1
|
Gomez CB, Sánchez-López A, Carvajal K, Centurión D. Effect of Hydrogen Sulfide on Sympathoinhibition in Obese Pithed Rats and Participation of K + Channel. Int J Hypertens 2024; 2024:5848352. [PMID: 39530003 PMCID: PMC11554415 DOI: 10.1155/2024/5848352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Elevated blood pressure is the leading metabolic risk factor in attributable deaths, and hydrogen sulfide (H2S) regulates vascular tone and blood pressure. Thus, this study aims to evaluate the mechanism by which NaHS (H2S donor) produces inhibition of the vasopressor sympathetic outflow in obese rats. For that purpose, animals were fed a high-fat diet (HFD) (60% calories from fat) for 12 weeks. They were anesthetized, pithed, and cannulated to evaluate the role of the potassium channel on NaHS-induced sympathoinhibition. Animals received selective electrical stimulation of the vasopressor sympathetic outflow, an intravenous (i.v.) administration of (1) tetraethylammonium (TEA, non-selective K+ channel blocker, 16.5 mg/kg), (2) 4-aminopyridine (4-AP, KV channel blocker, 5 mg/kg), (3) barium chloride (BaCl2, KIR channel blocker, 65 μg/kg), (4) saline solution (vehicle of TEA, 4-AP, and BaCl2, 1 mL/kg), (5) glibenclamide (KATP channel blocker, 10 mg/kg), and (6) glibenclamide vehicle (DMSO + glucose 10% + NaOH, 1 mL/kg), and then a 310 μg/kg·min NaHS i.v. continuous infusion. We observed that (1) NaHS produced inhibition of the vasopressor sympathetic outflow and (2) the sympathoinhibitory effect by NaHS was reversed by the KIR channel blocker, BaCl2, in obese rats. The above data suggest that the potassium channel could be involved in the sympathoinhibition induced by NaHS.
Collapse
Affiliation(s)
- Carolina B. Gomez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alc. Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alc. Tlalpan, C.P. 14330, Ciudad de México, Mexico
| | - Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 Letra C, Alc. Coyoacán, C.P. 04530, Ciudad de México, Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alc. Tlalpan, C.P. 14330, Ciudad de México, Mexico
| |
Collapse
|
2
|
Sivasubramanian MK, Monteiro R, Jagadeesh M, Balasubramanian P, Subramanian M. Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters-Implications for Obesity-Related Sympathoexcitation. Nutrients 2024; 16:2852. [PMID: 39275168 PMCID: PMC11397225 DOI: 10.3390/nu16172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 μM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity.
Collapse
Affiliation(s)
- Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Manoj Jagadeesh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Priya Balasubramanian
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Ibrahim BA, Louie JJ, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental Exposure to Polychlorinated Biphenyls Prevents Recovery from Noise-Induced Hearing Loss and Disrupts the Functional Organization of the Inferior Colliculus. J Neurosci 2023; 43:4580-4597. [PMID: 37147134 PMCID: PMC10286948 DOI: 10.1523/jneurosci.0030-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Exposure to combinations of environmental toxins is growing in prevalence; and therefore, understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins, polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise, interact to produce dysfunction in central auditory processing. PCBs are well established to impose negative developmental impacts on hearing. However, it is not known whether developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 min of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus (IC) revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins.SIGNIFICANCE STATEMENT Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the prenatal and postnatal developmental changes induced by polychlorinated biphenyls (PCBs) could negatively impact the resilience of the brain to noise-induced hearing loss (NIHL) later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Jeremy J Louie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Yoshitaka Shinagawa
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Alexander R Asilador
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Helen J K Sable
- The Department of Psychology, The University of Memphis, Memphis, Tennessee 38152
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
5
|
Lu D, Wang K, Jiang W, Zhang H, Zhang H. Effect of renal denervation on cardiac remodelling and function in rats with chronic intermittent hypoxia. Clin Exp Pharmacol Physiol 2023. [PMID: 37311598 DOI: 10.1111/1440-1681.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Chronic intermittent hypoxia (CIH) mimicking obstructive sleep apnea elicits divergent outcomes in the cardiovascular systems. The effect of renal denervation (RDN) on the heart during CIH remains unclear. We aimed to explore the effect of RDN on cardiac remodelling in rats exposed to CIH and to discuss the underlying mechanisms. Adult Sprague Dawley rats were divided into four groups: control, control+RDN, CIH (CIH exposure for 6 weeks, nadir of 5%-7% to peak of 21% O2, 20 cycles/h, 8 h/day) and CIH+ RDN group. Echocardiography, cardiac fibrosis, left ventricle (LV) expressions of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and inflammatory factors were tested at the end of the study. Cardiac structural remodelling and dysfunction were induced by CIH and attenuated by RDN. Myocardial fibrosis was more severe in the CIH group than in the control group and improved in the CIH + RDN group. Sympathetic activity reflected by tyrosine hydroxylase (TH) expression and noradrenaline were significantly elevated after CIH but blunted by RDN. CIH downregulated LV protein expressions of Nrf2 and HO-1, which was activated by RDN. The downstream of Nrf2/HO-1, such as NQO1 and SOD expression, elevated following RDN. RDN also decreased the mRNA expression of IL-1β and IL-6. Notably, control+RDN did not affect cardiac remodelling and Nrf2/HO-1 compared with the control. Taken together, we found that RDN exerted cardio-protective effects in a rat model of CIH involving Nrf2/HO-1 pathway and inflammation.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| | - Kai Wang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| |
Collapse
|
6
|
Strain MM, Espinoza L, Fedorchak S, Littlejohn EL, Andrade MA, Toney GM, Boychuk CR. Early central cardiovagal dysfunction after high fat diet in a murine model. Sci Rep 2023; 13:6550. [PMID: 37085567 PMCID: PMC10121716 DOI: 10.1038/s41598-023-32492-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
High fat diet (HFD) promotes cardiovascular disease and blunted cardiac vagal regulation. Temporal onset of loss of cardiac vagal control and its underlying mechanism are presently unclear. We tested our hypothesis that reduced central vagal regulation occurs early after HFD and contributes to poor cardiac regulation using cardiovascular testing paired with pharmacology in mice, molecular biology, and a novel bi-transgenic mouse line. Results show HFD, compared to normal fat diet (NFD), significantly blunted cardio/pulmonary chemoreflex bradycardic responses after 15 days, extending as far as tested (> 30 days). HFD produced resting tachycardia by day 3, reflected significant loss of parasympathetic tone. No differences in bradycardic responses to graded electrical stimulation of the distal cut end of the cervical vagus indicated diet-induced differences in vagal activity were centrally mediated. In nucleus ambiguus (NA), surface expression of δ-subunit containing type A gamma-aminobutyric acid receptors (GABAA(δ)R) increased at day 15 of HFD. Novel mice lacking δ-subunit expression in vagal motor neurons (ChAT-δnull) failed to exhibit blunted reflex bradycardia or resting tachycardia after two weeks of HFD. Thus, reduced parasympathetic output contributes to early HFD-induced HR dysregulation, likely through increased GABAA(δ)Rs. Results underscore need for research on mechanisms of early onset increases in GABAA(δ)R expression and parasympathetic dysfunction after HFD.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7746, San Antonio, TX, 78229-3901, USA.
| |
Collapse
|
7
|
Ibrahim BA, Louie J, Shinagawa Y, Xiao G, Asilador AR, Sable HJK, Schantz SL, Llano DA. Developmental exposure to polychlorinated biphenyls prevents recovery from noise-induced hearing loss and disrupts the functional organization of the inferior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534008. [PMID: 36993666 PMCID: PMC10055398 DOI: 10.1101/2023.03.23.534008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Exposure to combinations of environmental toxins is growing in prevalence, and therefore understanding their interactions is of increasing societal importance. Here, we examined the mechanisms by which two environmental toxins - polychlorinated biphenyls (PCBs) and high-amplitude acoustic noise - interact to produce dysfunction in central auditory processing. PCBs are well-established to impose negative developmental impacts on hearing. However, it is not known if developmental exposure to this ototoxin alters the sensitivity to other ototoxic exposures later in life. Here, male mice were exposed to PCBs in utero, and later as adults were exposed to 45 minutes of high-intensity noise. We then examined the impacts of the two exposures on hearing and the organization of the auditory midbrain using two-photon imaging and analysis of the expression of mediators of oxidative stress. We observed that developmental exposure to PCBs blocked hearing recovery from acoustic trauma. In vivo two-photon imaging of the inferior colliculus revealed that this lack of recovery was associated with disruption of the tonotopic organization and reduction of inhibition in the auditory midbrain. In addition, expression analysis in the inferior colliculus revealed that reduced GABAergic inhibition was more prominent in animals with a lower capacity to mitigate oxidative stress. These data suggest that combined PCBs and noise exposure act nonlinearly to damage hearing and that this damage is associated with synaptic reorganization, and reduced capacity to limit oxidative stress. In addition, this work provides a new paradigm by which to understand nonlinear interactions between combinations of environmental toxins. Significance statement Exposure to common environmental toxins is a large and growing problem in the population. This work provides a new mechanistic understanding of how the pre-and postnatal developmental changes induced by polychlorinated biphenyls could negatively impact the resilience of the brain to noise-induced hearing loss later in adulthood. The use of state-of-the-art tools, including in vivo multiphoton microscopy of the midbrain helped in identifying the long-term central changes in the auditory system after the peripheral hearing damage induced by such environmental toxins. In addition, the novel combination of methods employed in this study will lead to additional advances in our understanding of mechanisms of central hearing loss in other contexts.
Collapse
Affiliation(s)
- Baher A. Ibrahim
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeremy Louie
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshitaka Shinagawa
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Gang Xiao
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alexander R. Asilador
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Helen J. K. Sable
- The Department of Psychology, The University of Memphis, Memphis, TN 38152, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel A. Llano
- Department of Molecular & Integrative Physiology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, the University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
9
|
Dionne G, Calder M, Betts DH, Rafea BA, Watson AJ. Expression and localization of NRF2/Keap1 signalling pathway genes in mouse preimplantation embryos exposed to free fatty acids. Gene Expr Patterns 2022; 46:119281. [PMID: 36243294 DOI: 10.1016/j.gep.2022.119281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022]
Abstract
Obese women experience greater incidence of infertility, with reproductive tracts exposing preimplantation embryos to elevated free fatty acids (FFA) such as palmitic acid (PA) and oleic acid (OA). PA treatment impairs mouse preimplantation development in vitro, while OA co-treatment rescues blastocyst development of PA treated embryos. In the present study, we investigated the effects of PA and OA treatment on NRF2/Keap1 localization, and relative antioxidant enzyme (Glutathione peroxidase; Gpx1, Catalase; Cat, Superoxide dismutase; Sod1 and γ-Glutamylcysteine ligase catalytic unit; Gclc) mRNA levels, during in vitro mouse preimplantation embryo development. Female mice were superovulated, mated, and embryos cultured in the presence of bovine Serum albumin (BSA) control or PA, or OA, alone (each at 100 μM) or PA + OA combined (each at 100 μM) treatment. NRF2 displayed nuclear localization at all developmental stages, whereas Keap1 primarily displayed cytoplasmic localization throughout control mouse preimplantation development in vitro. Relative transcript levels of Nrf2, Keap1, and downstream antioxidants significantly increased throughout control mouse preimplantation development in vitro. PA treatment significantly decreased blastocyst development and the levels of nuclear NRF2, while OA and PA + OA treatments did not. PA and OA treatments did not impact relative mRNA levels of Nrf2, Keap1, Gpx1, Cat, Sod1 or Gclc. Our outcomes demonstrate that cultured mouse embryos display nuclear NRF2, but that PA treatment reduces nuclear NRF2 and thus likely impacts NRF2/KEAP1 stress response mechanisms. Further studies should investigate whether free fatty acid effects on NRF2/KEAP1 contribute to the reduced fertility displayed by obese patients.
Collapse
Affiliation(s)
- Grace Dionne
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Michele Calder
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Dean H Betts
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Basim Abu Rafea
- Department of Obstetrics and Gynaecology, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada
| | - Andrew J Watson
- Department of Obstetrics and Gynaecology, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London ON, N6A 5C1, Canada; The Children's Health Research Institute - Lawson Health Research Institute, London ON, N6C 2R5, Canada.
| |
Collapse
|
10
|
Mektrirat R, Rueangsri T, Keeratichandacha W, Soonsawat S, Boonyapakorn C, Pongkan W. Polyunsaturated Fatty Acid EAB-277 ® Supplementation Improved Heart Rate Variability and Clinical Signs in Tracheal Collapse Dogs. Front Vet Sci 2022; 9:880952. [PMID: 35909680 PMCID: PMC9330478 DOI: 10.3389/fvets.2022.880952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Canine tracheal collapse is a progressive disease in small breed dogs resulting from chronic inflammation of the tracheal mucosal lining. Polyunsaturated fatty acid EAB-277® is one of the nutraceuticals that can alleviate inflammation and oxidative stress. Heart rate variability (HRV) is a prognostic tool related to sympathovagal balance and oxidative stress level, which is widely used with cardiorespiratory diseases. However, the effect of EAB-277® on HRV in tracheal collapse dogs has rarely been investigated. In this study, 26 tracheal collapse dogs were divided into two groups. In the control group, the dogs received the standard treatment, whereas the dogs in the EAB-277® group received standard treatment combined with EAB-277®. After being treated for 5 weeks, changes in radiographic findings, blood profiles, serum malondialdehyde, inflammatory markers, and HRV were evaluated. This study found that clinical signs were improved in both groups (p < 0.05). However, serum malondialdehyde (MDA), Interleukin-6 (IL-6), and Tumor necrosis factor-alpha (TNF-α) were decreased only in the EAB-277® group after treatment for five weeks (p < 0.05) and the mean percent change of MDA, IL-6, and TNF-α at week five compared to baseline in the EAB-277® group was greater than in the control group (p < 0.05). Additionally, greater sympathovagal imbalance indicated by decreased standard deviation of all normal R-R intervals (SDNN) and standard deviation of the averaged R-R intervals for all 5-minutes segments (SDANN) was found in the control group at week five compared to baseline (P < 0.05), whereas EAB-277® improved SDNN and SDANN and decreased low frequency/high-frequency component (LF/HF ratio) after being treated for five weeks (P < 0.05). This study demonstrates that EAB-277® improves clinical signs and attenuates HRV impairment by reducing oxidative stress and inflammation in tracheal collapse dogs.
Collapse
Affiliation(s)
- Raktham Mektrirat
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thareerat Rueangsri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Waraporn Keeratichandacha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwimon Soonsawat
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chavalit Boonyapakorn
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanpitak Pongkan
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Veterinary Cardiopulmonary Clinic, Small Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Veterinary Biosciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Yuan Y, Liang B, Liu XL, Liu WJ, Huang BH, Yang SB, Gao YZ, Meng JS, Li MJ, Ye T, Wang CZ, Hu XK, Xing DM. Targeting NAD+: is it a common strategy to delay heart aging? Cell Death Dis 2022; 8:230. [PMID: 35474295 PMCID: PMC9042931 DOI: 10.1038/s41420-022-01031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022]
Abstract
Heart aging is the main susceptible factor to coronary heart disease and significantly increases the risk of heart failure, especially when the aging heart is suffering from ischemia-reperfusion injury. Numerous studies with NAD+ supplementations have suggested its use in anti-aging treatment. However, systematic reviews regarding the overall role of NAD+ in cardiac aging are scarce. The relationship between NAD+ signaling and heart aging has yet to be clarified. This review comprehensively summarizes the current studies on the role of NAD+ signaling in delaying heart aging from the following aspects: the influence of NAD+ supplementations on the aging heart; the relationship and cross-talks between NAD+ signaling and other cardiac aging-related signaling pathways; Importantly, the therapeutic potential of targeting NAD+ in delaying heart aging will be discussed. In brief, NAD+ plays a vital role in delaying heart aging. However, the abnormalities such as altered glucose and lipid metabolism, oxidative stress, and calcium overload could also interfere with NAD+ function in the heart. Therefore, the specific physiopathology of the aging heart should be considered before applying NAD+ supplementations. We believe that this article will help augment our understanding of heart aging mechanisms. In the meantime, it provides invaluable insights into possible therapeutic strategies for preventing age-related heart diseases in clinical settings.
Collapse
Affiliation(s)
- Yang Yuan
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xin-Lin Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Wen-Jing Liu
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Bing-Huan Huang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Shan-Bo Yang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Jing-Sen Meng
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Meng-Jiao Li
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Ting Ye
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Chuan-Zhi Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Xiao-Kun Hu
- Interventional Medicine Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China. .,School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
12
|
Laorodphun P, Arjinajarn P, Thongnak L, Promsan S, Swe MT, Thitisut P, Mahatheeranont S, Jaturasitha S, Lungkaphin A. Anthocyanin-rich fraction from black rice, Oryza sativa L. var. indica "Luem Pua," bran extract attenuates kidney injury induced by high-fat diet involving oxidative stress and apoptosis in obese rats. Phytother Res 2021; 35:5189-5202. [PMID: 34327741 DOI: 10.1002/ptr.7188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Obesity is acknowledged as being a world health problem and increases the risk of several chronic diseases including chronic kidney disease. High-fat diet consumption and obesity-related renal disease show a close correlation with increased oxidative stress. Black rice bran extract, (BRE) Oryza sativa L. variety "Luem Pua" contains a high anthocyanin content. This study evaluated the effects of an anthocyanin-rich fraction from BRE on renal function and oxidative stress in obese rats. Male Wistar rats were fed a normal diet (ND) or high-fat diet (HF) for 16 weeks. After this, the rats were given either vehicle (HF), BRE 100 (HF100) or BRE 200 mg/kg/day (HF200) orally for 8 weeks. The HF rats had increased body weight, visceral fat weight, plasma glucose, cholesterol and triglycerides. These parameters were normalized following HF100 administration and showed a decreasing trend with HF200. Serum creatinine and renal cortical MDA were increased in the HF group but these effects were attenuated by BRE. Negative kidney injury and histopathology changes were observed following a HF, but treatment with BRE reversed these deleterious effects. These results suggest that BRE could be used as a food supplement to improve metabolic disturbance and prevent kidney dysfunction in cases of obesity.
Collapse
Affiliation(s)
- Pongrapee Laorodphun
- Graduate Master's Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Myat Theingi Swe
- Department of Physiology, University of Medicine 2, Yangon, Myanmar
| | - Pasin Thitisut
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sanchai Jaturasitha
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Balasubramanian P, Branen L, Sivasubramanian MK, Monteiro R, Subramanian M. Aging is associated with glial senescence in the brainstem - implications for age-related sympathetic overactivity. Aging (Albany NY) 2021; 13:13460-13473. [PMID: 34038388 PMCID: PMC8202881 DOI: 10.18632/aging.203111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that the sympathetic nervous system (SNS) overactivity plays a crucial role in age-related increase in the risk for cardiovascular diseases such as hypertension, myocardial infarction, stroke and heart diseases. Previous studies indicate that neuroinflammation in key brainstem regions that regulate sympathetic outflow plays a pathogenic role in aging-mediated sympathoexcitation. However, the molecular mechanisms underlying this phenomenon are not clear. While senescent cells and their secretory phenotype (SASP) have been implicated in the pathogenesis of several age-related diseases, their role in age-related neuroinflammation in the brainstem and SNS overactivity has not been investigated. To test this, we isolated brainstems from young (2-4 months) and aged (24 months) male C57BL/6J mice and assessed senescence using a combination of RNA-in situ hybridization, PCR analysis, multiplex assay and SA-β gal staining. Our results show significant increases in p16Ink4a expression, increased activity of SA-β gal and increases in SASP levels in the aged brainstem, suggesting age-induced senescence in the brainstem. Further, analysis of senescence markers in glial cells enriched fraction from fresh brainstem samples demonstrated that glial cells are more susceptible to senesce with age in the brainstem. In conclusion, our study suggests that aging induces glial senescence in the brainstem which likely causes inflammation and SNS overactivity.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lyndee Branen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Subramanian M, Edwards L, Melton A, Branen L, Herron A, Sivasubramanian MK, Monteiro R, Stansbury S, Balasubramanian P, Morris L, Elkholey K, Niewiadomska M, Stavrakis S. Non-invasive vagus nerve stimulation attenuates proinflammatory cytokines and augments antioxidant levels in the brainstem and forebrain regions of Dahl salt sensitive rats. Sci Rep 2020; 10:17576. [PMID: 33067477 PMCID: PMC7567801 DOI: 10.1038/s41598-020-74257-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The anti-inflammatory effects of vagus nerve stimulation are well known. It has recently been shown that low-level, transcutaneous stimulation of vagus nerve at the tragus (LLTS) reduces cardiac inflammation in a rat model of heart failure with preserved ejection fraction (HFpEF). The mechanisms by which LLTS affect the central neural circuits within the brain regions that are important for the regulation of cardiac vagal tone are not clear. Female Dahl salt-sensitive rats were initially fed with either low salt (LS) or high salt (HS) diet for a period of 6 weeks, followed by sham or active stimulation (LLTS) for 30 min daily for 4 weeks. To study the central effects of LLTS, four brainstem (SP5, NAb, NTS, and RVLM) and two forebrain sites (PVN and SFO) were examined. HS diet significantly increased the gene expression of proinflammatory cytokines in the SP5 and SFO. LLTS reversed HS diet-induced changes at both these sites. Furthermore, LLTS augmented the levels of antioxidant Nrf2 in the SP5 and SFO. Taken together, these findings suggest that LLTS has central anti-inflammatory and antioxidant properties that could mediate the neuromodulation of cardiac vagal tone in the rat model of HFpEF.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA.
| | - Laura Edwards
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Avery Melton
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lyndee Branen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Angela Herron
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samantha Stansbury
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Priya Balasubramanian
- Reynolds Oklahoma Center On Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lynsie Morris
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA
| | - Khaled Elkholey
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monika Niewiadomska
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.
Collapse
|