activities of the hypothalamo-pituitary-adrenal axis and autonomic nervous system following a strong earthquake. Stress Health 2024; 40:e3281. [PMID: 37291076 DOI: 10.1002/smi.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effects of post-traumatic stress, caused by a strong earthquake, on the hypothalamo-pituitary-adrenal axis (HPA) and autonomous nervous system activity (ANS). Activities of the HPA (as salivary cortisol) and ANS (as heart-rate variability [HRV]) were measured following the 2020 Elazig (Türkiye) earthquake (6.8 Richter Scale, classified as strong). A total of 227 participants (103 men (45%) and 124 women (%55)) provided saliva samples twice, namely, 1 week and 6 weeks after the earthquake. Of these participants, HRV was measured in 51 participants by 5 min continuous electrocardiogram (ECG) recording. Frequency- and time-domain parameters of the HRV were calculated to assess the activity of ANS and low/high frequency (LF/HF) ratio was used as surrogate for sympathovagal balance. Salivary cortisol levels decreased from week 1 towards week 6 (17.40 ± 1.48 and 15.32 ± 1.37 ng/mL, respectively, p < 0.05). There were no gender differences (17.99 ± 2.63 and 16.90 ± 1.60 ng/mL, respectively for females and males, p > 0.05) for salivary cortisol levels. There were no differences in time- and frequency domain parameters of the HRV including LF/HF ratio (2.95 ± 0.38 ms2 and 3.60 ± 0.70 ms2 , respectively for week 1 and 6, p > 0.05). The data show that HPA axis activity, but not that of the ANS, remains higher 1 week after the earthquake but decreases afterwards towards the sixth week, suggesting that the HPA axis might be responsible for the long-term effects of a traumatic event like a strong earthquake.
Collapse
Affiliation(s)
- Yücehan Yilmaz
- Faculty of Medicine, Department of Physiology, University of Inonu, Malatya, Türkiye
| | - Cihat Uçar
- Faculty of Medicine, Department of Physiology, Malatya Turgut Ozal University, Battalgazi, Türkiye
| | - Sedat Yildiz
- Faculty of Medicine, Department of Physiology, University of Inonu, Malatya, Türkiye
| |
Collapse
|
9
|
Sassu E, Tumlinson G, Stefanovska D, Fernández MC, Iaconianni P, Madl J, Brennan TA, Koch M, Cameron BA, Preissl S, Ravens U, Schneider-Warme F, Kohl P, Zgierski-Johnston CM, Hortells L. Age-related structural and functional changes of the intracardiac nervous system. J Mol Cell Cardiol 2024; 187:1-14. [PMID: 38103633 DOI: 10.1016/j.yjmcc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Although aging is known to be associated with an increased incidence of both atrial and ventricular arrhythmias, there is limited knowledge about how Schwann cells (SC) and the intracardiac nervous system (iCNS) remodel with age. Here we investigate the differences in cardiac SC, parasympathetic nerve fibers, and muscarinic acetylcholine receptor M2 (M2R) expression in young and old mice. Additionally, we examine age-related changes in cardiac responses to sympathomimetic and parasympathomimetic drugs. METHODS AND RESULTS Lower SC density, lower SC proliferation and fewer parasympathetic nerve fibers were observed in cardiac and, as a control sciatic nerves from old (20-24 months) compared to young mice (2-3 months). In old mice, chondroitin sulfate proteoglycan 4 (CSPG4) was increased in sciatic but not cardiac nerves. Expression of M2R was lower in ventricular myocardium and ventricular conduction system from old mice compared to young mice, while no significant difference was seen in M2R expression in sino-atrial or atrio-ventricular node pacemaker tissue. Heart rate was slower and PQ intervals were longer in Langendorff-perfused hearts from old mice. Ventricular tachycardia and fibrillation were more frequently observed in response to carbachol administration in hearts from old mice versus those from young mice. CONCLUSIONS On the background of reduced presence of SC and parasympathetic nerve fibers, and of lower M2R expression in ventricular cardiomyocytes and conduction system of aged hearts, the propensity of ventricular arrhythmogenesis upon parasympathomimetic drug application is increased. Whether this is caused by an increase in heterogeneity of iCNS structure and function remains to be elucidated.
Collapse
Affiliation(s)
- Eliza Sassu
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Gavin Tumlinson
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Dragana Stefanovska
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Marbely C Fernández
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Pia Iaconianni
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Tomás A Brennan
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Manuel Koch
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Breanne A Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Sebastian Preissl
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany.
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79110 Freiburg, Germany.
| |
Collapse
|
10
|
Salavatian S, Robbins EM, Kuwabara Y, Castagnola E, Cui XT, Mahajan A. Real-time in vivo thoracic spinal glutamate sensing during myocardial ischemia. Am J Physiol Heart Circ Physiol 2023; 325:H1304-H1317. [PMID: 37737733 PMCID: PMC10908408 DOI: 10.1152/ajpheart.00299.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elaine Marie Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
11
|
Chung WH, Masuyama K, Challita R, Hayase J, Mori S, Cha S, Bradfield JS, Ardell JL, Shivkumar K, Ajijola OA. Ischemia-induced ventricular proarrhythmia and cardiovascular autonomic dysreflexia after cardioneuroablation. Heart Rhythm 2023; 20:1534-1545. [PMID: 37562487 DOI: 10.1016/j.hrthm.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Cardioneuroablation (CNA) is an attractive treatment of vasovagal syncope. Its long-term efficacy and safety remain unknown. OBJECTIVE The purpose of this study was to develop a chronic porcine model of CNA to examine the susceptibility to ventricular tachyarrhythmia (ventricular tachycardia/ventricular fibrillation [VT/VF]) and cardiac autonomic function after CNA. METHODS A percutaneous CNA model was developed by ablation of left- and right-sided ganglionated plexi (n = 5), confirmed by histology. Reproducible bilateral vagal denervation was confirmed after CNA by extracardiac vagal nerve stimulation (VNS) and histology. Chronic studies included 16 pigs randomized to CNA (n = 8) and sham ablation (n = 8, Control). After 6 weeks, animals underwent hemodynamic studies, assessment of cardiac sympathetic and parasympathetic function using sympathetic chain stimulation and direct VNS, respectively, and proarrhythmic potential after left anterior descending (LAD) coronary artery ligation. RESULTS After CNA, extracardiac VNS responses remained abolished for 6 weeks despite ganglia remaining in ablated ganglionated plexi. In the CNA group, direct VNS resulted in paradoxical increases in blood pressure, but not in sham-ablated animals (CNA group vs sham group: 8.36% ± 7.0% vs -4.83% ± 8.7%, respectively; P = .009). Left sympathetic chain stimulation (8 Hz) induced significant corrected QT interval prolongation in the CNA group vs the sham group (11.23% ± 4.0% vs 1.49% ± 4.0%, respectively; P < .001). VT/VF after LAD ligation was more prevalent and occurred earlier in the CNA group than in the control group (61.44 ± 73.7 seconds vs 245.11 ± 104.0 seconds, respectively; P = .002). CONCLUSION Cardiac vagal denervation is maintained long-term after CNA in a porcine model. However, chronic CNA was associated with cardiovascular dysreflexia, diminished cardioprotective effects of cardiac vagal tone, and increased susceptibility to VT/VF in ischemia. These potential long-term negative effects of CNA suggest the need for rigorous clinical studies on CNA.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California; China Medical University Hospital, Taichung, Taiwan
| | - Kiyoshi Masuyama
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Justin Hayase
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Steven Cha
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Jeffery L Ardell
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, California.
| |
Collapse
|
12
|
Yang PC, Rose A, DeMarco KR, Dawson JRD, Han Y, Jeng MT, Harvey RD, Santana LF, Ripplinger CM, Vorobyov I, Lewis TJ, Clancy CE. A multiscale predictive digital twin for neurocardiac modulation. J Physiol 2023; 601:3789-3812. [PMID: 37528537 PMCID: PMC10528740 DOI: 10.1113/jp284391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
Cardiac function is tightly regulated by the autonomic nervous system (ANS). Activation of the sympathetic nervous system increases cardiac output by increasing heart rate and stroke volume, while parasympathetic nerve stimulation instantly slows heart rate. Importantly, imbalance in autonomic control of the heart has been implicated in the development of arrhythmias and heart failure. Understanding of the mechanisms and effects of autonomic stimulation is a major challenge because synapses in different regions of the heart result in multiple changes to heart function. For example, nerve synapses on the sinoatrial node (SAN) impact pacemaking, while synapses on contractile cells alter contraction and arrhythmia vulnerability. Here, we present a multiscale neurocardiac modelling and simulator tool that predicts the effect of efferent stimulation of the sympathetic and parasympathetic branches of the ANS on the cardiac SAN and ventricular myocardium. The model includes a layered representation of the ANS and reproduces firing properties measured experimentally. Model parameters are derived from experiments and atomistic simulations. The model is a first prototype of a digital twin that is applied to make predictions across all system scales, from subcellular signalling to pacemaker frequency to tissue level responses. We predict conditions under which autonomic imbalance induces proarrhythmia and can be modified to prevent or inhibit arrhythmia. In summary, the multiscale model constitutes a predictive digital twin framework to test and guide high-throughput prediction of novel neuromodulatory therapy. KEY POINTS: A multi-layered model representation of the autonomic nervous system that includes sympathetic and parasympathetic branches, each with sparse random intralayer connectivity, synaptic dynamics and conductance based integrate-and-fire neurons generates firing patterns in close agreement with experiment. A key feature of the neurocardiac computational model is the connection between the autonomic nervous system and both pacemaker and contractile cells, where modification to pacemaker frequency drives initiation of electrical signals in the contractile cells. We utilized atomic-scale molecular dynamics simulations to predict the association and dissociation rates of noradrenaline with the β-adrenergic receptor. Multiscale predictions demonstrate how autonomic imbalance may increase proclivity to arrhythmias or be used to terminate arrhythmias. The model serves as a first step towards a digital twin for predicting neuromodulation to prevent or reduce disease.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Adam Rose
- Department of Mathematics, University of California Davis, Davis, CA
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Yanxiao Han
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Mao-Tsuen Jeng
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | | | - L. Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | | | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
| | - Timothy J. Lewis
- Department of Mathematics, University of California Davis, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA
- Center for Precision Medicine and Data Science, University of California Davis, Sacramento, CA
| |
Collapse
|
13
|
Filipović N, Marinović Guić M, Košta V, Vukojević K. Cardiac innervations in diabetes mellitus-Anatomical evidence of neuropathy. Anat Rec (Hoboken) 2023; 306:2345-2365. [PMID: 36251628 DOI: 10.1002/ar.25090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022]
Abstract
The extensive innervations of the heart include a complex network of sympathetic, parasympathetic, and sensory nerves connected in loops that serve to regulate cardiac output. Metabolic dysfunction in diabetes affects many different organ systems, including the cardiovascular system; it causes cardiac arrhythmias, silent myocardial ischemia, and sudden cardiac death, among others. These conditions are associated with damage to the nerves that innervate the heart, cardiac autonomic neuropathy (CAN), which is caused by various pathophysiological mechanisms. In this review, the main facts about the anatomy of cardiac innervations and the current knowledge of CAN, its pathophysiological mechanisms, and its diagnostic approach are discussed. In addition, anatomical evidence for CAN from human and animal studies has been summarized.
Collapse
Affiliation(s)
- Natalija Filipović
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| | - Maja Marinović Guić
- Department of Diagnostic and Interventional Radiology, University Hospital of Split, Split, Croatia
- University Department of Health Studies, University of Split, Split, Croatia
| | - Vana Košta
- Department of Neurology, University Hospital of Split, Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, Laboratory for Experimental Neurocardiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
14
|
Yarkoni M, Rehman WU, Bajwa A, Yarkoni A, Rehman AU. Ganglionated Plexus Ablation Procedures to Treat Vasovagal Syncope. Int J Mol Sci 2023; 24:13264. [PMID: 37686062 PMCID: PMC10487499 DOI: 10.3390/ijms241713264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vasovagal syncope (VVS) refers to a heterogeneous group of conditions whereby the cardiovascular reflexes normally controlling the circulation are interrupted irregularly in response to a trigger, resulting in vasodilation, bradycardia, or both. VVS affects one-third of the population at least once in their lifetime or by the age of 60, reduces the quality of life, and may cause disability affecting certain routines. It poses a considerable economic burden on society, and, despite its prevalence, there is currently no proven pharmacological treatment for preventing VVS. The novel procedure of ganglionated plexus (GP) ablation has emerged rapidly in the past two decades, and has been proven successful in treating syncope. Several parameters influence the success rate of GP ablation, including specific ablation sites, localization and surgical techniques, method of access, and the integration of other interventions. This review aims to provide an overview of the existing literature on the physiological aspects and clinical effectiveness of GP ablation in the treatment of VVS. Specifically, we explore the association between GPs and VVS and examine the impact of GP ablation procedures as reported in human clinical trials. Our objective is to shed light on the therapeutic significance of GP ablation in eliminating VVS and restoring normal sinus rhythm, particularly among young adults affected by this condition.
Collapse
Affiliation(s)
- Merav Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (W.u.R.); (A.B.); (A.Y.); (A.u.R.)
| | | | | | | | | |
Collapse
|
15
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Martinez A, Lakkimsetti M, Maharjan S, Aslam MA, Basnyat A, Kafley S, Reddy SS, Ahmed SS, Razzaq W, Adusumilli S, Khawaja UA. Beta-Blockers and Their Current Role in Maternal and Neonatal Health: A Narrative Review of the Literature. Cureus 2023; 15:e44043. [PMID: 37746367 PMCID: PMC10517705 DOI: 10.7759/cureus.44043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Beta-blockers are a class of medications that act on beta-adrenergic receptors and are categorized as cardio-selective and non-selective. They are principally used to treat cardiovascular conditions such as hypertension and arrhythmias. Beta-blockers have also been used to treat non-cardiogenic indications in non-pregnant individuals and the pediatric population. In pregnancy, labetalol is the mainstay treatment for hypertension and other cardiovascular indications. However, contraindications to certain sub-types of beta-blockers include bradycardia, heart failure, obstructive lung diseases, and hemodynamic instability. There is conflicting evidence of the adverse effects on fetal and neonatal health due to a scarce safety and efficacy profile, and further studies are necessary to understand the pharmacokinetics of the different classes of beta-blockers in pregnancy and fetal health. Understanding the hemodynamic changes during the stages of pregnancy is important to target a more beneficial therapy for both mother and fetus as well as better neonatal outcomes. Beta-blocker use in the pediatric population is less documented in studies but does have the potential to treat various cardiogenic and non-cardiogenic conditions. Future comprehensive studies would further benefit the direction of beta-blocker treatment during pregnancy in neonates and pediatrics.
Collapse
Affiliation(s)
- Andrea Martinez
- Medical School, Universidad Autonoma de Guadalajara, Zapopan, MEX
| | | | - Sameep Maharjan
- General Practice, Patan Academy of Health Sciences, Kathmandu, NPL
| | - Muhammad Ammar Aslam
- Medical School, Sargodha Medical College, University of Health Sciences, Sargodha, PAK
| | - Anouksha Basnyat
- General Practice, Hospital for Advanced Medicine & Surgery (HAMS), Kathmandu, NPL
| | - Shashwat Kafley
- Medical School, Enam Medical College and Hospital, Dhaka, BGD
| | | | - Saima S Ahmed
- Vascular Surgery, Dow International Medical College, Karachi, PAK
| | - Waleed Razzaq
- Internal Medicine, Services Hospital Lahore, Lahore, PAK
| | | | | |
Collapse
|
17
|
van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci 2023; 17:1192188. [PMID: 37351426 PMCID: PMC10282187 DOI: 10.3389/fnins.2023.1192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The meticulous control of cardiac sympathetic and parasympathetic tone regulates all facets of cardiac function. This precise calibration of cardiac efferent innervation is dependent on sensory information that is relayed from the heart to the central nervous system. The vagus nerve, which contains vagal cardiac afferent fibers, carries sensory information to the brainstem. Vagal afferent signaling has been predominantly shown to increase parasympathetic efferent response and vagal tone. However, cardiac vagal afferent signaling appears to change after cardiac injury, though much remains unknown. Even though subsequent cardiac autonomic imbalance is characterized by sympathoexcitation and parasympathetic dysfunction, it remains unclear if, and to what extent, vagal afferent dysfunction is involved in the development of vagal withdrawal. This review aims to summarize the current understanding of cardiac vagal afferent signaling under in health and in the setting of cardiovascular disease, especially after myocardial infarction, and to highlight the knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Valerie Y. H. van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Salavatian S, Kuwabara Y, Wong B, Fritz JR, Howard-Quijano K, Foreman RD, Armour JA, Ardell JL, Mahajan A. Spinal neuromodulation mitigates myocardial ischemia-induced sympathoexcitation by suppressing the intermediolateral nucleus hyperactivity and spinal neural synchrony. Front Neurosci 2023; 17:1180294. [PMID: 37332861 PMCID: PMC10272539 DOI: 10.3389/fnins.2023.1180294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Myocardial ischemia disrupts the cardio-spinal neural network that controls the cardiac sympathetic preganglionic neurons, leading to sympathoexcitation and ventricular tachyarrhythmias (VTs). Spinal cord stimulation (SCS) is capable of suppressing the sympathoexcitation caused by myocardial ischemia. However, how SCS modulates the spinal neural network is not fully known. Methods In this pre-clinical study, we investigated the impact of SCS on the spinal neural network in mitigating myocardial ischemia-induced sympathoexcitation and arrhythmogenicity. Ten Yorkshire pigs with left circumflex coronary artery (LCX) occlusion-induced chronic myocardial infarction (MI) were anesthetized and underwent laminectomy and a sternotomy at 4-5 weeks post-MI. The activation recovery interval (ARI) and dispersion of repolarization (DOR) were analyzed to evaluate the extent of sympathoexcitation and arrhythmogenicity during the left anterior descending coronary artery (LAD) ischemia. Extracellular in vivo and in situ spinal dorsal horn (DH) and intermediolateral column (IML) neural recordings were performed using a multichannel microelectrode array inserted at the T2-T3 segment of the spinal cord. SCS was performed for 30 min at 1 kHz, 0.03 ms, 90% motor threshold. LAD ischemia was induced pre- and 1 min post-SCS to investigate how SCS modulates spinal neural network processing of myocardial ischemia. DH and IML neural interactions, including neuronal synchrony as well as cardiac sympathoexcitation and arrhythmogenicity markers were evaluated during myocardial ischemia pre- vs. post-SCS. Results ARI shortening in the ischemic region and global DOR augmentation due to LAD ischemia was mitigated by SCS. Neural firing response of ischemia-sensitive neurons during LAD ischemia and reperfusion was blunted by SCS. Further, SCS showed a similar effect in suppressing the firing response of IML and DH neurons during LAD ischemia. SCS exhibited a similar suppressive impact on the mechanical, nociceptive and multimodal ischemia sensitive neurons. The LAD ischemia and reperfusion-induced augmentation in neuronal synchrony between DH-DH and DH-IML pairs of neurons were mitigated by the SCS. Discussion These results suggest that SCS is decreasing the sympathoexcitation and arrhythmogenicity by suppressing the interactions between the spinal DH and IML neurons and activity of IML preganglionic sympathetic neurons.
Collapse
Affiliation(s)
- Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Benjamin Wong
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan R. Fritz
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Robert D. Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - J. Andrew Armour
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jeffrey L. Ardell
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Arya AV, Bisht H, Tripathi A, Agrawal M, Konat A, Patel J, Mozumder K, Shah D, Chaturvedi D, Sharma K. A Comparative Review of Vagal Nerve Stimulation Versus Baroreceptor Activation Therapy in Cardiac Diseases. Cureus 2023; 15:e40889. [PMID: 37492836 PMCID: PMC10364457 DOI: 10.7759/cureus.40889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Sympathetic imbalance coupled with impairment of baroreceptor control is a key factor responsible for hemodynamic abnormalities in congestive heart failure. Vagal nerve stimulation (VNS) and baroreceptor activation therapy (BAT) are two novel interventions for the same. In this paper, we review the role of sympathovagal alterations in cardiac diseases like heart failure, arrhythmia, hypertension (HTN), etc. Studies like neural cardiac therapy for heart failure (NECTAR-HF), autonomic regulation therapy to enhance myocardial function and reduce progression of heart failure (ANTHEM-HF), and baroreflex activation therapy for heart failure (BEAT-HF), which comprise the history, efficacy, limitations, and current protocols, were extensively analyzed in contrast to one another. Vagal nerve stimulation reverses the reflex inhibition of cardiac vagal efferent activity, which is caused as a result of sympathetic overdrive during the course for heart failure. It has shown encouraging results in certain pre-clinical studies; however, there is also a possibility of serious cardiovascular adverse events if given in higher than the recommended dosage. Attenuated baroreflex sensitivity is attributed to cardiac arrhythmogenesis during heart failure. Baroreceptor activation therapy reverses this phenomenon. However, the surgical procedure for baroreceptor stimulation can have unwarranted complications, including worsening heart failure and hypertension. Considering the effectiveness of the given modalities and taking into account the inconclusive evidence of their adverse events, more clinical trials are needed for establishing the future prospects of these interventional approaches.
Collapse
Affiliation(s)
- Akshat V Arya
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Himanshi Bisht
- Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | | | - Manali Agrawal
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Ashwati Konat
- Zoology, Biomedical Technology and Human Genetics, Gujarat University, Ahmedabad, IND
| | - Jay Patel
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Kamalika Mozumder
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Ahmedabad, IND
| | - Dhrumil Shah
- Internal Medicine, Gujarat Medical Education and Research Society Medical College, Gandhinagar, IND
| | | | - Kamal Sharma
- Cardiology, Kamal Sharma Cardiology Clinic, Ahmedabad, IND
| |
Collapse
|
20
|
Chung WH, Lin YN, Wu MY, Chang KC. Sympathetic Modulation in Cardiac Arrhythmias: Where We Stand and Where We Go. J Pers Med 2023; 13:786. [PMID: 37240956 PMCID: PMC10221179 DOI: 10.3390/jpm13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The nuance of autonomic cardiac control has been studied for more than 400 years, yet little is understood. This review aimed to provide a comprehensive overview of the current understanding, clinical implications, and ongoing studies of cardiac sympathetic modulation and its anti-ventricular arrhythmias' therapeutic potential. Molecular-level studies and clinical studies were reviewed to elucidate the gaps in knowledge and the possible future directions for these strategies to be translated into the clinical setting. Imbalanced sympathoexcitation and parasympathetic withdrawal destabilize cardiac electrophysiology and confer the development of ventricular arrhythmias. Therefore, the current strategy for rebalancing the autonomic system includes attenuating sympathoexcitation and increasing vagal tone. Multilevel targets of the cardiac neuraxis exist, and some have emerged as promising antiarrhythmic strategies. These interventions include pharmacological blockade, permanent cardiac sympathetic denervation, temporal cardiac sympathetic denervation, etc. The gold standard approach, however, has not been known. Although neuromodulatory strategies have been shown to be highly effective in several acute animal studies with very promising results, the individual and interspecies variation between human autonomic systems limits the progress in this young field. There is, however, still much room to refine the current neuromodulation therapy to meet the unmet need for life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90024, USA
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
21
|
Salavatian S, Robbins EM, Kuwabara Y, Castagnola E, Cui XT, Mahajan A. Real-time in vivo thoracic spinal glutamate sensing reveals spinal hyperactivity during myocardial ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.531911. [PMID: 36993301 PMCID: PMC10054946 DOI: 10.1101/2023.03.11.531911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myocardial ischemia-reperfusion (IR) can cause ventricular arrhythmias and sudden cardiac death via sympathoexcitation. The spinal cord neural network is crucial in triggering these arrhythmias and evaluating its neurotransmitter activity during IR is critical for understanding ventricular excitability control. To assess the real-time in vivo spinal neural activity in a large animal model, we developed a flexible glutamate-sensing multielectrode array. To record the glutamate signaling during IR injury, we inserted the probe into the dorsal horn of the thoracic spinal cord at the T2-T3 where neural signals generated by the cardiac sensory neurons are processed and provide sympathoexcitatory feedback to the heart. Using the glutamate sensing probe, we found that the spinal neural network was excited during IR, especially after 15 mins, and remained elevated during reperfusion. Higher glutamate signaling was correlated with the reduction in the cardiac myocyte activation recovery interval, showing higher sympathoexcitation, as well as dispersion of the repolarization which is a marker for increased risk of arrhythmias. This study illustrates a new technique for measuring the spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway. Graphical abstract
Collapse
|
22
|
Fang P, Wang X, Zhang M, Liu J, Wei Y, Wang J, Yang H, Xie X, Tang S. A sudden increase in heart rate during ablation of the right superior pulmonary venous vestibule is correlated with pain-relief in patients undergoing atrial fibrillation ablation. BMC Cardiovasc Disord 2023; 23:92. [PMID: 36803298 PMCID: PMC9938558 DOI: 10.1186/s12872-023-03121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND A sudden increase in heart rate (HR) during ablation of the right superior pulmonary venous vestibule (RSPVV) is often detected in patients undergoing circumferential pulmonary vein isolation (CPVI). In our clinical practices, we observed that some patients had few complaints of pain during the procedures under conscious sedation. AIM We aimed to investigate whether there is a correlation between a sudden increase in HR during AF ablation of the RSPVV and pain relief under conscious sedation. METHODS We prospectively enrolled 161 consecutive paroxysmal AF patients who underwent the first ablation from July 1, 2018, to November 30, 2021. Patients were assigned to the R group when they had a sudden increase in HR during the ablation of the RSPVV, and the others were assigned to the NR group. Atrial effective refractory period and HR were measured before and after the procedure. Visual Analogue Scale (VAS) scores, vagal response (VR) during ablation, and the amount of fentanyl used were also documented. RESULTS Eighty-one patients were assigned to the R group, and the remaining 80 were assigned to the NR group. The post-ablation HR (86.3 ± 8.8 vs. 70.0 ± 9.4 b/min; p ≤ 0.001) was higher in the R group than in pre-ablation. Ten patients in the R group had VRs during CPVI, as well as 52 patients in the NR group. The VAS score [2.3 (1.3-3.4) vs. 6.0 (4.4-6.9); p ≤ 0.001)] and the amount of fentanyl used (107 ± 12 vs. 172 ± 26 ug; p ≤ 0.001) were significantly lower in the R group. CONCLUSION A sudden increase in HR during the ablation of the RSPVV was correlated with pain relief in patients undergoing AF ablation under conscious sedation.
Collapse
Affiliation(s)
- Ping Fang
- grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, 230000 Anhui China ,grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Xianghai Wang
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Meijun Zhang
- grid.452929.10000 0004 8513 0241Department of Intensive Care Medicine, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 241001 Anhui China
| | - Jichun Liu
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Youquan Wei
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Jinfeng Wang
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Hao Yang
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - Xiangrong Xie
- grid.452929.10000 0004 8513 0241Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000 Anhui China
| | - ShengXing Tang
- Anhui Medical University, Hefei, 230000, Anhui, China. .,Department of Cardiology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, 230000, Anhui, China.
| |
Collapse
|
23
|
Kuwabara Y, Howard-Quijano K, Salavatian S, Yamaguchi T, Saba S, Mahajan A. Thoracic dorsal root ganglion stimulation reduces acute myocardial ischemia induced ventricular arrhythmias. Front Neurosci 2023; 17:1091230. [PMID: 36793544 PMCID: PMC9922704 DOI: 10.3389/fnins.2023.1091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Background Dorsal root ganglion stimulation (DRGS) may serve as a novel neuromodulation strategy to reduce cardiac sympathoexcitation and ventricular excitability. Objective In this pre-clinical study, we investigated the effectiveness of DRGS on reducing ventricular arrhythmias and modulating cardiac sympathetic hyperactivity caused by myocardial ischemia. Methods Twenty-three Yorkshire pigs were randomized to two groups, which was control LAD ischemia-reperfusion (CONTROL) or LAD ischemia-reperfusion + DRGS (DRGS) group. In the DRGS group (n = 10), high-frequency stimulation (1 kHz) at the second thoracic level (T2) was initiated 30 min before ischemia and continued throughout 1 h of ischemia and 2 h of reperfusion. Cardiac electrophysiological mapping and Ventricular Arrhythmia Score (VAS) were assessed, along with evaluation of cFos expression and apoptosis in the T2 spinal cord and DRG. Results DRGS decreased the magnitude of activation recovery interval (ARI) shortening in the ischemic region (CONTROL: -201 ± 9.8 ms, DRGS: -170 ± 9.4 ms, p = 0.0373) and decreased global dispersion of repolarization (DOR) at 30 min of myocardial ischemia (CONTROL: 9546 ± 763 ms2, DRGS: 6491 ± 636 ms2, p = 0.0076). DRGS also decreased ventricular arrhythmias (VAS-CONTROL: 8.9 ± 1.1, DRGS: 6.3 ± 1.0, p = 0.038). Immunohistochemistry studies showed that DRGS decreased % cFos with NeuN expression in the T2 spinal cord (p = 0.048) and the number of apoptotic cells in the DRG (p = 0.0084). Conclusion DRGS reduced the burden of myocardial ischemia-induced cardiac sympathoexcitation and has a potential to be a novel treatment option to reduce arrhythmogenesis.
Collapse
Affiliation(s)
- Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samir Saba
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
25
|
Noda Y, Knyahnytska Y, Zomorrodi R, Downar J, Rajji TK, Daskalakis ZJ, Blumberger DM. Vagally Mediated Heart Rate Variability Is Associated With Executive Function Changes in Patients With Treatment-Resistant Depression Following Magnetic Seizure Therapy. Neuromodulation 2022; 25:1378-1386. [PMID: 32870549 DOI: 10.1111/ner.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Magnetic seizure therapy (MST) is a novel investigational brain stimulation modality for patients with treatment-resistant depression (TRD). MST is a potential alternative seizure-based treatment to electroconvulsive therapy (ECT), given that it may offer equivalent antidepressant efficacy, yet with a relative sparing of cognitive functioning. Heart rate variability (HRV) is a marker of central autonomic functioning. We aimed to explore the relationships among baseline HRV, age, clinical outcome, and executive function following MST, in patients with TRD. MATERIALS AND METHODS Eighty-eight TRD patients (55 females; 18-70 years) were enrolled and 48 patients completed a course of MST in an open-label study. Patients received MST treatments two to three times per week, using one of three stimulation frequencies (ie, 100 Hz, 50 Hz, or 25 Hz) at 100% stimulator output. Root mean square of the successive R-R differences (RMSSD), an index of HRV, was computed from a baseline electrocardiogram (ECG) recording. Clinical symptoms were assessed using the Hamilton Depression Rating Scale (HAM-D24) and the Quick Inventory of Depressive Symptomatology (QIDS16). Executive function was assessed using the Trail Making Test and the Mazes Test from the MATRICS battery. RESULTS Baseline RMSSD was correlated with baseline HAM-D24 (r = -0.340, p = 0.001) and baseline Mazes Test (r = 0.417, p = 0.0007) but not with baseline Trail Making Test. Furthermore, baseline RMSSD was not correlated with changes on the HAM-D24, QIDS16, or total scores on the Trail Making Test. However, there was a significant correlation between baseline RMSSD and improvement on the Mazes Test following MST (r = 0.502, p = 0.0004). CONCLUSIONS Since this is an open-label trial, the influence of the placebo effect cannot be excluded. However, our results suggest that baseline RMSSD may be a state-biomarker of depression and executive function impairment. Additionally, while baseline vagally mediated resting cardiac activity did not predict the outcome of depression, it may mediate executive function improvements following MST.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
26
|
Gronda E, Dusi V, D’Elia E, Iacoviello M, Benvenuto E, Vanoli E. Sympathetic activation in heart failure. Eur Heart J Suppl 2022; 24:E4-E11. [PMID: 35991621 PMCID: PMC9385124 DOI: 10.1093/eurheartjsupp/suac030] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sympathetic activation has been long appreciated exclusively as a fundamental compensatory mechanism of the failing heart and, thus, welcome and to be supported. In the initial clinical phases of heart failure (HF), the sympathetic nervous system overdrive plays a compensatory function aimed at maintaining an adequate cardiac output despite the inotropic dysfunction affecting the myocardium. However, when the sympathetic reflex response is exaggerated it triggers a sequence of unfavourable remodelling processes causing a further contractile deterioration that unleashes major adverse cardiovascular consequences, favouring the HF progression and the occurrence of fatal events. Eventually, the sympathetic nervous system in HF was demonstrated to be a ‘lethality factor’ and thus became a prominent therapeutic target. The existence of an effective highly specialized intracardiac neuronal network immediately rules out the old concept that sympathetic activation in HF is merely the consequence of a drop in cardiac output. When a cardiac damage occurs, such as myocardial ischaemia or a primary myocardial disorder, the adaptive capability of the system may be overcame, leading to excessive sympatho-excitation coupled with attenuation till to abolishment of central parasympathetic drive. Myocardial infarction causes, within a very short time, both a functional and anatomical remodelling with a diffuse up-regulation of nerve growth factor (NGF). The subsequent nerve sprouting signal, facilitated by a rise in the levels of NGF in the left stellate ganglion and in the serum, triggers an increase in cardiac nerve density in both peri-infarct and non-infarcted areas. Finally, NFG production decreases over time, supposedly as an adaptative response to the prolonged exposure to sympathetic overactivity, leading in the end to a reduction in sympathetic nerve density. Accordingly, NGF levels were markedly reduced in patients with severe congestive heart failure. The kidney is the other key player of the sympathetic response to HF as it indeed reacts to under-perfusion and to loop diuretics to preserve filtration at the cost of many pathological consequences on its physiology. This vicious loop ultimately participates to the chronic and disruptive sympathetic overdrive. In conclusion, sympathetic activation is the natural physiological consequence to life stressors but also to any condition that may harm our body. It is the first system of reaction to any potential life-threatening event. However, in any aspect of life over reaction is never effective but, in many instances, is, actually, life threatening. One for all is the case of ischaemia-related ventricular fibrillation which is, strongly facilitated by sympathetic hyperactivity. The take home message? When, in a condition of harm, everybody is yelling failure is just around the corner.
Collapse
Affiliation(s)
- E Gronda
- U.O.C. Nefrologia, Dialisi e Trapianto Renale dell’Adulto, Programma Cardiorenale, Dipartimento di Medicina e Specialità Mediche, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico , Milano , Italy
- Area Cardiorenale Metabolica Associazione nazionale Medici Cardiologi Ospedalieri Italia
| | - V Dusi
- Cardiology Division, Department of Medical Sciences, University of Turin , Torino , Italy
| | - E D’Elia
- Cardiovascular Department, Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - M Iacoviello
- Area Cardiorenale Metabolica Associazione nazionale Medici Cardiologi Ospedalieri Italia
- S.C. Cardiologia, AOU Policlinico Riuniti di Foggia, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi , Foggia , Italy
| | - E Benvenuto
- Area Cardiorenale Metabolica Associazione nazionale Medici Cardiologi Ospedalieri Italia
- U.O.C. di Cardiologia-UTIC-Emodinamica PO ‘G. Mazzini’ Teramo , Italy
| | - E Vanoli
- Department of Molecular Medicine, University of Pavia , Pavia , Italy
- Department of Medicine, Cardiology and Rehabilitation Sacra Famiglia Hospital , Erba , Italy
| |
Collapse
|
27
|
Gurel NZ, Sudarshan KB, Tam S, Ly D, Armour JA, Kember G, Ajijola OA. Studying Cardiac Neural Network Dynamics: Challenges and Opportunities for Scientific Computing. Front Physiol 2022; 13:835761. [PMID: 35574437 PMCID: PMC9099376 DOI: 10.3389/fphys.2022.835761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neural control of the heart involves continuous modulation of cardiac mechanical and electrical activity to meet the organism's demand for blood flow. The closed-loop control scheme consists of interconnected neural networks with central and peripheral components working cooperatively with each other. These components have evolved to cooperate control of various aspects of cardiac function, which produce measurable "functional" outputs such as heart rate and blood pressure. In this review, we will outline fundamental studies probing the cardiac neural control hierarchy. We will discuss how computational methods can guide improved experimental design and be used to probe how information is processed while closed-loop control is operational. These experimental designs generate large cardio-neural datasets that require sophisticated strategies for signal processing and time series analysis, while presenting the usual large-scale computational challenges surrounding data sharing and reproducibility. These challenges provide unique opportunities for the development and validation of novel techniques to enhance understanding of mechanisms of cardiac pathologies required for clinical implementation.
Collapse
Affiliation(s)
- Nil Z. Gurel
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States
| | - Koustubh B. Sudarshan
- Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, NS, Canada
| | - Sharon Tam
- UCLA Department of Bioengineering, Los Angeles, CA, United States
| | - Diana Ly
- UCLA Department of Bioengineering, Los Angeles, CA, United States
| | - J. Andrew Armour
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States
| | - Guy Kember
- Department of Engineering Mathematics and Internetworking, Dalhousie University, Halifax, NS, Canada
| | - Olujimi A. Ajijola
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, CA, United States
- Molecular, Cellular and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| |
Collapse
|
28
|
Salavatian S, Hoang JD, Yamaguchi N, Lokhandwala ZA, Swid MA, Armour JA, Ardell JL, Vaseghi M. Myocardial infarction reduces cardiac nociceptive neurotransmission through the vagal ganglia. JCI Insight 2022; 7:155747. [PMID: 35015733 PMCID: PMC8876456 DOI: 10.1172/jci.insight.155747] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
Myocardial infarction causes pathological changes in the autonomic nervous system, which exacerbate heart failure and predispose to fatal ventricular arrhythmias and sudden death. These changes are characterized by sympathetic activation and parasympathetic dysfunction (reduced vagal tone). Reasons for the central vagal withdrawal and, specifically, whether myocardial infarction causes changes in cardiac vagal afferent neurotransmission that then affect efferent tone, remain unknown. The objective of this study was to evaluate whether myocardial infarction causes changes in vagal neuronal afferent signaling. Using in vivo neural recordings from the inferior vagal (nodose) ganglia and immunohistochemical analyses, structural and functional alterations in vagal sensory neurons were characterized in a chronic porcine infarct model and compared with normal animals. Myocardial infarction caused an increase in the number of nociceptive neurons but a paradoxical decrease in functional nociceptive signaling. No changes in mechanosensitive neurons were observed. Notably, nociceptive neurons demonstrated an increase in GABAergic expression. Given that nociceptive signaling through the vagal ganglia increases efferent vagal tone, the results of this study suggest that a decrease in functional nociception, possibly due to an increase in expression of inhibitory neurotransmitters, may contribute to vagal withdrawal after myocardial infarction.
Collapse
Affiliation(s)
- Siamak Salavatian
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Naoko Yamaguchi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | | | - Mohammed Amer Swid
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| |
Collapse
|
29
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
30
|
The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J Cardiovasc Dev Dis 2021; 8:jcdd8090101. [PMID: 34564119 PMCID: PMC8468030 DOI: 10.3390/jcdd8090101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/22/2022] Open
Abstract
Treatment with β-blockers is the main strategy for managing patients with heart failure and reduced ejection fraction because of their ability to reverse the neurohumoral effects of the sympathetic nervous system, with consequent prognostic and symptomatic benefits. However, to date, they are underused, mainly because of the misconception that hypotension and bradycardia may worsen the haemodynamic status of patients with HFrEF and because of the presence of comorbidities falsely believed to be absolute contraindications to their use. To promote proper use of β-blockers in this article, we review the clinical pharmacology of β-blockers, the evidence of the beneficial effects of these drugs in heart failure with reduced ejection fraction, and the current guidelines for their use in clinical practice and in the presence of comorbidities (e.g., pulmonary disease, diabetes, atrial fibrillation, peripheral arterial disease, etc.). It is hoped that the practical approach discussed in this review will allow for a proper diffusion of knowledge about the correct use of β-blockers and the drug-disease interactions to achieve their increased use and titration, as well as for the selection of a specific agent with a view to a properly tailored approach for HFrEF patients.
Collapse
|
31
|
The cardiac autonomic nervous system: an introduction. Herzschrittmacherther Elektrophysiol 2021; 32:295-301. [PMID: 34389873 DOI: 10.1007/s00399-021-00776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
In recent decades, numerous anatomical and physiological studies of the cardiac autonomic nervous system (ANS) have investigated the complex relationships between the brain and the heart. Autonomic activation not only alters heart rate, conduction, and hemodynamics, but also cellular and subcellular properties of individual myocytes. Moreover, the cardiac ANS plays an essential role in cardiac arrhythmogenesis. There is mounting evidence that neural modulation either by ablation or stimulation can effectively control a wide spectrum of cardiac arrhythmias. This article discusses anatomic aspects of the cardiac ANS, focusing on how autonomic activities influence cardiac electrophysiology. Specific autonomic triggers of various cardiac arrhythmias, in particular atrial fibrillation (AF) and ventricular arrhythmias, are also briefly discussed. Studies with heart-rate variability analysis indicate that, rather than being triggered by either vagal or sympathetic activity, the onset of AF can be associated with simultaneous discharge of both limbs, leading to an imbalance between these two arms of the cardiac ANS. At the same time, sudden cardiac death resulting from ventricular arrhythmias continues to be a significant health and societal burden. These nerve activities of the cardiac ANS can be targeted for the treatment for cardiac arrhythmias, in particular AF and ventricular tachyarrhythmias.
Collapse
|
32
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci 2021; 22:ijms22094772. [PMID: 33946275 PMCID: PMC8125662 DOI: 10.3390/ijms22094772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Collapse
|
34
|
Nguyen HL, Vaseghi M. Confessions of a stressed heart: The brain-heart relationship is complicated. Trends Cardiovasc Med 2021; 32:178-179. [PMID: 33781895 DOI: 10.1016/j.tcm.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Heajung L Nguyen
- UCLA Cardiac Arrhythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095-1679, United States
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA 90095-1679, United States.
| |
Collapse
|
35
|
Spinal Anesthesia Reduces Myocardial Ischemia-triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs. Anesthesiology 2021; 134:405-420. [PMID: 33411921 DOI: 10.1097/aln.0000000000003662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympathetic neurons that regulate sympathetic output is not known. The authors hypothesize that spinal bupivacaine reduces cardiac neuronal firing and network interactions in the dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus that produce sympathoexcitation during myocardial ischemia, attenuating ventricular arrhythmogenesis. METHODS Extracellular neuronal signals from the dorsal horn and intermediolateral nucleus neurons were simultaneously recorded in Yorkshire pigs (n = 9) using a 64-channel high-density penetrating microarray electrode inserted at the T2 spinal cord. Dorsal horn and intermediolateral nucleus neural interactions and known markers of cardiac arrhythmogenesis were evaluated during myocardial ischemia and cardiac load-dependent perturbations with intrathecal bupivacaine. RESULTS Cardiac spinal neurons were identified based on their response to myocardial ischemia and cardiac load-dependent perturbations. Spinal bupivacaine did not change the basal activity of cardiac neurons in the dorsal horn or intermediolateral nucleus. After bupivacaine administration, the percentage of cardiac neurons that increased their activity in response to myocardial ischemia was decreased. Myocardial ischemia and cardiac load-dependent stress increased the short-term interactions between the dorsal horn and dorsal horn (324 to 931 correlated pairs out of 1,189 pairs, P < 0.0001), and dorsal horn and intermediolateral nucleus neurons (11 to 69 correlated pairs out of 1,135 pairs, P < 0.0001). Bupivacaine reduced this network response and augmentation in the interactions between dorsal horn-dorsal horn (931 to 38 correlated pairs out of 1,189 pairs, P < 0.0001) and intermediolateral nucleus-dorsal horn neurons (69 to 1 correlated pairs out of 1,135 pairs, P < 0.0001). Spinal bupivacaine reduced shortening of ventricular activation recovery interval and dispersion of repolarization, with decreased ventricular arrhythmogenesis during acute ischemia. CONCLUSIONS Spinal anesthesia reduces network interactions between dorsal horn-dorsal horn and dorsal horn-intermediolateral nucleus cardiac neurons in the spinal cord during myocardial ischemia. Blocking short-term coordination between local afferent-efferent cardiac neurons in the spinal cord contributes to a decrease in cardiac sympathoexcitation and reduction of ventricular arrhythmogenesis. EDITOR’S PERSPECTIVE
Collapse
|
36
|
Enhanced atrial internal-external neural remodeling facilitates atrial fibrillation in the chronic obstructive sleep apnea model. PLoS One 2021; 16:e0247308. [PMID: 33606818 PMCID: PMC7895341 DOI: 10.1371/journal.pone.0247308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Autonomic imbalance plays a crucial role in obstructive sleep apnea (OSA) associated atrial fibrillation (AF). Here, we investigated the potential neural mechanism of AF induced by OSA. METHODS Ten dogs were divided into control group (n = 5) and OSA group (n = 5). The chronic OSA model was established by repeat apnea-ventilation cycles for 4 hours a day for 12 weeks. During the process of model establishment, arterial blood gases, atrial effective refractory period (AERP), AF inducibility, normalized low-frequency power (LFnu), normalized high-frequency power (HFnu), and LFnu/ HFnu were evaluated at baseline, 4th week, 8th week, and 12th week. Nerve activities of left stellate ganglion (LSG) and left vagal nerve(LVN) were recorded. Tyrosine hydroxylase(TH), choline acetyltransferase(CHAT), PGP9.5, nerve growth factor(NGF), and c-Fos were detected in the left atrium, LSG, and LVN by immunohistochemistry and western blot. Moreover, high-frequency stimulations of LSG and LVN were conducted to observe the AF inducibility. RESULTS Compared with the control group, the OSA group showed significantly enhanced neural activity of the LSG, increased AF inducibility, and shortened AERP. LFnu and LFnu/HFnu were markedly increased in the OSA group, while no significant difference in HFnu was observed. TH-positive and PGP9.5-positive nerve densities were significantly increased in the LSG and left atrium. Additionally, the protein levels of NGF, c-Fos, and PGP9.5 were upregulated both in the LSG and left atrium. AF inducibility was markedly increased under LSG stimulation without a stimulus threshold change in the OSA group. CONCLUSIONS OSA significantly enhanced LSG and left atrial neural remodeling, and hyperactivity of LSG may accelerate left atrial neural remodeling to increase AF inducibility.
Collapse
|
37
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
38
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
39
|
Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med 2020; 31:290-302. [PMID: 32434043 DOI: 10.1016/j.tcm.2020.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The autonomic nervous system (ANS) with its two limbs, the sympathetic (SNS) and parasympathetic nervous system (PSNS), plays a critical role in the modulation of cardiac arrhythmogenesis. It can be both pro- and/or anti-arrhythmic at both the atrial and ventricular level of the myocardium. Intricate mechanisms, different for specific cardiac arrhythmias, are involved in this modulatory process. More data are available for the arrhythmogenic effects of the SNS, which, when overactive, can trigger atrial and/or ventricular "adrenergic" arrhythmias in susceptible individuals (e.g. in patients with paroxysmal atrial fibrillation-PAF, ventricular pre-excitation, specific channelopathies, ischemic heart disease or cardiomyopathies), while it can also negate the protective anti-arrhythmic drug effects. However, there is also evidence that PSNS overactivity may be responsible for triggering "vagotonic" arrhythmias (e.g. PAF, Brugada syndrome, idiopathic ventricular fibrillation). Thus, a fine balance is necessary to attain in these two limbs of the ANS in order to maintain eurhythmia, which is a difficult task to accomplish. Over the years, in addition to classical drug therapies, where beta-blockers prevail, several ANS-modulating interventions have been developed aiming at prevention and management of arrhythmias. Among them, techniques of cardiac sympathetic denervation, renal denervation, vagal stimulation, ganglionated plexi ablation and the newer experimental method of optogenetics have been employed. However, in many arrhythmogenic diseases, ANS modulation is still an investigative tool. Initial data are encouraging; however, further studies are needed to explore the efficacy of such interventions. These issues are herein reviewed and old and recent literature data are discussed, tabulated and pictorially illustrated.
Collapse
|
40
|
Stavrakis S, Kulkarni K, Singh JP, Katritsis DG, Armoundas AA. Autonomic Modulation of Cardiac Arrhythmias: Methods to Assess Treatment and Outcomes. JACC Clin Electrophysiol 2020; 6:467-483. [PMID: 32439031 PMCID: PMC7370838 DOI: 10.1016/j.jacep.2020.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
Abstract
The autonomic nervous system plays a central role in the pathogenesis of multiple cardiac arrhythmias, including atrial fibrillation and ventricular tachycardia. As such, autonomic modulation represents an attractive therapeutic approach in these conditions. Notably, autonomic modulation exploits the plasticity of the neural tissue to induce neural remodeling and thus obtain therapeutic benefit. Different forms of autonomic modulation include vagus nerve stimulation, tragus stimulation, renal denervation, baroreceptor activation therapy, and cardiac sympathetic denervation. This review seeks to highlight these autonomic modulation therapeutic modalities, which have shown promise in early preclinical and clinical trials and represent exciting alternatives to standard arrhythmia treatment. We also present an overview of the various methods used to assess autonomic tone, including heart rate variability, skin sympathetic nerve activity, and alternans, which can be used as surrogate markers and predictors of the treatment effect. Although the use of autonomic modulation to treat cardiac arrhythmias is supported by strong preclinical data and preliminary studies in humans, in light of the disappointing results of a number of recent randomized clinical trials of autonomic modulation therapies in heart failure, the need for optimization of the stimulation parameters and rigorous patient selection based on appropriate biomarkers cannot be overemphasized.
Collapse
Affiliation(s)
- Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| | - Kanchan Kulkarni
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jagmeet P Singh
- Cardiology Division, Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Antonis A Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
41
|
Ang R, Marina N. Low-Frequency Oscillations in Cardiac Sympathetic Neuronal Activity. Front Physiol 2020; 11:236. [PMID: 32256390 PMCID: PMC7093552 DOI: 10.3389/fphys.2020.00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden cardiac death caused by ventricular arrhythmias is among the leading causes of mortality, with approximately half of all deaths attributed to heart disease worldwide. Periodic repolarization dynamics (PRD) is a novel marker of repolarization instability and strong predictor of death in patients post-myocardial infarction that is believed to occur in association with low-frequency oscillations in sympathetic nerve activity. However, this hypothesis is based on associations of PRD with indices of sympathetic activity that are not directly linked to cardiac function, such as muscle vasoconstrictor activity and the variability of cardiovascular autospectra. In this review article, we critically evaluate existing scientific evidence obtained primarily in experimental animal models, with the aim of identifying the neuronal networks responsible for the generation of low-frequency sympathetic rhythms along the neurocardiac axis. We discuss the functional significance of rhythmic sympathetic activity on neurotransmission efficacy and explore its role in the pathogenesis of ventricular repolarization instability. Most importantly, we discuss important gaps in our knowledge that require further investigation in order to confirm the hypothesis that low frequency cardiac sympathetic oscillations play a causative role in the generation of PRD.
Collapse
Affiliation(s)
- Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
42
|
Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System Dysfunction: JACC Focus Seminar. J Am Coll Cardiol 2020; 73:1189-1206. [PMID: 30871703 DOI: 10.1016/j.jacc.2018.12.064] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
Autonomic nervous system control of the heart is a dynamic process in both health and disease. A multilevel neural network is responsible for control of chronotropy, lusitropy, dromotropy, and inotropy. Intrinsic autonomic dysfunction arises from diseases that directly affect the autonomic nerves, such as diabetes mellitus and the syndromes of primary autonomic failure. Extrinsic autonomic dysfunction reflects the changes in autonomic function that are secondarily induced by cardiac or other disease. An array of tests interrogate various aspects of cardiac autonomic control in either resting conditions or with physiological perturbations from resting conditions. The prognostic significance of these assessments have been well established. Clinical usefulness has not been established, and the precise mechanistic link to mortality is less well established. Further efforts are required to develop optimal approaches to delineate cardiac autonomic dysfunction and its adverse effects to develop tools that can be used to guide clinical decision-making.
Collapse
Affiliation(s)
- Jeffrey J Goldberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| | - Rishi Arora
- Feinberg Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, Illinois
| | - Una Buckley
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California-Los Angeles Los Angeles, California
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California-Los Angeles Los Angeles, California
| |
Collapse
|
43
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
44
|
Neuromodulation for Ventricular Tachycardia and Atrial Fibrillation: A Clinical Scenario-Based Review. JACC Clin Electrophysiol 2019; 5:881-896. [PMID: 31439288 DOI: 10.1016/j.jacep.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Autonomic dysregulation in cardiovascular disease plays a major role in the pathogenesis of arrhythmias. Cardiac neural control relies on complex feedback loops consisting of efferent and afferent limbs, which carry sympathetic and parasympathetic signals from the brain to the heart and sensory signals from the heart to the brain. Cardiac disease leads to neural remodeling and sympathovagal imbalances with arrhythmogenic effects. Preclinical studies of modulation at central and peripheral levels of the cardiac autonomic nervous system have yielded promising results, leading to early stage clinical studies of these techniques in atrial fibrillation and refractory ventricular arrhythmias, particularly in patients with inherited primary arrhythmia syndromes and structural heart disease. However, significant knowledge gaps in basic cardiac neurophysiology limit the success of these neuromodulatory therapies. This review discusses the recent advances in neuromodulation for cardiac arrhythmia management, with a clinical scenario-based approach aimed at bringing neurocardiology closer to the realm of the clinical electrophysiologist.
Collapse
|
45
|
Ivabradine modulates the autonomic nervous system by affecting the “little brain” of the heart: A hypothesis. Med Hypotheses 2019; 129:109253. [DOI: 10.1016/j.mehy.2019.109253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/24/2022]
|
46
|
Wang Y, Po SS, Scherlag BJ, Yu L, Jiang H. The role of low-level vagus nerve stimulation in cardiac therapy. Expert Rev Med Devices 2019; 16:675-682. [PMID: 31306049 DOI: 10.1080/17434440.2019.1643234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: Cardiovascular diseases are accompanied by autonomic nervous system (ANS) imbalance which is characterized by decreased vagal tone. Preclinical and clinical studies have revealed that increasing vagal activity via vagus nerve stimulation (VNS) could protect the heart. Based on these studies, VNS has emerged as a potential non-pharmaceutical treatment strategy. Although it's still difficult to find the optimal stimulus parameters, however, in arrhythmia model, it is reported that low-level VNS (LL-VNS) exacts paradoxical effects from the high-level VNS. Thus, the concept of LL-VNS is introduced. Areas covered: Animal and human studies have discussed the safety and efficacy of VNS and LL-VNS, and this review will discuss the research data in cardiovascular diseases, including atrial arrhythmia, ventricular arrhythmia, ischemia/reperfusion injury, heart failure, and hypertension. Expert opinion: In this regard, various clinical studies have been performed to verify the safety and efficacy of VNS. It is shown that VNS is well-tolerated and safe, but the results of its efficacy are conflicting, which may well block the translational process of VNS. The appearance of LL-VNS brings new idea and inspiration, suggesting an important role of subthreshold stimulation. A better understanding of the LL-VNS will contribute to translational research of VNS.
Collapse
Affiliation(s)
- Yuhong Wang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China.,b Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University , Harbin , China
| | - Sunny S Po
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Benjamin J Scherlag
- c Heart Rhythm Institute and Department of Medicine, University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Lilei Yu
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| | - Hong Jiang
- a Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology , Wuhan , Hubei , China
| |
Collapse
|
47
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
48
|
Osório TG, Coutiño HE, Iacopino S, Sieira J, Ströker E, Martín-Sierra C, Salghetti F, Paparella G, Aryana A, Varnavas V, Terasawa M, Brugada P, de Asmundis C, Chierchia GB. Quantification of acute parasympathetic denervation during cryoballoon ablation by using extracardiac vagal stimulation. J Cardiovasc Med (Hagerstown) 2019; 20:107-113. [DOI: 10.2459/jcm.0000000000000760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Chadda KR, Ajijola OA, Vaseghi M, Shivkumar K, Huang CLH, Jeevaratnam K. Ageing, the autonomic nervous system and arrhythmia: From brain to heart. Ageing Res Rev 2018; 48:40-50. [PMID: 30300712 DOI: 10.1016/j.arr.2018.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/21/2018] [Accepted: 09/30/2018] [Indexed: 02/08/2023]
Abstract
An ageing myocardium possesses significant electrophysiological alterations that predisposes the elderly patient to arrhythmic risk. Whilst these alterations are intrinsic to the cardiac myocytes, they are modulated by the cardiac autonomic nervous system (ANS) and consequently, ageing of the cardiac ANS is fundamental to the development of arrhythmias. A systems-based approach that incorporates the influence of the cardiac ANS could lead to better mechanistic understanding of how arrhythmogenic triggers and substrates interact spatially and temporally to produce sustained arrhythmia and why its incidence increases with age. Despite the existence of physiological oscillations of ANS activity on the heart, pathological oscillations can lead to defective activation and recovery properties of the myocardium. Such changes can be attributable to the decrease in functionality and structural alterations to ANS specific receptors in the myocardium with age. These altered ANS adaptive responses can occur either as a normal ageing process or accelerated in the presence of specific cardiac pathologies, such as genetic mutations or neurodegenerative conditions. Targeted intervention that seek to manipulate the ageing ANS influence on the myocardium may prove to be an efficacious approach for the management of arrhythmia in the ageing population.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System/David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
50
|
Zheng W, McKinney W, Kashon ML, Pan D, Castranova V, Kan H. The effects of inhaled multi-walled carbon nanotubes on blood pressure and cardiac function. NANOSCALE RESEARCH LETTERS 2018; 13:189. [PMID: 29971611 PMCID: PMC6029995 DOI: 10.1186/s11671-018-2603-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Heart rate variability (HRV) as a marker reflects the activity of the autonomic nervous system. The prognostic significance of HRV for cardiovascular disease has been reported in clinical and epidemiological studies. Our laboratory has reported alterations in rat heart rate variability (HRV) due to increasing activity of both sympathetic and parasympathetic nervous system after pulmonary exposure to multi-walled carbon nanotubes (MWCNTs). This suggests that pulmonary inhalation of engineered nanoparticles (ENs) may lead to functional changes in the cardiovascular system. The present study further investigated the effects of inhaled MWCNTs on the cardiovascular system and evaluated the correlation between the alterations in HRV and changes in cardiovascular function. METHODS Male Sprague-Dawley rats were pre-implanted with a telemetry device and exposed by inhalation to MWCNTs for 5 h at a concentration of 5 mg/m3. The electrocardiogram (EKG) and blood pressure were recorded in real time by the telemetry system at pre-exposure, during exposure, and 1 and 7 days post-exposure. In vivo cardiac functional performance in response to dobutamine was determined by a computerized pressure-volume loop system. RESULTS Inhalation of MWCNTs significantly increased both systolic and diastolic blood pressure and decreased heart rate in awake freely moving rat. Additionally, inhalation of MWCNTs also reduced cardiac stroke work, stroke volume, and output in response to dobutamine in anesthetized rats. CONCLUSIONS Inhalation of MWCNTs altered cardiovascular performance, which was associated with MWCNT exposure-induced alterations in the sympathetic and parasympathetic nervous system. These findings suggest the need to further investigate the cardiovascular effects of inhaled MWCNTs.
Collapse
Affiliation(s)
- Wen Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Michael L. Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Daniel Pan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
| | - Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA
- Health Effects Laboratory Division, Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505 USA
| |
Collapse
|