1
|
Chiaberge M, Thottappillil N, Liphardt AM, Furlanetto A, Odell D, Wang C, Hope S, Smee S, Rehfus J, Niehoff A, Shelhamer M, Norman C, Philippon MJ, Huard J, James AW, Fan CM. Plyometric training increases thickness and volume of knee articular cartilage in mice. NPJ Microgravity 2025; 11:5. [PMID: 39948108 PMCID: PMC11825961 DOI: 10.1038/s41526-025-00458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Degeneration and thinning of articular cartilage lead to osteoarthritis and may result from reduced joint loading during e.g. bed rest or as a result of microgravity during space flight. Anabolic physical exercises for cartilage are not well studied to date. We built an experimental apparatus for plyometric training with mice to test potential benefits of jumping for articular cartilage. The exercise group (JUMP) performed jump training for 9 weeks and was compared with sedentary mice (control, CON) and hindlimb-suspended (HLS) mice (to simulate reduced loading) for the same duration. Knee cartilage was assessed via 3-dimensional reconstruction of micro-CT scans and histology. We observed significant thinning and volume reduction of articular cartilage at the medial tibial-femoral point of contact in the HLS group. Clustering of chondrocytes was present in HLS. By contrast, the JUMP group showed both cartilage thickening and volume increase. We observed a similar trend on trabecular bone thickness and volume. Our results show that plyometric training can stimulate cartilage thickness and volume in mice. This suggests further investigation of this mode of exercise as a countermeasure to prevent cartilage atrophy in disuse scenarios such as long duration spaceflight, and for patients at risk of developing osteoarthritis.
Collapse
Affiliation(s)
- Marco Chiaberge
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA.
- Space Telescope Science Institute for the European Space Agency (ESA), ESA Office, 3700 San Martin Drive, Baltimore, MD, USA.
| | - Neelima Thottappillil
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anderson Furlanetto
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dylan Odell
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Hope
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen Smee
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Rehfus
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Faculty of Medicine, Köln, Germany
| | - Mark Shelhamer
- Human Spaceflight Lab, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Colin Norman
- The William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD, USA
- Space Telescope Science Institute for the European Space Agency (ESA), ESA Office, 3700 San Martin Drive, Baltimore, MD, USA
| | - Marc J Philippon
- Steadman Philippon Research Institute, Vail, CO, USA
- The Steadman Clinic, Vail, CO, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| |
Collapse
|
2
|
Roberts BM, Geddis AV, Sczuroski CE, Reynoso M, Hughes JM, Gwin JA, Staab JS. A single, maximal dose of celecoxib, ibuprofen, or flurbiprofen does not reduce the muscle signalling response to plyometric exercise in young healthy adults. Eur J Appl Physiol 2024; 124:3607-3617. [PMID: 39044030 DOI: 10.1007/s00421-024-05565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) possess analgesic and anti-inflammatory properties by inhibiting cyclooxygenase (COX) enzymes. Conflicting evidence exists on whether NSAIDs influence signaling related to muscle adaptations and exercise with some research finding a reduction in muscle protein synthesis signaling via the AKT-mTOR pathway, changes in satellite cell signaling, reductions in muscle protein degradation, and reductions in cell proliferation. In this study, we determined if a single maximal dose of flurbiprofen (FLU), celecoxib (CEL), ibuprofen (IBU), or a placebo (PLA) affects the short-term muscle signaling responses to plyometric exercise. METHODS This was a block randomized, double-masked, crossover design, where 12 participants performed four plyometric exercise bouts consisting of 10 sets of 10 plyometric jumps at 40% 1RM. Two hours before exercise, participants consumed a single dose of celecoxib (CEL 200 mg), IBU (800 mg), FLU (100 mg) or PLA with food. Muscle biopsy samples were collected before and 3-h after exercise from the vastus lateralis. Data were analyzed using a repeated measures (RM) ANOVA, ANOVA, or a Friedman test. Significance was considered at p < 0.05. RESULTS We found no treatment effects on the mRNA expression of PTSG1, PTSG2, MYC, TBP, RPLOP, MYOD1, Pax7, MYOG, Atrogin-1, or MURF1 (all, p > 0.05). We also found no treatment effects on AKT-mTOR signaling or MAPK signaling measured through the phosphorylation status of mTORS2441, mTORS2448, RPS6 235/236, RPS 240/244, 4EBP1, ERK1/2, p38 T180/182 normalized to their respective total abundance (all, p > 0.05). However, we did find a significant difference between MNK1 T197/202 in PLA compared to FLU (p < .05). CONCLUSION A single, maximal dose of IBU, CEL, or FLU taken prior to exercise did not affect the signaling of muscle protein synthesis, protein degradation, or ribosome biogenesis three hours after a plyometric training bout.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA.
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| |
Collapse
|
3
|
Roberts BM, Sczuroski CE, Caldwell AR, Zeppetelli DJ, Smith NI, Pecorelli VP, Gwin JA, Hughes JM, Staab JS. NSAIDs do not prevent exercise-induced performance deficits or alleviate muscle soreness: A placebo-controlled randomized, double-blinded, cross-over study. J Sci Med Sport 2024; 27:287-292. [PMID: 38383211 DOI: 10.1016/j.jsams.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are frequently consumed by athletes to manage muscle soreness, expedite recovery, or improve performance. Despite the prevalence of NSAID use, their effects on muscle soreness and performance, particularly when administered prophylactically, remain unclear. This randomized, double-blind, counter-balanced, crossover study examined the effect of consuming a single dose of each of three NSAIDs (celecoxib, 200 mg; ibuprofen, 800 mg; flurbiprofen, 100 mg) or placebo 2 h before on muscle soreness and performance following an acute plyometric training session. Twelve healthy adults, aged 18-42 years, completed a standardized plyometric exercise session consisting of 10 sets of 10 repetitions at 40 % 1-repetition maximum (1RM) on a leg press device. During exercise, total work, rating of perceived exertion, and heart rate were measured. Maximum voluntary contraction force (MVC), vertical jump height, and muscle soreness were measured before exercise and 4-h and 24-h post-exercise. We found no significant differences in total work, heart rate, or rating of perceived exertion between treatments. Additionally, no significant differences in muscle soreness or vertical jump were observed between treatments. Ibuprofen and flurbiprofen did not prevent decrements in MVC, but celecoxib attenuated decreases in MVC 4-h post exercise (p < 0.05). This study suggests that athletes may not benefit from prophylactic ibuprofen or flurbiprofen treatment to prevent discomfort or performance decrements associated with exercise, but celecoxib may mitigate short-term performance decrements.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA.
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, USA
| | - David J Zeppetelli
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| | - Nathaniel I Smith
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| | - Vincent P Pecorelli
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, USA
| |
Collapse
|
4
|
Michel JM, Godwin JS, Plotkin DL, Mesquita PHC, McIntosh MC, Ruple BA, Libardi CA, Mobley CB, Kavazis AN, Roberts MD. Proteolytic markers associated with a gain and loss of leg muscle mass with resistance training followed by high-intensity interval training. Exp Physiol 2023; 108:1268-1281. [PMID: 37589512 PMCID: PMC10543615 DOI: 10.1113/ep091286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
We recently reported that vastus lateralis (VL) cross-sectional area (CSA) increases after 7 weeks of resistance training (RT, 2 days/week), with declines occurring following 7 weeks of subsequent treadmill high-intensity interval training (HIIT) (3 days/week). Herein, we examined the effects of this training paradigm on skeletal muscle proteolytic markers. VL biopsies were obtained from 11 untrained college-aged males at baseline (PRE), after 7 weeks of RT (MID), and after 7 weeks of HIIT (POST). Tissues were analysed for proteolysis markers, and in vitro experiments were performed to provide additional insights. Atrogene mRNAs (TRIM63, FBXO32, FOXO3A) were upregulated at POST versus both PRE and MID (P < 0.05). 20S proteasome core protein abundance increased at POST versus PRE (P = 0.031) and MID (P = 0.049). 20S proteasome activity, and protein levels for calpain-2 and Beclin-1 increased at MID and POST versus PRE (P < 0.05). Ubiquitinated proteins showed model significance (P = 0.019) with non-significant increases at MID and POST (P > 0.05). in vitro experiments recapitulated the training phenotype when stimulated with a hypertrophic stimulus (insulin-like growth factor 1; IGF1) followed by a subsequent AMP-activated protein kinase activator (5-aminoimidazole-4-carboxamide ribonucleotide; AICAR), as demonstrated by larger myotube diameter in IGF1-treated cells versus IGF1 followed by AICAR treatments (I+A; P = 0.017). Muscle protein synthesis (MPS) levels were also greater in IGF1-treated versus I+A myotubes (P < 0.001). In summary, the loss in RT-induced VL CSA with HIIT coincided with increases in several proteolytic markers, and sustained proteolysis may have driven this response. Moreover, while not measured in humans, we interpret our in vitro data to suggest that (unlike RT) HIIT does not stimulate MPS. NEW FINDINGS: What is the central question of this study? Determining if HIIT-induced reductions in muscle hypertrophy following a period of resistance training coincided with increases in proteolytic markers. What is the main finding and its importance? Several proteolytic markers were elevated during the HIIT training period implying that increases in muscle proteolysis may have played a role in HIIT-induced reductions in muscle hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cleiton A. Libardi
- Department of Physical EducationFederal University of Sao CarlosSao CarlosBrazil
| | | | | | - Michael D. Roberts
- School of KinesiologyAuburn UniversityAuburnALUSA
- Edward Via College of Osteopathic MedicineAuburnALUSA
| |
Collapse
|
5
|
Hajj-Boutros G, Karelis AD, Cefis M, Morais JA, Casgrain J, Gouspillou G, Sonjak V. Potential mechanisms involved in regulating muscle protein turnover after acute exercise: A brief review. Front Physiol 2023; 13:1106425. [PMID: 36699675 PMCID: PMC9870712 DOI: 10.3389/fphys.2022.1106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
It is well established that resistance training increases muscle mass. Indeed, there is evidence to suggest that a single session of resistance training is associated with an increase in muscle protein synthesis in young adults. However, the fundamental mechanisms that are involved in regulating muscle protein turnover rates after an acute bout of physical exercise are unclear. Therefore, this review will briefly focus on summarizing the potential mechanisms behind the growth of skeletal muscle after physical exercise. We also present mechanistic differences that may exist between young and older individuals during muscle protein synthesis and breakdown after physical exercise. Pathways leading to the activation of AKT/mTOR signals after resistance exercise and the activation of AMPK signaling pathway following a HIIT (High intensity interval training) are discussed.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Antony D. Karelis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Marina Cefis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - José A. Morais
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada
| | - Juliette Casgrain
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Vita Sonjak
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,*Correspondence: Vita Sonjak,
| |
Collapse
|
6
|
Sterczala AJ, Pierce JR, Barnes BR, Urso ML, Matheny RW, Scofield DE, Flanagan SD, Maresh CM, Zambraski EJ, Kraemer WJ, Nindl BC. Insulin-like growth factor-I biocompartmentalization across blood, interstitial fluid and muscle, before and after 3 months of chronic resistance exercise. J Appl Physiol (1985) 2022; 133:170-182. [PMID: 35678743 DOI: 10.1152/japplphysiol.00592.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This investigation examined the influence of 12-week ballistic resistance training programs on the IGF-I system in circulation, interstitial fluid, and skeletal muscle, at rest and in response to acute exercise. Seventeen college-aged subjects (11 women/6 men; 21.7 ± 3.7 yr) completed an acute ballistic exercise bout before and after the training program. Blood samples were collected pre-, mid-, and postexercise and analyzed for serum total IGF-I, free IGF-I, and IGF binding proteins (IGFBPs) 1-4. Dialysate and interstitial free IGF-I were analyzed in vastus lateralis (VL) interstitial fluid collected pre- and postexercise via microdialysis. Pre- and postexercise VL muscle biopsies were analyzed for IGF-I protein expression, IGF-I receptor phosphorylation (p-IGF-IR), and AKT phosphorylation (p-AKT). Following training, basal serum IGF-I, free IGF-I, IGFBP-2, and IGFBP-3 decreased whereas IGFBP-1 and IGFBP-4 increased. Training reduced basal dialysate and interstitial free IGF-I but had no effect on basal skeletal muscle IGF-I, p-IGF-IR, or p-AKT. Acute exercise elicited transient changes in IGF-I system concentrations and downstream anabolic signaling both pre- and posttraining; training did not affect this acute exercise response. Posttraining, acute exercise-induced changes in dialysate/interstitial free IGF-I were strongly correlated with the changes in intramuscular IGF-I expression, p-IGF-IR, and p-AKT. The divergent influence of resistance training on circulating/interstitial and skeletal muscle IGF-I demonstrates the importance of concurrent, multiple biocompartment analysis when examining the IGF-I system. As training elicited muscle hypertrophy, these findings indicate that IGF-I's anabolic effects on skeletal muscle are mediated by local, rather than systemic mechanisms.NEW & NOTEWORTHY In the first investigation to assess resistance training's effects on the IGF-I system in serum, interstitial fluid, and skeletal muscle, training decreased basal circulating and interstitial IGF-I but did not alter basal intramuscular IGF-I protein activity. Posttraining, acute exercise-induced interstitial IGF-I increases were strongly correlated with intramuscular IGF-I expression and signaling. These findings highlight the importance of multibiocompartment measurement when analyzing IGF-I and suggest that IGF-I's role in hypertrophic adaptations is locally mediated.
Collapse
Affiliation(s)
- Adam J Sterczala
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph R Pierce
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Brian R Barnes
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Maria L Urso
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Ronald W Matheny
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Dennis E Scofield
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shawn D Flanagan
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carl M Maresh
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Edward J Zambraski
- US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - William J Kraemer
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut.,Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Bradley C Nindl
- Neuromuscular Research Laboratory/Human Performance Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
7
|
Cañas-Jamett R, Figueroa-Puig J, Ramirez-Campillo R, Tuesta M. PLYOMETRIC TRAINING IMPROVES SWIMMING PERFORMANCE IN RECREATIONALLY-TRAINED SWIMMERS. REV BRAS MED ESPORTE 2020. [DOI: 10.1590/1517-8692202026052019_0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Introduction: Plyometric training significantly improves strength performance, including in aquatic sports. Objective: To compare changes in thigh girth, hamstring flexibility, squat jump height, and 200m swimming trial time induced by plyometric training in recreationally-trained swimmers. Methods: Eighteen recreationally-trained male swimmers (age=18-20 years) were randomly divided into a plyometric training group (PTG) and a control group (CG). All the swimmers completed a six-week speed swimming training plan. In the PTG only, the last ~15 min of each session was replaced with plyometric exercises. The physical characteristics and the thigh girth were measured before and after the six weeks of training. In addition, sit-and-reach flexibility and squat jump tests were conducted, as well as a 200m swimming trial. Results: Two-way ANOVA with post-hoc analysis revealed an increase in sit-and-reach flexibility (PRE: 4.5±5.3 cm; POST: 10.9±5.9 cm, p<0.01) and squat jump height (PRE: 24.9±3.7 cm; POST: 28.3±4.2 cm, p<0.01) and a decrease in 200m-swimming time (PRE: 220±26.5 sec; POST: 204±24.4 sec, p<0.01) for the PTG only. Comparing the absolute changes (post-pre) between the groups by the Student's t-test, the PTG showed a greater increase in distance reached in the sit-and-reach flexibility (PTG: 6.34±0.6 cm vs. CG: 2.4±1.2 cm, p<0.01) and squat jump height (PTG: 3.4±0.7 cm vs. CG: 0.7±0.3 cm, p<0.01) than the CG. In addition, the 200m swimming time decreased significantly more than in the CG (PTG: -15.1±2.4 sec vs. CG: -0.8±2.7 sec, p<0.01). Conclusion: Plyometric training improves jump height, flexibility, and 200m swimming performance in recreationally-trained adult swimmers. Level of Evidence II; Lesser quality RCT.
Collapse
|
8
|
Nindl BC, Ahtiainen J, Gagnon SS, Taipale RS, Pierce JR, Martin BJ, Beckner ME, Lehti M, Häkkinen K, Kyröläinen H. Microdialysis-Assessed Exercised Muscle Reveals Localized and Differential IGFBP Responses to Unilateral Stretch Shortening Cycle Exercise. Front Endocrinol (Lausanne) 2020; 11:315. [PMID: 32547489 PMCID: PMC7272679 DOI: 10.3389/fendo.2020.00315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/24/2020] [Indexed: 01/10/2023] Open
Abstract
Microdialysis allows for a preview into local muscle metabolism and can provide physiological insight that blood measurements cannot. Purpose: To examine the potential differential IGF-I system regulation in interstitial fluid during unilateral stretch shortening cycle exercise. Methods: 10 men (26 ± 7 year) performed unilateral jumping [stretch shortening cycle (SSC) exercise at 50% of optimal jump height] until volitional fatigue on a sled apparatus. Biological sampling took place using a catheter inserted into an antecubital vein (serum), and 100 kDa microdialysis probes inserted into the thigh muscle of each exercise/control leg (dialysate). Serum was drawn before (Pre; -3 h) and after SSC [Post I (+0 h), II (+3 h), or III (+20 h)]; dialysate was sampled for 2 h before (Pre), during/immediately after (Ex), and 3 h into recovery (Rec) following SSC. IGF-I system parameters (free/total IGF-I and IGFBPs 1-6) were measured with immunoassays. Interstitial free IGF-I was estimated from dialysate IGF-I and relative recovery (ethanol) correction. Data were analyzed with repeated measures ANOVA. Results: Serum total IGF-I remained elevated +3 h (Post II: 182.8 ± 37.6 vs. Pre: 168.3 ± 35.0 ng/mL, p < 0.01), but returned to baseline by +20 h (Post III vs. Pre, p = 0.31). No changes in serum free IGF-I were noted. Serum BP-1 and -3 increased over baseline, but not until + 20 h after SSC (Post III vs. Pre: 7.6 ± 4.9 vs. 3.7 ± 2.3 and 1,048.6 ± 269.2 vs. 891.4 ± 171.2 ng/mL, respectively). We observed a decreased serum BP-6 +3 h after SSC (p < 0.01), followed by a return to baseline at +20 h (p = 0.64 vs. Pre). There were no exercise-induced changes in serum BP-2, -4, or -5. Unlike serum, there were no changes in dialysate or interstitial free IGF-I in either leg (p > 0.05). Dialysate BP-1 remained increased in both exercise and control legs through 3 h into recovery (Rec vs. Pre, p < 0.01). Dialysate BP-3 also demonstrated a prolonged elevation over Pre SSC concentrations, but in the exercise leg only (Ex and Rec vs. Pre, p < 0.04). We observed a prolonged decrease in dialysate BP-5 (Ex and Rec vs. Pre, p < 0.03) and an increase in BP-4 IP in the exercise leg only. There were no changes relative to Pre SSC in dialysate BP-2 or -6. Conclusions: Unilateral exercise drives differential regulation of the IGF-I system at both local and systemic levels. More specifically, this is the first study to demonstrate that localized exercise increases IGFBP-3, IGFBP-4 and decreases in IGFBP-5 in muscle interstitial fluid.
Collapse
Affiliation(s)
- Bradley C. Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
- Army Public Health Center, Aberdeen Proving Ground, MD, United States
- *Correspondence: Bradley C. Nindl
| | - Juha Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Sheila S. Gagnon
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Ritva S. Taipale
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Joseph R. Pierce
- US Army Research Institute of Environmental Medicine, Natick, MA, United States
- Army Public Health Center, Aberdeen Proving Ground, MD, United States
| | - Brian J. Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Meaghan E. Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Lehti
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Keijo Häkkinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Heikki Kyröläinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| |
Collapse
|
9
|
Pierce JR, Martin BJ, Rarick KR, Alemany JA, Staab JS, Kraemer WJ, Hymer WC, Nindl BC. Growth Hormone and Insulin-like Growth Factor-I Molecular Weight Isoform Responses to Resistance Exercise Are Sex-Dependent. Front Endocrinol (Lausanne) 2020; 11:571. [PMID: 32973684 PMCID: PMC7472848 DOI: 10.3389/fendo.2020.00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: To determine if acute resistance exercise-induced increases in growth hormone (GH) and insulin-like growth factor-I (IGF-I) were differentially responsive for one or more molecular weight (MW) isoforms and if these responses were sex-dependent. Methods: College-aged men (n = 10) and women (n = 10) performed an acute resistance exercise test (ARET; 6 sets, 10 repetition maximum (10-RM) squat, 2-min inter-set rest). Serum aliquots from blood drawn Pre-, Mid-, and Post-ARET (0, +15, and +30-min post) were processed using High Performance Liquid Chromatography (HPLC) fractionation and pooled into 3 MW fractions (Fr.A: >60; Fr.B: 30-60; Fr.C: <30 kDa). Results: We observed a hierarchy of serum protein collected among GH fractions across all time points independent of sex (Fr.C > Fr.A > Fr.B, p ≤ 0.03). Sex × time interactions indicated that women experienced earlier and augmented increases in all serum GH MW isoform fraction pools (p < 0.05); however, men demonstrated delayed and sustained GH elevations (p < 0.01) in all fractions through +30-min of recovery. Similarly, we observed a sex-independent hierarchy among IGF-I MW fraction pools (Fr.A > Fr.B > Fr.C, p ≤ 0.01). Furthermore, we observed increases in IGF-I Fr. A (ternary complexes) in men only (p ≤ 0.05), and increases in Fr.C (free/unbound IGF-I) in women only (p ≤ 0.05) vs. baseline, respectively. Conclusions: These data indicate that the processing of GH and IGF-I isoforms from the somatotrophs and hepatocytes are differential in their response to strenuous resistance exercise and reflect both temporal and sex-related differences.
Collapse
Affiliation(s)
- Joseph R. Pierce
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
- *Correspondence: Joseph R. Pierce
| | - Brian J. Martin
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kevin R. Rarick
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Joseph A. Alemany
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Jeffery S. Staab
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - William J. Kraemer
- Department of Kinesiology, University of Connecticut, Mansfield, CT, United States
| | - Wesley C. Hymer
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth Hormone(s), Testosterone, Insulin-Like Growth Factors, and Cortisol: Roles and Integration for Cellular Development and Growth With Exercise. Front Endocrinol (Lausanne) 2020; 11:33. [PMID: 32158429 PMCID: PMC7052063 DOI: 10.3389/fendo.2020.00033] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Hormones are largely responsible for the integrated communication of several physiological systems responsible for modulating cellular growth and development. Although the specific hormonal influence must be considered within the context of the entire endocrine system and its relationship with other physiological systems, three key hormones are considered the "anabolic giants" in cellular growth and repair: testosterone, the growth hormone superfamily, and the insulin-like growth factor (IGF) superfamily. In addition to these anabolic hormones, glucocorticoids, mainly cortisol must also be considered because of their profound opposing influence on human skeletal muscle anabolism in many instances. This review presents emerging research on: (1) Testosterone signaling pathways, responses, and adaptations to resistance training; (2) Growth hormone: presents new complexity with exercise stress; (3) Current perspectives on IGF-I and physiological adaptations and complexity these hormones as related to training; and (4) Glucocorticoid roles in integrated communication for anabolic/catabolic signaling. Specifically, the review describes (1) Testosterone as the primary anabolic hormone, with an anabolic influence largely dictated primarily by genomic and possible non-genomic signaling, satellite cell activation, interaction with other anabolic signaling pathways, upregulation or downregulation of the androgen receptor, and potential roles in co-activators and transcriptional activity; (2) Differential influences of growth hormones depending on the "type" of the hormone being assayed and the magnitude of the physiological stress; (3) The exquisite regulation of IGF-1 by a family of binding proteins (IGFBPs 1-6), which can either stimulate or inhibit biological action depending on binding; and (4) Circadian patterning and newly discovered variants of glucocorticoid isoforms largely dictating glucocorticoid sensitivity and catabolic, muscle sparing, or pathological influence. The downstream integrated anabolic and catabolic mechanisms of these hormones not only affect the ability of skeletal muscle to generate force; they also have implications for pharmaceutical treatments, aging, and prevalent chronic conditions such as metabolic syndrome, insulin resistance, and hypertension. Thus, advances in our understanding of hormones that impact anabolic: catabolic processes have relevance for athletes and the general population, alike.
Collapse
Affiliation(s)
- William J. Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: William J. Kraemer
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, NJ, United States
| | - Wesley C. Hymer
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Bradley C. Nindl
- Department of Sports Medicine, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
11
|
Blunted satellite cell response is associated with dysregulated IGF-1 expression after exercise with age. Eur J Appl Physiol 2018; 118:2225-2231. [PMID: 30062517 DOI: 10.1007/s00421-018-3954-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE Insulin-like growth factor-1 (IGF-1) regulates protein synthesis and cell cycle kinetics. Given that aging is associated with anabolic resistance, we sought to determine if the attenuated exercise-induced satellite cell (SC) expression in older muscle is associated with a blunted IGF-1 response. METHODS SC expression (Pax7+ cells) and protein (Western blot) and mRNA (RT-PCR) expression of IGF-1 splice variants and ubiquitous (IGFBP4) and muscle-specific (IGFBP3 and -5) IGF-1 binding proteins were measured in skeletal muscle of young (Y: 22 ± 2, n = 7) and older (O: 70 ± 2, n = 7) adults up to 48 h after an acute bout of resistance exercise. RESULTS SC expression was greater in Y compared to O (age; P < 0.01) and increased (interaction; P < 0.05) by 24 h after exercise in Y only. IGF-1Ea and IGF-1Eb mRNA tended to be greater in O (age; P < 0.06-0.09). IGF-1Eb mRNA increased at 48 h (time; P < 0.05), whereas IGF-1Ec mRNA increased (interaction; P < 0.05) at 24 and 48 h in O only. IGF binding protein (IGFBP)4 mRNA was greater (age; P < 0.01) in O with the increase at 24 h and 48 h (time; P < 0.01) primarily driven by changes in O (interaction; P < 0.01). Despite IGFBP3 mRNA being greater in O (age; P < 0.01) and increasing at 48 h (time; P < 0.01), there was no effect of age or exercise on IGFBP3 protein expression. In contrast, IGFBP5 mRNA was greater (age; P < 0.01) despite IGFBP5 protein expression being lower (age; P < 0.01) in O compared to Y. CONCLUSIONS The greater muscle-specific expression of IGF-1 family members with a blunted post-exercise SC expression may be a compensatory attempt to rescue age-related anabolic resistance.
Collapse
|
12
|
Guerriere KI, Hughes JM, Gaffney‐Stomberg E, Staab JS, Matheny RW. Circulating sclerostin is not suppressed following a single bout of exercise in young men. Physiol Rep 2018; 6:e13695. [PMID: 29845770 PMCID: PMC5974717 DOI: 10.14814/phy2.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to determine whether an acute bout of exercise reduces serum sclerostin under diet-controlled conditions that stabilize the parathyroid hormone (PTH)-1,alpha-hydroxylase axis. Fourteen male volunteers (age, 22.1 years ± 4.05; BMI, 27.3 kg/m2 ± 3.8) completed a randomized crossover study in which they performed 10 sets of 10 repetitions of plyometric jumps at 40% of their estimated one-repetition maximum leg press or a nonexercise control period. A calcium-controlled diet (1000 mg/day) was implemented prior to, and throughout each study period. Blood was drawn for analysis of serum sclerostin, Dickkopf-1, markers of bone metabolism (PTH, calcium), markers of bone formation (bone alkaline phosphatase, BAP; osteocalcin, OCN), and markers of bone resorption (tartrate-resistant acid phosphatase 5b, TRAP5b; C-telopeptide cross-links of type I collagen, CTX) at baseline and 12, 24, 48, and 72 h following exercise or rest. Changes in serum concentrations were expressed as percentage change from individual baselines. Data were analyzed using a repeated measured linear mixed model to assess effects of time, physical activity status (rest or exercise condition), and the time by activity status interaction. There was a significant effect of exercise on OCN (P = 0.005) and a significant interaction effect for CTX (P = 0.001). There was no effect of exercise on any other biochemical marker of bone metabolism. A single bout of plyometric exercise did not induce demonstrable changes in biochemical markers of bone metabolism under conditions where dietary effects on PTH were controlled.
Collapse
Affiliation(s)
- Katelyn I. Guerriere
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Julie M. Hughes
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Erin Gaffney‐Stomberg
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Jeffery S. Staab
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Ronald W. Matheny
- Military Performance DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusetts
| |
Collapse
|
13
|
Kraemer WJ, Ratamess NA, Nindl BC. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J Appl Physiol (1985) 2017; 122:549-558. [DOI: 10.1152/japplphysiol.00599.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body’s response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process.
Collapse
Affiliation(s)
| | - Nicholas A. Ratamess
- Department of Health and Exercise Science, The College of New Jersey, Ewing, New Jersey; and
| | - Bradley C. Nindl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Ives SJ, Norton C, Miller V, Minicucci O, Robinson J, O'Brien G, Escudero D, Paul M, Sheridan C, Curran K, Rose K, Robinson N, He F, Arciero PJ. Multi-modal exercise training and protein-pacing enhances physical performance adaptations independent of growth hormone and BDNF but may be dependent on IGF-1 in exercise-trained men. Growth Horm IGF Res 2017; 32:60-70. [PMID: 27789212 DOI: 10.1016/j.ghir.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Protein-pacing (P; 5-6meals/day @ 2.0g/kgBW/day) and multi-mode exercise (RISE; resistance, interval, stretching, endurance) training (PRISE) improves muscular endurance, strength, power and arterial health in exercise-trained women. The current study extends these findings by examining PRISE on fitness, growth hormone (GH), insulin-like growth factor-1 (IGF-1), and brain-derived neurotrophic factor (BDNF) response, cardiometabolic health, and body composition in exercise-trained men. DESIGN Twenty active males (>4daysexercise/week) completed either: PRISE (n=11) or RISE (5-6meals/day @ 1.0g/kgBW/day; n=9) for 12weeks. Muscular strength (1-repetition maximum bench and leg press, 1-RM BP, and 1-RM LP), endurance (sit-ups, SU; push-ups, PU), power (squat jump, SJ, and bench throw, BT), flexibility (sit-and-reach, SR), aerobic performance (5km cycling time-trial, TT), GH, IGF-1, BDNF, augmentation index, (AIx), and body composition, were assessed at weeks 0 (pre) and 13 (post). RESULTS At baseline, no differences existed between groups except for GH (RISE, 230±13 vs. PRISE, 382±59pg/ml, p<0.05). The exercise intervention improved 1-RM, SJ, BT, PU, SU, SR, 5km-TT, GH, AIx, BP, and body composition in both groups (time, p<0.05). However, PRISE elicited greater improvements in 1-RM BP (21 vs. 10∆lbs), SJ (171 vs. 13∆W), 5km-TT (-37 vs. -11∆s), and sit-and-reach (5.3 vs. 1.2∆cm) over RISE alone (p<0.05) including increased IGF-1 (12%, p<0.05). CONCLUSIONS Exercise-trained men consuming a P diet combined with multi-component exercise training (PRISE) enhance muscular power, strength, aerobic performance, and flexibility which are not likely related to GH or BDNF but possibly to IGF-1 response.
Collapse
Affiliation(s)
- Stephen J Ives
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Chelsea Norton
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Vincent Miller
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Olivia Minicucci
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Jake Robinson
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Gabe O'Brien
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Daniela Escudero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Maia Paul
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Caitlin Sheridan
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Kathryn Curran
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Kayla Rose
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Nathaniel Robinson
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Feng He
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States
| | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, United States.
| |
Collapse
|
15
|
Nindl BC, Alemany JA, Rarick KR, Eagle SR, Darnell ME, Allison KF, Harman EA. Differential basal and exercise-induced IGF-I system responses to resistance vs. calisthenic-based military readiness training programs. Growth Horm IGF Res 2017; 32:33-40. [PMID: 27979730 DOI: 10.1016/j.ghir.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to: 1) evaluate differential responses of the IGF-I system to either a calisthenic- or resistance exercise-based program and 2) determine if this chronic training altered the IGF-I system during an acute resistance exercise protocol. DESIGN Thirty-two volunteers were randomly assigned into a resistance exercise-based training (RT) group (n=15, 27±5y, 174±6cm, 81±12kg) or a calisthenic-based training group (CT) (n=17, 29±5y, 179±8cm, 85±10kg) and all underwent 8weeks of exercise training (1.5h/d, 5d/wk). Basal blood was sampled pre- (Week 0), mid- (Week 4) and post-training (Week 8) and assayed for IGF-I system analytes. An acute resistance exercise protocol (AREP) was conducted preand post-training consisting of 6 sets of 10 repetitions in the squat with two minutes of rest in between sets and the IGF-I system analytes measured. A repeated measures ANOVA (p≤0.05) was used for statistical analysis. RESULTS No interaction or within-subject effects were observed for basal total IGF-I, free IGF-I, or IGFBP-1. IGFBP-2 (pre; 578.6±295.7<mid; 828.6±104.2=post; 833.7±481.2ng/mL; p=0.008) and Acid Labile Subunit (ALS) changed over the exercise training (pre-; 16.2±1.3=mid-; 17.6±1.8>post-training; 14.3±1.9μg/mL; p=0.01). An interaction was observed for the RT group as IGFBP-3 increased from pre to mid (3462.4±216.4 vs. 3962.2±227.9ng/mL), but was not significant at the post-training time point (3770.3±228.7ng/mL). AREP caused all analytes except free IGF-I (40% decrease) to increase (17-27%; p=0.001) during exercise, returning to baseline concentration into recovery. CONCLUSION Post-training, bioavailable IGF-I recovered more rapidly post-exercise. 8wks of chronic physical training resulted in increased basal IGFBP-2 and IGFBP-3, decreased ALS, increased pre-AREP free IGF-I and a more rapid free IGF-I recovery post-AREP. While total IGF-I was insensitive to chronic physical training, changes were observed with circulating IGFBPs and bioavailable IGF-I. To glean the most robust information on the effects of exercise training, studies must move beyond relying solely on total IGF-I measures and should consider IGFBPs and bioavailable IGF-I as these components of the circulating IGF-I system are essential determinants of IGF-I physiological action.
Collapse
Affiliation(s)
- Bradley C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15203, United States; Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 17063, United States
| | - Joseph A Alemany
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 17063, United States; Injury Prevention Program, Epidemiology and Disease Surveillance, U.S. Army Public Health Center (Provisional), Aberdeen Proving Ground, MD 21010, United States
| | - Kevin R Rarick
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 17063, United States
| | - Shawn R Eagle
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15203, United States.
| | - Mathew E Darnell
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Katelyn F Allison
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA 15203, United States
| | - Everett A Harman
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA 17063, United States
| |
Collapse
|
16
|
West DWD, Lee-Barthel A, McIntyre T, Shamim B, Lee CA, Baar K. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments. J Physiol 2015; 593:4665-75. [PMID: 26282066 DOI: 10.1113/jp270737] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/10/2015] [Indexed: 01/27/2023] Open
Abstract
Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.
Collapse
Affiliation(s)
- Daniel W D West
- Department of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Ann Lee-Barthel
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Todd McIntyre
- Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Baubak Shamim
- Department of Neurobiology, Physiology and Behaviour, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Keith Baar
- Department of Physiology and Membrane Biology, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Biomedical Engineering, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.,Department of Neurobiology, Physiology and Behaviour, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Pierce JR, Maples JM, Hickner RC. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis. Am J Physiol Endocrinol Metab 2015; 308:E1131-9. [PMID: 25921578 PMCID: PMC4469810 DOI: 10.1152/ajpendo.00575.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/27/2015] [Indexed: 01/05/2023]
Abstract
Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m(2); n = 10) and obese (BMI: 34.7 ± 3.5 kg/m(2); n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown.
Collapse
Affiliation(s)
- Joseph R Pierce
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina; Departments of Kinesiology and
| | - Jill M Maples
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina; Departments of Kinesiology and
| | - Robert C Hickner
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina; Departments of Kinesiology and Physiology and Center for Health Disparities, East Carolina University, Greenville, North Carolina; and Discipline of Biokinetics, Exercise, and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Bann D, Holly JM, Lashen H, Hardy R, Adams J, Kuh D, Ong KK, Ben‐Shlomo Y. Changes in insulin-like growth factor-I and -II associated with fat but not lean mass in early old age. Obesity (Silver Spring) 2015; 23:692-8. [PMID: 25645314 PMCID: PMC4737231 DOI: 10.1002/oby.21002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To test the hypothesis that insulin-like growth factors-I and II (IGF-I and II) decline during late midlife and that greater declines are related to higher fat mass and lower lean mass. METHODS A total of 1,542 men and women in a British birth cohort study had IGF-I and II measured by immunoassay of blood samples at age 53 and/or 60-64 years. Fat mass, android:gynoid fat ratio, and appendicular lean mass were measured at 60-64 years using dual-energy X-ray absorptiometry (DXA). Associations between changes in IGF-I or II and body composition outcomes were examined using conditional change linear regression models. RESULTS Mean IGF-I and IGF-II concentrations were lower at 60-64 than at 53 years, by 12.8% for IGF-I and by 12.5% for IGF-II. Larger declines in either IGF-I or II were associated with higher fat mass at 60-64 years. Although higher IGF-I at 53 years was associated with higher lean mass, there was little evidence linking changes in IGF-I or II to lean mass. CONCLUSIONS The findings suggest that IGF-I and II concentrations decline with age, and greater declines are associated with higher fat mass levels. These results provide some evidence for the suggested roles of IGF-I and II in regulating fat mass but not lean mass in older age.
Collapse
Affiliation(s)
- David Bann
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Jeff M.P. Holly
- IGFs and Metabolic EndocrinologySchool of Clinical Sciences, Bristol UniversityBristolUK
| | - Hany Lashen
- Department of Human MetabolismThe University of SheffieldSheffieldUK
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Judith Adams
- Department of RadiologyCentral Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Science CentreOxford RoadManchesterUK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, University College LondonLondonUK
| | - Ken K. Ong
- MRC Epidemiology UnitUniversity of CambridgeCambridgeUK
| | - Yoav Ben‐Shlomo
- School of Social and Community MedicineBristol UniversityBristolUK
| |
Collapse
|
19
|
Mitchell CJ, Churchward-Venne TA, Bellamy L, Parise G, Baker SK, Phillips SM. Muscular and systemic correlates of resistance training-induced muscle hypertrophy. PLoS One 2013; 8:e78636. [PMID: 24130904 PMCID: PMC3793973 DOI: 10.1371/journal.pone.0078636] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/21/2013] [Indexed: 12/03/2022] Open
Abstract
Purpose To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Methods Twenty three adult males completed 4 sessions•wk-1 of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Results Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Conclusion Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.
Collapse
Affiliation(s)
- Cameron J. Mitchell
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tyler A. Churchward-Venne
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Leeann Bellamy
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Steven K. Baker
- Department of Neurology, School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|