1
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
2
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
3
|
OUP accepted manuscript. Nutr Rev 2022; 80:1942-1957. [DOI: 10.1093/nutrit/nuac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
4
|
Barbier M, González JA, Houdayer C, Burdakov D, Risold P, Croizier S. Projections from the dorsomedial division of the bed nucleus of the stria terminalis to hypothalamic nuclei in the mouse. J Comp Neurol 2021; 529:929-956. [PMID: 32678476 PMCID: PMC7891577 DOI: 10.1002/cne.24988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
As stressful environment is a potent modulator of feeding, we seek in the present work to decipher the neuroanatomical basis for an interplay between stress and feeding behaviors. For this, we combined anterograde and retrograde tracing with immunohistochemical approaches to investigate the patterns of projections between the dorsomedial division of the bed nucleus of the stria terminalis (BNST), well connected to the amygdala, and hypothalamic structures such as the paraventricular (PVH) and dorsomedial (DMH), the arcuate (ARH) nuclei and the lateral hypothalamic areas (LHA) known to control feeding and motivated behaviors. We particularly focused our study on afferences to proopiomelanocortin (POMC), agouti-related peptide (AgRP), melanin-concentrating-hormone (MCH) and orexin (ORX) neurons characteristics of the ARH and the LHA, respectively. We found light to intense innervation of all these hypothalamic nuclei. We particularly showed an innervation of POMC, AgRP, MCH and ORX neurons by the dorsomedial and dorsolateral divisions of the BNST. Therefore, these results lay the foundation for a better understanding of the neuroanatomical basis of the stress-related feeding behaviors.
Collapse
Affiliation(s)
- Marie Barbier
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
- Department of PsychiatrySeaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - J. Antonio González
- The Francis Crick InstituteLondonUK
- The Rowett Institute, School of MedicineMedical Sciences and Nutrition, University of AberdeenAberdeenUK
| | - Christophe Houdayer
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
| | - Denis Burdakov
- The Francis Crick InstituteLondonUK
- Neurobehavioural Dynamics Lab, Institute for Neuroscience, D‐HESTSwiss Federal Institute of Technology / ETH ZürichZürichSwitzerland
| | - Pierre‐Yves Risold
- EA481, Neurosciences Intégratives et Cliniques, UFR SantéUniversité Bourgogne Franche‐ComtéBesançonFrance
| | - Sophie Croizier
- University of LausanneCenter for Integrative GenomicsLausanneSwitzerland
| |
Collapse
|
5
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Ritter S, Li AJ, Wang Q. Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla. Physiol Behav 2019; 208:112568. [PMID: 31173784 PMCID: PMC7015674 DOI: 10.1016/j.physbeh.2019.112568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
Glucose is the required metabolic substrate for the brain. Yet the brain stores very little glucose. Therefore, the brain continuously monitors glucose availability to detect hypoglycemia and to mobilize system-wide responses to protect and restore euglycemia. Catecholamine (CA) neurons in the hindbrain are critical elements of the brain's glucoregulatory mechanisms. They project widely throughout the brain and spinal cord, innervating sites controlling behavioral, endocrine and visceral responses. Hence, CA neurons are capable of triggering a rapid, coordinated and multifaceted response to glucose challenge. This article reviews experimental data that has begun to elucidate the importance of CA neurons for glucoregulation, the functions of specific CA subpopulations in the ventrolateral medulla, and the extended circuitry through which they engage other levels of the nervous system to accomplish their essential glucoregulatory task. Hopefully, this review also suggests the vast amount of work yet to be done in this area and the justification for engaging in that effort.
Collapse
Affiliation(s)
- Sue Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.
| | - Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
7
|
He Y, Yang C, Wang P, Yang L, Wu H, Liu H, Qi M, Guo Z, Li J, Shi H, Wu X, Hu Z. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111953. [PMID: 31082513 DOI: 10.1016/j.jep.2019.111953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, there is no specific effective western medicine for functional dyspepsia (FD), especially in children. Clinically, child compound Endothelium corneum (CCEC) has shown to be effective for the therapy of FD, however, the underlying mechanism has not been elucidated yet. MATERIALS AND METHODS FD was induced in rats by irregular diet plus dilute hydrochloric acid feeding. Gastric emptying and small intestinal transit were examined by intragastric gavage with Evans blue. Histopathology was assessed by H&E staining. Gastrointestinal hormones and brain gut peptides were measured by ELISA assay. mRNA expression level was quantified by real-time PCR. Protein expression level was detected by western blotting assay. Gut microbiota was analyzed by 16S rRNA miseq sequencing. RESULTS CCEC significantly enhanced gastric emptying and small intestinal transit of FD rats, and prominently suppressed gastrointestinal microinflammation. At phylum level, CCEC prevented the decrease of Firmicutes and the increase of Bacteroidetes in gut of FD rats. In stomach of FD rats, MTL, CCK and VIP levels were significantly increased, which could be repressed by CCEC; however, the decreased GAS level could not be elevated by CCEC. In small intestine of FD rats, MTL and GAS levels were decreased, while VIP content was increased. These alterations could be effectively reversed by CCEC. NPY levels in serum, small intestine and hypothalamus of FD rats were significantly decreased, which could be rescued by CCEC. Moreover, the over-activated POMC/Stat3/Akt pathway in hypothalamus of FD rats could be suppressed by CCEC. CONCLUSION CCEC enhanced gastrointestinal motility probably through rebalancing the homeostasis of brain-gut-microbiota axis in FD rats. The novel findings may provide insightful theoretical basis for its clinical employment.
Collapse
Affiliation(s)
- Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongmin Liu
- School of Pharmacy, Zhengzhou University, Zhengzhou, 450001, China.
| | - Muge Qi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhonghua Guo
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghua Li
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
8
|
Huston NJ, Brenner LA, Taylor ZC, Ritter RC. NPY2 receptor activation in the dorsal vagal complex increases food intake and attenuates CCK-induced satiation in male rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R406-R416. [PMID: 30726118 DOI: 10.1152/ajpregu.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY), and their cognate receptors (YR) are expressed by subpopulations of central and peripheral nervous system neurons. Intracerebroventricular injections of NPY or PYY increase food intake, and intrahypothalamic NPY1 or NPY5 receptor agonist injections also increase food intake. In contrast, injection of PYY in the periphery reduces food intake, apparently by activating peripheral Y2R. The dorsal vagal complex (DVC) of the hindbrain is the site where vagal afferents relay gut satiation signals to the brain. While contributions of the DVC are increasingly investigated, a role for DVC YR in control of food intake has not been examined systematically. We used in situ hybridization to confirm expression of Y1R and Y2R, but not Y5R, in the DVC and vagal afferent neurons. We found that nanoinjections of a Y2R agonist, PYY-(3-36), into the DVC significantly increased food intake over a 4-h period in satiated male rats. PYY-(3-36)-evoked food intake was prevented by injection of a selective Y2R antagonist. Injection of a Y1R/Y5R-preferring agonist into the DVC failed to increase food intake at doses reported to increase food intake following hypothalamic injection. Finally, injection of PYY-(3-36) into the DVC prevented reduction of 30-min food intake following intraperitoneal injection of cholecystokinin (CCK). Our results indicate that activation of DVC Y2R, unlike hypothalamic or peripheral Y2R, increases food intake. Furthermore, in the context of available electrophysiological observations, our results are consistent with the hypothesis that DVC Y2R control food intake by dampening vagally mediated satiation signals in the DVC.
Collapse
Affiliation(s)
- Nathaneal J Huston
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Lynne A Brenner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Zachary C Taylor
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
9
|
Neuronal Signal Transduction-Involved Genes in Pig Hypothalamus Affect Feed Efficiency as Revealed by Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5862571. [PMID: 30687750 PMCID: PMC6327278 DOI: 10.1155/2018/5862571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Feed efficiency (FE) is an important trait affecting costs in swine industry. Investigation on FE-related genes in different tissues is valuable for molecular breeding. Hypothalamus is a convergent and integrated centre for multiple nutrient-related signals. The present study identified 363 differentially expressed (DE) genes and 14 DE lincRNAs in the hypothalamus of high- and low-FE Yorkshire pigs. Furthermore, 983 significantly correlated DE gene-lincRNA pairs were identified through weighted correlation network analysis (WGCNA) and Pearson correlation analysis. These DE genes were primarily enriched in the neuronal signal transduction process containing the upregulated genes of VIPR1, CCR1, CCR5, LEPR, INSR, ADRA1A, CCKAR, and ADORA3 and the downregulated genes of GRM1, GRM4, GRM5, and VIPR2, which were located in the cell membrane. These signal receptors were mainly connected to downstream Jak-STAT signaling that involved the increased genes (JAK2, STAT3, and POMC) and mTOR signaling pathway, including the decreased genes (CAMKK2, AMPK, and MTOR). STAT3 and AMPK genes also played a role in two major hypothalamic neurons of POMC and NPY/AGRP. A total of eight DE lincRNAs also participated in the potential network. In conclusion, neuronal signaling transduction-involved genes and lincRNAs were related to FE variation in pig hypothalamus.
Collapse
|
10
|
Mandic S, Volkoff H. The effects of fasting and appetite regulators on catecholamine and serotonin synthesis pathways in goldfish ( Carassius auratus ). Comp Biochem Physiol A Mol Integr Physiol 2018; 223:1-9. [DOI: 10.1016/j.cbpa.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
11
|
Li AJ, Wang Q, Ritter S. Activation of catecholamine neurons in the ventral medulla reduces CCK-induced hypophagia and c-Fos activation in dorsal medullary catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 2018; 315:R442-R452. [PMID: 29874094 DOI: 10.1152/ajpregu.00107.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Catecholamine (CA) neurons within the A1 and C1 cell groups in the ventrolateral medulla (VLM) potently increase food intake when activated by glucose deficit. In contrast, CA neurons in the A2 cell group of the dorsomedial medulla are required for reduction of food intake by cholecystokinin (CCK), a peptide that promotes satiation. Thus dorsal and ventral medullary CA neurons are activated by divergent metabolic conditions and mediate opposing behavioral responses. Acute glucose deficit is a life-threatening condition, and increased feeding is a key response that facilitates survival of this emergency. Thus, during glucose deficit, responses to satiation signals, like CCK, must be suppressed to ensure glucorestoration. Here we test the hypothesis that activation of VLM CA neurons inhibits dorsomedial CA neurons that participate in satiation. We found that glucose deficit produced by the antiglycolytic glucose analog, 2-deoxy-d-glucose, attenuated reduction of food intake by CCK. Moreover, glucose deficit increased c-Fos expression by A1 and C1 neurons while reducing CCK-induced c-Fos expression in A2 neurons. We also selectively activated A1/C1 neurons in TH-Cre+ transgenic rats in which A1/C1 neurons were transfected with a Cre-dependent designer receptor exclusively activated by a designer drug (DREADD). Selective activation of A1/C1 neurons using the DREADD agonist, clozapine- N-oxide, attenuated reduction of food intake by CCK and prevented CCK-induced c-Fos expression in A2 CA neurons, even under normoglycemic conditions. Results support the hypothesis that activation of ventral CA neurons attenuates satiety by inhibiting dorsal medullary A2 CA neurons. This mechanism may ensure that satiation does not terminate feeding before restoration of normoglycemia.
Collapse
Affiliation(s)
- Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Sue Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
12
|
Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake? Neurosci Lett 2017; 653:126-131. [DOI: 10.1016/j.neulet.2017.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 11/20/2022]
|