1
|
Jang HA, Ku SM, Kim JH, Jung SM, Lee J, Lee YS, Han YS, Jo YH. In silico identification and expression analyses of peroxidases in Tenebrio molitor. Genes Genomics 2024; 46:601-611. [PMID: 38546934 DOI: 10.1007/s13258-024-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 04/18/2024]
Abstract
Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.
Collapse
Affiliation(s)
- Ho Am Jang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sung Min Ku
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Jae Hui Kim
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sang Mok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Jongdae Lee
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yong Seok Lee
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hun Jo
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, Chungnam, Republic of Korea.
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, Republic of Korea.
| |
Collapse
|
2
|
Adzigbli L, Ponsuksili S, Sokolova I. Mitochondrial responses to constant and cyclic hypoxia depend on the oxidized fuel in a hypoxia-tolerant marine bivalve Crassostrea gigas. Sci Rep 2024; 14:9658. [PMID: 38671046 PMCID: PMC11053104 DOI: 10.1038/s41598-024-60261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
Sessile benthic organisms like oysters inhabit the intertidal zone, subject to alternating hypoxia and reoxygenation (H/R) episodes during tidal movements, impacting respiratory chain activities and metabolome compositions. We investigated the effects of constant severe hypoxia (90 min at ~ 0% O2 ) followed by 10 min reoxygenation, and cyclic hypoxia (5 cycles of 15 min at ~ 0% O2 and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of Crassostrea gigas respiring on pyruvate, palmitate, or succinate. Constant hypoxia suppressed oxidative phosphorylation (OXPHOS), particularly during Complex I-linked substrates oxidation. It had no effect on mitochondrial reactive oxygen species (ROS) efflux but increased fractional electron leak (FEL). In mitochondria oxidizing Complex I substrates, exposure to cyclic hypoxia prompted a significant drop after the first H/R cycle. In contrast, succinate-driven respiration only showed significant decline after the third to fifth H/R cycle. ROS efflux saw little change during cyclic hypoxia regardless of the oxidized substrate, but Complex I-driven FEL tended to increase with each subsequent H/R cycle. These observations suggest that succinate may serve as a beneficial stress fuel under H/R conditions, aiding in the post-hypoxic recovery of oysters by reducing oxidative stress and facilitating rapid ATP re-synthesis. The impacts of constant and cyclic hypoxia of similar duration on mitochondrial respiration and oxidative lesions in the proteins were comparable indicating that the mitochondrial damage is mostly determined by the lack of oxygen and mitochondrial depolarization. The ROS efflux in the mitochondria of oysters was minimally affected by oxygen fluctuations indicating that tight regulation of ROS production may contribute to robust mitochondrial phenotype of oysters and protect against H/R induced stress.
Collapse
Affiliation(s)
- Linda Adzigbli
- Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
3
|
Woof L, Cooper S, Kennedy CJ. The effects of SLICE®- and ivermectin-contaminated sediment on avoidance behaviour and oxygen consumption in marine benthic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106155. [PMID: 37690394 DOI: 10.1016/j.marenvres.2023.106155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
Pest management strategies to reduce sea lice infestations in the salmon aquaculture industry include in-feed treatments with ivermectin (IVM) and SLICE® (active ingredient [AI] emamectin benzoate [EMB]), which can result in local contamination of the environment. These compounds partition to sediments, have moderate persistence, and may pose a risk to non-target benthic organisms. The sub-lethal effects of EMB, IVM and a combination of both (EMB/IVM) on the benthic amphipod Eohaustorius estuarius and polychaete Nereis virens at environmentally relevant sediment concentrations were examined in subchronic exposures (28-30-d). E. estuarius avoided sediment containing >50 μg/kg IVM alone and in combination with EMB. N. virens avoided sediment with >50 μg/kg IVM and >0.5 μg/kg EMB/IVM and exhibited impaired burrowing and locomotory behaviour with both treatments. Oxygen consumption was significantly decreased in E. estuarius (up to 50% compared to controls) and increased in N. virens (by ∼ 200%) when exposed to EMB, IVM and EMB/IVM at concentrations <5 μg/kg. IVM, SLICE® and combination exposures at environmentally relevant concentrations caused adverse effects in E. estuarius and N. virens which could significantly alter organism fitness near salmon aquaculture operations.
Collapse
Affiliation(s)
- Lindsay Woof
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie Cooper
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
4
|
Steffen JBM, Sokolov EP, Bock C, Sokolova IM. Combined effects of salinity and intermittent hypoxia on mitochondrial capacity and reactive oxygen species efflux in the Pacific oyster, Crassostrea gigas. J Exp Biol 2023; 226:jeb246164. [PMID: 37470191 PMCID: PMC10445735 DOI: 10.1242/jeb.246164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Coastal environments commonly experience fluctuations in salinity and hypoxia-reoxygenation (H/R) stress that can negatively affect mitochondrial functions of marine organisms. Although intertidal bivalves are adapted to these conditions, the mechanisms that sustain mitochondrial integrity and function are not well understood. We determined the rates of respiration and reactive oxygen species (ROS) efflux in the mitochondria of oysters, Crassostrea gigas, acclimated to high (33 psu) or low (15 psu) salinity, and exposed to either normoxic conditions (control; 21% O2) or short-term hypoxia (24 h at <0.01% O2) and subsequent reoxygenation (1.5 h at 21% O2). Further, we exposed isolated mitochondria to anoxia in vitro to assess their ability to recover from acute (∼10 min) oxygen deficiency (<0.01% O2). Our results showed that mitochondria of oysters acclimated to high or low salinity did not show severe damage and dysfunction during H/R stress, consistent with the hypoxia tolerance of C. gigas. However, acclimation to low salinity led to improved mitochondrial performance and plasticity, indicating that 15 psu might be closer to the metabolic optimum of C. gigas than 33 psu. Thus, acclimation to low salinity increased mitochondrial oxidative phosphorylation rate and coupling efficiency and stimulated mitochondrial respiration after acute H/R stress. However, elevated ROS efflux in the mitochondria of low-salinity-acclimated oysters after acute H/R stress indicates a possible trade-off of higher respiration. The high plasticity and stress tolerance of C. gigas mitochondria may contribute to the success of this invasive species and facilitate its further expansion into brackish regions such as the Baltic Sea.
Collapse
Affiliation(s)
- Jennifer B. M. Steffen
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Eugene P. Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, 18119 Warnemünde, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Inna M. Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
5
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
6
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
7
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
8
|
Wang J, Deng W, Zou T, Bai B, Chang AK, Ying X. Cadmium-induced oxidative stress in Meretrix meretrix gills leads to mitochondria-mediated apoptosis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2011-2023. [PMID: 34529205 DOI: 10.1007/s10646-021-02465-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most important marine environmental pollutants that can cause oxidative damage and apoptosis in living organisms, and mitochondria are the key cell organelles affected by Cd toxicity. In this study, we investigated the effect of Cd on the mitochondria in the gill cells of the clam Meretrix meretrix and the underlying mechanism of mitochondria-mediated apoptosis following exposure to the metal. Exposure of the clams to artificial seawater containing 1.5, 3, 6 and 12 mg L-1 Cd2+ led to swollen mitochondria compared with the untreated clams. The mitochondria also became vacuolated at the higher Cd2+ concentrations. Biochemical assays showed that monoamine oxidase (MAO) activity and mitochondrial membrane potential (Δψm) increased at 1.5 mg L-1 Cd2+, but decreased at higher Cd2+ concentrations, while the activities of malate dehydrogenase (MDH) and cytochrome oxidase (CCO) and the scavenging capacities of anti-superoxide anion (ASA) and anti-hydroxy radical (AHR) all decreased with increasing Cd2+ concentrations. Significant increases in the levels of malondialdehyde (MDA) and H2O2 as well as in the activity levels of caspase-3, -8, and -9 were also observed in the Cd2+-treated clams. The results implied that Cd might induce apoptosis in M. meretrix via the mitochondrial caspase-dependent pathway.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanfei Deng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Ting Zou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Binbin Bai
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Steffen JBM, Haider F, Sokolov EP, Bock C, Sokolova IM. Mitochondrial capacity and reactive oxygen species production during hypoxia and reoxygenation in the ocean quahog, Arctica islandica. J Exp Biol 2021; 224:272605. [PMID: 34697625 DOI: 10.1242/jeb.243082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Oxygen fluctuations are common in marine waters, and hypoxia-reoxygenation (H-R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are not well understood. We used top-down metabolic control analysis (MCA) to determine aerobic capacity and control over oxygen flux in the mitochondria of quahogs exposed to short-term hypoxia (24 h <0.01% O2) and subsequent reoxygenation (1.5 h 21% O2) compared with normoxic control animals (21% O2). We demonstrated that flux capacity of the substrate oxidation and proton leak subsystems were not affected by hypoxia, while the capacity of the phosphorylation subsystem was enhanced during hypoxia associated with a depolarization of the mitochondrial membrane. Reoxygenation decreased the oxygen flux capacity of all three mitochondrial subsystems. Control over oxidative phosphorylation (OXPHOS) respiration was mostly exerted by substrate oxidation regardless of H-R stress, whereas control by the proton leak subsystem of LEAK respiration increased during hypoxia and returned to normoxic levels during reoxygenation. During hypoxia, reactive oxygen species (ROS) efflux was elevated in the LEAK state, whereas it was suppressed in the OXPHOS state. Mitochondrial ROS efflux returned to normoxic control levels during reoxygenation. Thus, mitochondria of A. islandica appear robust to hypoxia by maintaining stable substrate oxidation and upregulating phosphorylation capacity, but remain sensitive to reoxygenation. This mitochondrial phenotype might reflect adaptation of A. islandica to environments with unpredictable oxygen fluctuations and its behavioural preference for low oxygen levels.
Collapse
Affiliation(s)
- Jennifer B M Steffen
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, 18119 Rostock, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
10
|
Sokolova I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J Exp Biol 2021; 224:224/Suppl_1/jeb236802. [PMID: 33627464 DOI: 10.1242/jeb.236802] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.
Collapse
Affiliation(s)
- Inna Sokolova
- Marine Biology Department, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany .,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
11
|
Louis F, Delahaut L, Gaillet V, Bonnard I, Paris-Palacios S, David E. Effect of reproduction cycle stage on energy metabolism responses in a sentinel species (Dreissena polymorpha) exposed to cadmium: What consequences for biomonitoring? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105699. [PMID: 33290890 DOI: 10.1016/j.aquatox.2020.105699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Metal trace elements such as cadmium (Cd) are commonly present in ecosystems and could lead to impairment of mitochondrial functions and energy imbalance in aquatic organisms including molluscs. Combined exposure to increasing temperatures and Cd could enhance such an impact on animals. Seasonal fluctuations, such as temperature, and the corresponding reproduction cycle can affect biomarker responses. However, the reproduction cycle stage is rarely taken into account in ecotoxicological studies. Thus, this work aimed at understanding energy metabolism responses in a sentinel species, Dreissena polymorpha. Mussels were collected during the rest and the reproduction periods and were exposed to 10 μg.L-1 of cadmium (Cd) at two temperatures (in situ temperature and in situ temperature + 5°C) during 7 days. Energy metabolism was monitored by measuring reserves and energy nucleotides charge and by assessing aerobic and anaerobic metabolism markers, and upstream regulation pathways. Markers related to OXPHOS activity revealed seasonal variations under laboratory conditions. Conversely, adenylate nucleotides, glycogen, lipid and transcript levels of AMP-activated protein kinase, citrate synthase, ATP synthase and cytochrome b encoding genes remained steady after the acclimation period. No evident effect of Cd on energy metabolism markers was noticed for both exposures although the transcript level of succinate dehydrogenase and citrate synthase encoding genes decreased with Cd during the rest period. Cellular stress, revealed by lipid peroxidation and catalase mRNA levels, only occurred in Cd and warming co-exposed mussels during the reproduction period. These results suggest that contaminant impact might differ according to the reproduction cycle stage. The effect of confounding factors on biomarker variations should be further investigated to have a deeper knowledge of metabolism responses under laboratory conditions.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| |
Collapse
|
12
|
Wu F, Sokolov EP, Dellwig O, Sokolova IM. Season-dependent effects of ZnO nanoparticles and elevated temperature on bioenergetics of the blue mussel Mytilus edulis. CHEMOSPHERE 2021; 263:127780. [PMID: 32814131 DOI: 10.1016/j.chemosphere.2020.127780] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Input of ZnO nanoparticles (nZnO) from multiple sources have raised concerns about the potential toxic effects on estuarine and coastal organisms. The toxicity of nZnO and its interaction with common abiotic stressors (such as elevated temperature) are not well understood in these organisms. Here, we examined the bioenergetics responses of the blue mussel Mytilus edulis exposed for 21 days to different concentrations of nZnO or dissolved zinc (Zn2+) (0, 10, 100 μg l-1) and two temperatures (ambient and 5 °C warmer) in winter and summer. Exposure to nZnO had little effect on the protein and lipid levels, but led to a significant depletion of carbohydrates and a decrease in the electron transport system (ETS) activity. Qualitatively similar but weaker effects were found for dissolved Zn. In winter mussels, elevated temperature (15 °C) led to elevated protein and lipid levels increasing the total energy content of the tissues. In contrast, elevated temperature (20 °C) resulted in a decrease in the lipid and carbohydrate levels and suppressed ETS in summer mussels. These data indicate that moderate warming in winter (but not in summer) might partially compensate for the bioenergetics stress caused by nZnO toxicity in M. edulis from temperate areas such as the Baltic Sea.
Collapse
Affiliation(s)
- Fangli Wu
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz ScienceCampus Phosphorus Research, Rostock, Warnemünde, Germany
| | - Olaf Dellwig
- Department of Marine Geology, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
13
|
Branca JJV, Pacini A, Gulisano M, Taddei N, Fiorillo C, Becatti M. Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain. Front Cell Dev Biol 2020; 8:604377. [PMID: 33330504 PMCID: PMC7734342 DOI: 10.3389/fcell.2020.604377] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Cadmium (Cd) is a well-known heavy metal and environmental toxicant and pollutant worldwide, being largely present in every kind of item such as plastic (toys), battery, paints, ceramics, contaminated water, air, soil, food, fertilizers, and cigarette smoke. Nowadays, it represents an important research area for the scientific community mainly for its effects on public health. Due to a half-life ranging between 15 and 30 years, Cd owns the ability to accumulate in organs and tissues, exerting deleterious effects. Thus, even at low doses, a Cd prolonged exposure may cause a multiorgan toxicity. Mitochondria are key intracellular targets for Cd-induced cytotoxicity, but the underlying mechanisms are not fully elucidated. The present review is aimed to clarify the effects of Cd on mitochondria and, particularly, on the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
14
|
Sukhotin A, Kovalev A, Sokolov E, Sokolova IM. Mitochondrial performance of a continually growing marine bivalve, Mytilus edulis, depends on body size. J Exp Biol 2020; 223:jeb226332. [PMID: 32527963 DOI: 10.1242/jeb.226332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022]
Abstract
Allometric decline of mass-specific metabolic rate with increasing body size in organisms is a well-documented phenomenon. Despite a long history of research, the mechanistic causes of metabolic scaling with body size remain under debate. Some hypotheses suggest that intrinsic factors such as allometry of cellular and mitochondrial metabolism may contribute to the organismal-level metabolic scaling. The aim of our present study was to determine the metabolic allometry at the mitochondrial level using a continually growing marine ectotherm, the mussel Mytilus edulis, as a model. Mussels from a single cohort that considerably differed in body size were selected, implying faster growth in the larger specimens. We determined the body mass-dependent scaling of the mitochondrial proton leak respiration, respiration in the presence of ADP indicative of the oxidative phosphorylation (OXPHOS), and maximum activity of the mitochondrial electron transport system (ETS) and cytochrome c oxidase (COX). Respiration was measured at normal (15°C), and elevated (27°C) temperatures. The results demonstrated a pronounced allometric increase in both proton leak respiration and OXPHOS activity of mussel mitochondria. Mussels with faster growth (larger body size) showed an increase in OXPHOS rate, proton leak respiration rate, and ETS and COX activity (indicating an overall improved mitochondrial performance) and higher respiratory control ratio (indicating better mitochondrial coupling and potentially lower costs of mitochondrial maintenance at the same OXPHOS capacity) compared with slower growing (smaller) individuals. Our data show that the metabolic allometry at the organismal level cannot be directly explained by mitochondrial functioning.
Collapse
Affiliation(s)
- Alexey Sukhotin
- White Sea Biological Station, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg 199034, Russia
| | - Anton Kovalev
- White Sea Biological Station, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg 199034, Russia
- Department of Invertebrate Zoology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Eugene Sokolov
- Leibniz Institute for Baltic Sea Research Warnemünde, Leibniz ScienceCampus Rostock: Phosphorus Research, D-18119 Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18051 Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
15
|
Cadmium-Induced Oxidative Stress: Focus on the Central Nervous System. Antioxidants (Basel) 2020; 9:antiox9060492. [PMID: 32516892 PMCID: PMC7346204 DOI: 10.3390/antiox9060492] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood-brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.
Collapse
|
16
|
Cadmium-Related Effects on Cellular Immunity Comprises Altered Metabolism in Earthworm Coelomocytes. Int J Mol Sci 2020; 21:ijms21020599. [PMID: 31963425 PMCID: PMC7013597 DOI: 10.3390/ijms21020599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The heavy metal cadmium (Cd) is known to modulate the immune system, challenging soil-dwelling organisms where environmental Cd pollution is high. Since earthworms lack adaptive immunity, we determined Cd-related effects on coelomocytes, the cellular part of innate immunity, which is also the site of detoxification processes. A proteomics approach revealed a set of immunity-related proteins as well as gene products involved in energy metabolism changing in earthworms in response to Cd exposure. Based on these results, we conducted extracellular flux measurements of oxygen and acidification to reveal the effect of Cd on coelomocyte metabolism. We observed a significantly changing oxygen consumption rate, extracellular acidification, as well as metabolic potential, which can be defined as the response to an induced energy demand. Acute changes in intracellular calcium levels were also observed, indicating impaired coelomocyte activation. Lysosomes, the cell protein recycling center, and mitochondrial parameters did not change. Taken together, we were able to characterize coelomocyte metabolism to reveal a potential link to an impaired immune system upon Cd exposure.
Collapse
|
17
|
Sokolova I. Mitochondrial Adaptations to Variable Environments and Their Role in Animals' Stress Tolerance. Integr Comp Biol 2019; 58:519-531. [PMID: 29701785 DOI: 10.1093/icb/icy017] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are the key organelles involved in energy and redox homeostasis, cellular signaling, and survival. Animal mitochondria are exquisitely sensitive to environmental stress, and stress-induced changes in the mitochondrial integrity and function have major consequences for the organismal performance and fitness. Studies in the model organisms such as terrestrial mammals and insects showed that mitochondrial dysfunction is a major cause of injury during pathological conditions and environmental insults such as hypoxia, ischemia-reperfusion, and exposure to toxins. However, animals from highly stressful environments (such as the intertidal zone of the ocean) can maintain mitochondrial integrity and function despite intense and rapid fluctuations in abiotic conditions and associated changes in the intracellular milieu. Recent studies demonstrate that mitochondria of intertidal organisms (including mollusks, crustaceans, and fish) are capable of maintaining activity of mitochondrial electron transport system (ETS), ATP synthesis, and mitochondrial coupling in a broad range of temperature, osmolarity, and ion content. Mitochondria of intertidal organisms such as mollusks are also resistant to hypoxia-reoxygenation injury and show stability or even upregulation of the mitochondrial ETS activity and ATP synthesis capacity during intermittent hypoxia. In contrast, pH optima for mitochondrial ATP synthesis and respiration are relatively narrow in intertidal mollusks and may reflect adaptation to suppress metabolic rate during pH shifts caused by extreme stress. Sensitivity to anthropogenic pollutants (such as trace metals) in intertidal mollusks appears similar to that of other organisms (including mammals) and may reflect the lack of adaptation to these evolutionarily novel stressors. The mechanisms of the exceptional mitochondrial resilience to temperature, salinity, and hypoxic stress are not yet fully understood in intertidal organisms, yet recent studies demonstrate that they may involve rapid modulation of the ETS capacity (possibly due to post-translation modification of mitochondrial proteins), upregulation of antioxidant defenses in anticipation of oxidative stress, and high activity of mitochondrial proteases involved in degradation of damaged mitochondrial proteins. With rapidly developing molecular tools for non-model organisms, future studies of mitochondrial adaptations should pinpoint the molecular sites associated with the passive tolerance and/or active regulation of mitochondrial activity during stress exposures in intertidal organisms, investigate the roles of mitochondria in transduction of stress signals, and explore the interplay between bioenergetics and mitochondrial signaling in facilitating survival in these highly stressful environments.
Collapse
Affiliation(s)
- Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, A.-Einstein Str., 3, Rostock 18055, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Belyaeva EA. Respiratory complex II in mitochondrial dysfunction-mediated cytotoxicity: Insight from cadmium. J Trace Elem Med Biol 2018; 50:80-92. [PMID: 30262321 DOI: 10.1016/j.jtemb.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023]
Abstract
In the present work we studied action of several inhibitors of respiratory complex II (CII) of mitochondrial electron transport chain, namely malonate and thenoyltrifluoroacetone (TTFA) on Cd2+-induced toxicity and cell mortality, using two rat cell lines, pheochromocytoma PC12 and ascites hepatoma AS-30D and isolated rat liver mitochondria (RLM). It was shown that malonate, an endogenous competitive inhibitor of dicarboxylate-binding site of CII, restored in part RLM respiratory function disturbed by Cd2+. In particular, malonate increased both phosphorylating and maximally uncoupled respiration rates in KCl medium in the presence of CI substrates as well as palliated changes in basal and resting state respiration rates produced by the heavy metal on the mitochondria energized by CI or CII substrates. Notably, malonate enhanced Cd2+-induced swelling of the mitochondria energized by CI substrates in KCl and, in a much lesser extent and at higher [Cd2+], in sucrose media but did not influence on the Cd2+ effects in NaCl medium. Besides, malonate did not affect swelling in sucrose media of RLM energized by CIV substrates under using of Cd2+ or Ca2+ whereas it strongly increased the mitochondrial swelling produced by selenite. In addition, malonate produced some protection against Cd2+-promoted necrotic death of AS-30D and PC12 cells and reduced intracellular reactive oxygen species (ROS) formation evoked by Cd2+ in PC12 cells. Importantly, TTFA, an irreversible competitive inhibitor of Q-binding site of CII, per se induced apoptosis of AS-30D cells which was inhibited by co-treatment with Cd2+ as well as decreased the Cd2+-enhanced intracellular ROS formation. In turn, decylubiquinone (dUb) at low μM concentrations did not protect AS-30D cells against the Cd2+-induced necrosis and enhanced the Cd2+-induced apoptosis of the cells. High μM concentrations of dUb were highly toxic for the cells. As consequence, the findings give new evidence indicative of critical involvement of CII in mechanism(s) of Cd2+-produced cytotoxicity and support the notion on CII as a perspective pharmacological target in mitochondria dysfunction-mediated conditions and diseases.
Collapse
Affiliation(s)
- Elena A Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Thorez pr. 44, 194223, St.-Petersburg, Russia.
| |
Collapse
|
19
|
Pigneret M, Roussel D, Hervant F. Anaerobic end-products and mitochondrial parameters as physiological biomarkers to assess the impact of urban pollutants on a key bioturbator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27225-27234. [PMID: 30030757 DOI: 10.1007/s11356-018-2756-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The impact of long-term exposure (6 months) to highly or slightly polluted sediments on the energy metabolism of an ecosystem engineer (the oligochaete Limnodrilus hoffmeisteri) was investigated in laboratory conditions. We evaluated some mitochondrial parameters (respiratory chain activity and ATP production rate) and the accumulation of anaerobic end-products (lactate, alanine, succinate, and propionate). The sediments were collected from stormwater infiltration basins and presented high levels of heavy metals and polycyclic aromatic hydrocarbons (PAHs). These compounds had been drained by the runoff water on impervious surfaces of urban areas during rainfall events. A decrease in the activity of the mitochondrial electron transport chain was observed in worms exposed to the most polluted sediment. Urban contaminants disrupted both aerobic metabolism and mitochondrial functioning, forcing organisms to shift from aerobic to anaerobic metabolism (which is characteristic of a situation of functional hypoxia). Although L. hoffmeisteri is very tolerant to urban pollutants, long-term exposure to high concentrations can cause disruption in mitochondrial activity and therefore energy production. Finally, this study demonstrated that anaerobic end-products could be used as biomarkers to evaluate the impact of a mixture of urban pollutants on invertebrates.
Collapse
Affiliation(s)
- Mathilde Pigneret
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France.
| | - Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| | - Frédéric Hervant
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), UMR CNRS 5023, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622, Villeurbanne, France
| |
Collapse
|
20
|
Du SNN, McCallum ES, Vaseghi-Shanjani M, Choi JA, Warriner TR, Balshine S, Scott GR. Metabolic Costs of Exposure to Wastewater Effluent Lead to Compensatory Adjustments in Respiratory Physiology in Bluegill Sunfish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:801-811. [PMID: 29211964 DOI: 10.1021/acs.est.7b03745] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Municipal wastewater effluent is a major source of aquatic pollution and has potential to impact cellular energy metabolism. However, it is poorly understood whether wastewater exposure impacts whole-animal metabolism and whether this can be accommodated with adjustments in respiratory physiology. We caged bluegill sunfish (Lepomis macrochirus) for 21 days at two sites downstream (either 50 or 830 m) from a wastewater treatment plant (WWTP). Survival was reduced in fish caged at both downstream sites compared to an uncontaminated reference site. Standard rates of O2 consumption increased in fish at contaminated sites, reflecting a metabolic cost of wastewater exposure. Several physiological adjustments accompanied this metabolic cost, including an expansion of the gill surface area available for gas exchange (reduced interlamellar cell mass), a decreased blood-O2 affinity (which likely facilitates O2 unloading at respiring tissues), increased respiratory capacities for oxidative phosphorylation in isolated liver mitochondria (supported by increased succinate dehydrogenase, but not citrate synthase, activity), and decreased mitochondrial emission of reactive oxygen species (ROS). We conclude that exposure to wastewater effluent invokes a metabolic cost that leads to compensatory respiratory improvements in O2 uptake, delivery, and utilization.
Collapse
Affiliation(s)
- Sherry N N Du
- Department of Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Erin S McCallum
- Department of Psychology, Neuroscience & Behaviour, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Maryam Vaseghi-Shanjani
- Department of Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jasmine A Choi
- Department of Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Theresa R Warriner
- Department of Psychology, Neuroscience & Behaviour, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
21
|
Hawkins CA, Sokolova IM. Effects of elevated CO 2 levels on subcellular distribution of trace metals (Cd and Cu) in marine bivalves. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:251-264. [PMID: 28987992 DOI: 10.1016/j.aquatox.2017.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Hypercapnia (elevated CO2 levels) and pollution with trace metals such as Cu and Cd are common stressors in estuarine habitats that can negatively affect physiology and health of marine organisms. Hypercapnia can modulate toxicity of trace metals including Cu and Cd; however, the physiological and cellular mechanisms of the metal-CO2 interactions are not well understood. We investigated the effects of elevated PCO2 (∼800 and 2000μatm) and metal exposure (50μgl-1 of Cu or Cd) on subcellular distribution of metals in two common species of marine bivalves, Eastern oysters Crassostrea virginica and hard shell clams Mercenaria mercenaria. Oysters accumulated higher burdens of Cu and Cd in the gill tissues compared to clams. In both studied species, Cu was predominantly associated with the metabolically active cell compartments (mitochondria, lysosomes, microsomes and cytosolic enzymes), with a modest fraction sequestered by metallothioneins (∼30%) and the insoluble metal-containing granules (MCG) (∼15-20%). Unlike Cu, Cd was largely sequestered by metallothioneins (∼60-70%), with a relatively small fraction associated with the organelles and the cytosolic enzymes. Mitochondria were the main intracellular target for trace metals accumulating higher concentrations of Cd (and in the case of oysters - of Cu) than other organelles or cytosolic enzymes. Cu accumulation in the metabolically active cellular compartments was independent of the CO2 levels, while Cd content of the organelles and cytosolic enzymes increased at elevated PCO2 in both studied species indicating that hypercapnia may enhance cellular toxicity of Cd in bivalves. Hypercapnia suppressed the sequestration capacity of metallothioneins for Cu and Cd in oysters but increased Cu and Cd load in clam metallothioneins. Thus, metal-induced metabolic injury in oysters may be exaggerated by hypercapnia which enhances metal accumulation in the potentially sensitive intracellular fractions and suppresses the metal detoxification capacity. In contrast, clams appear to be more resistant to the combined effects of hypercapnia and metal exposure reflecting more efficient and robust detoxification mechanisms of this species.
Collapse
Affiliation(s)
- C A Hawkins
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, USA
| | - I M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, A.-Einstein Str., 3, Rostock, Germany.
| |
Collapse
|
22
|
Ivanina AV, Nesmelova I, Leamy L, Sokolov EP, Sokolova IM. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. ACTA ACUST UNITED AC 2017; 219:1659-74. [PMID: 27252455 DOI: 10.1242/jeb.134700] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating that the H/R exposure did not lead to severe energy deficiency. Taken together, our findings suggest that mitochondrial reorganizations sustaining high oxidative phosphorylation flux during recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Irina Nesmelova
- Department of Physics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Larry Leamy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Eugene P Sokolov
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
23
|
Liu Z, Wang H, Zhang W, Yuan Z, Yuan H, Liu X, Zhang M, Guo X, Guan W. Lead induces Siberian tiger fibroblast apoptosis by interfering with intracellular homeostasis. Drug Chem Toxicol 2017. [DOI: 10.1080/01480545.2017.1337125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zheng Liu
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hui Wang
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenxiu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziao Yuan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Yuan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueting Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minghai Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuesong Guo
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Onukwufor JO, Stevens D, Kamunde C. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:129-141. [PMID: 27893995 DOI: 10.1016/j.aquatox.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/16/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Although aquatic organisms face multiple environmental stressors that may interact to alter adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is limited. We investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) and temperature on mitochondrial function. Liver mitochondria from juvenile rainbow trout were exposed to Cd (0-20μM) and H-R (0 and 5min) at 5, 13 and 25°C followed by measurements of mitochondrial Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS release and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed reduction of maximal complex I (CI) respiration whereas at low temperature 5 and 10μM stimulated maximal CI respiration post H-R. The basal respiration showed a biphasic response at high temperatures with low Cd concentrations reducing the stimulatory effect of H-R and high concentrations enhancing this effect. At low temperature Cd monotonically enhanced H-R-induced stimulation of basal respiration. Cd and H-R reduced both the P/O ratio and the RCR at all 3 temperatures. Temperature rise alone increased mitochondrial Cd load and toxicity, but combined H-R and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the mitochondrial dysfunction. Mitochondrial dysfunction induced by H-R was associated with swelling of the organelle and blocking of conversion of CІ D to A form. However, low amounts of Cd protected against H-R induced swelling and prevented the inhibition of H-R-induced CI D to A transition. Both H-R and Cd dissipated mitochondrial membrane potential Δψm and damaged mitochondrial structure. We observed increased reactive oxygen species (H2O2) release that together with the protection afforded by EGTA, vitamin E and N-acetylcysteine against the Δψm dissipation suggested direct involvement of Cd and oxidative stress. Overall, our findings indicate that mitochondrial sensitivity to Cd toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial Cd load did not always explain this effect.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
25
|
Mitochondria-Targeted Antioxidants for the Treatment of Cardiovascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:621-646. [DOI: 10.1007/978-3-319-55330-6_32] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Wang H, Liu Z, Zhang W, Yuan Z, Yuan H, Liu X, Yang C, Guan W. Cadmium-induced apoptosis of Siberian tiger fibroblasts via disrupted intracellular homeostasis. Biol Res 2016; 49:42. [PMID: 27776532 PMCID: PMC5078894 DOI: 10.1186/s40659-016-0103-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022] Open
Abstract
Background Heavy metals can cause great harm to Siberian tigers in the natural environment. Cadmium (Cd2+) is an environmental contaminant that affects multiple cellular processes, including cell proliferation, differentiation, and survival. It has been shown to induce apoptosis in a variety of cell types and tissues. Results We investigated the apoptotic effects of Cd2+ on Siberian tiger fibroblasts in vitro. Our research revealed the typical signs of apoptosis after Cd2+ exposure. Apoptosis was dose- (0–4.8 μM) and duration-dependent (12–48 h), and proliferation was strongly inhibited. Cd2+ increased the activity of caspase-3, -8, and -9 and disrupted calcium homeostasis by causing oxidative stress and mitochondrial dysfunction. It also increased K+ efflux and altered the mRNA levels of Bax, Bcl-2, caspase-3, caspase-8, Fas, and p53. Conclusions Our results suggest that Cd2+ triggers the apoptosis of Siberian tiger fibroblasts by disturbing intracellular homeostasis. These results will aid in our understanding of the effects of Cd2+ on Siberian tigers and in developing interventions to treat and prevent cadmium poisoning.
Collapse
Affiliation(s)
- Hui Wang
- Jinzhou Medical University, Jinzhou, 121001, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zheng Liu
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Wenxiu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziao Yuan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyi Yuan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueting Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunwen Yang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157012, China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
27
|
Wang H, Yu Y, Li J, Wu H, Sun J, Zhang Z, Geng L, Yu X, Liu Z. Cadmium stimulates mouse skin fibroblast apoptosis by affecting intracellular homeostasis. Drug Chem Toxicol 2016; 40:74-84. [DOI: 10.1080/01480545.2016.1175007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Xu L, Ge J, Huo X, Zhang Y, Lau ATY, Xu X. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:1163-1170. [PMID: 26895036 DOI: 10.1016/j.scitotenv.2015.11.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to lead (Pb) and cadmium (Cd) has been associated with a series of physiological problems resulting in fetal growth restriction. We aimed to investigate the effects of Pb and Cd exposure on placental function and the potential mechanisms involved in fetal development. Placental specimens and questionnaires were collected from an e-waste area and a reference area in China. Two-dimensional electrophoresis combined with MALDI-TOF-MS/MS and molecular network relationship were performed to analyze differentially expressed proteins using a compositing sample pool. Compared with the reference group, the exposed group exhibited significantly higher levels of placental Pb and Cd (p<0.01), shorter body length and higher gestational age (p<0.01). After bivariate adjustment in a linear regression model, decreases of 205.05g in weight and 0.44cm in body length were associated with a 10ng/g wt increase in placental Cd. Pb showed a negative trend but lacked statistical significance. Proteomic analysis showed 32 differentially-expressed proteins and were predominantly involved in protein translocation, cytoskeletal structure, and energy metabolism. Fumarate hydratase was down-regulated in the exposed placenta tissues and validated by ELISA. Alterations in placental proteome suggest that imbalances in placental mitochondria respiration might be a vital pathway targeting fetal growth restriction induced by exposure to Cd.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, PR China
| | - Jingjing Ge
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, PR China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, PR China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, PR China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041, PR China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, PR China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, PR China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, PR China.
| |
Collapse
|
29
|
Effects of pH and bicarbonate on mitochondrial functions of marine bivalves. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:41-50. [PMID: 27044911 DOI: 10.1016/j.cbpa.2016.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022]
Abstract
Estuarine organisms including mollusks are exposed to periodic oxygen deficiency (hypoxia) that leads to a decrease in intracellular pH and accumulation of bicarbonate (HCO3(-)). These changes can affect cellular bioenergetics; however, their effects on mitochondria of estuarine mollusks are not well understood. We determined the interactive effects of bicarbonate (0-10mM) and pH (7.2 and 6.5) on mitochondrial oxygen consumption (ṀO2), membrane potential (Δψ) and production of reactive oxygen species (ROS) in two common estuarine bivalves - hard clams Mercenaria mercenaria, and bay scallops Argopecten irradians. In both species, elevated HCO3(-) levels suppressed ADP-stimulated (state 3) ṀO2 but had little effect on the resting (state 4) respiration. These effects were not mediated by the soluble adenylyl cyclase or cyclic AMP. Effects of the low pH (6.5) on mitochondrial traits were species-specific and depended on the substrate oxidized by the mitochondria. Mild acidosis (pH6.5) had minimal effects on ṀO2 and Δψ of the bivalve mitochondria oxidizing pyruvate but led to increased rates of ROS production in clams (ROS production could not be measured in scallops). In succinate-respiring mitochondria of clams, mild acidosis suppressed ṀO2 and increased mitochondrial coupling, while in scallop mitochondria the effects of low pH were opposite. Suppression of mitochondrial oxidative phosphorylation by bicarbonate and/or acidosis may contribute to the metabolic rate depression during shell closure or environmental hypoxia/hypercapnia. These findings have implications for understanding the physiological mechanisms involved in regulation of mitochondrial bioenergetics during hypoxia exposure in estuarine bivalves.
Collapse
|
30
|
Bagwe R, Beniash E, Sokolova IM. Effects of cadmium exposure on critical temperatures of aerobic metabolism in eastern oysters Crassostrea virginica (Gmelin, 1791). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:77-89. [PMID: 26276356 DOI: 10.1016/j.aquatox.2015.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Cadmium (Cd) and elevated temperatures are common stressors in estuarine and coastal environments. Elevated temperature can sensitize estuarine organisms to the toxicity of metals such as Cd and vice versa, but the physiological mechanisms of temperature-Cd interactions are not well understood. We tested a hypothesis that interactive effects of elevated temperature and Cd stress involve Cd-induced reduction of the aerobic scope of an organism thereby narrowing the thermal tolerance window of oysters. We determined the effects of prolonged Cd exposure (50 μg Cd l(-1)for 30 days) on the upper critical temperature of aerobic metabolism (assessed by accumulation of anaerobic end products L-alanine, succinate and acetate), cellular energy status (assessed by the tissue levels of adenylates, phosphagen/aphosphagen and glycogen and lipid reserves) and oxidative damage during acute temperature rise (20-36 °C) in the eastern oysters Crassostrea virginica. The upper critical temperature (TcII) was shifted to lower values (from 28 to 24 °C) in Cd-exposed oysters in spring and was lower in both control and Cd-exposed groups in winter (24 and <20 °C, respectively). This indicates a reduction of thermal tolerance of Cd-exposed oysters associated with a decrease of the aerobic scope of the organism and early transition to partial anaerobiosis. Acute warming had no negative effects on tissue energy reserves or parameters of cellular energy status of oysters (except a decrease in adenylate content at the extreme temperature of 36 °C) but led to an increase in oxidative lesions of proteins at extreme temperatures. These data show that transition to partial anaerobiosis (indicated by the accumulation of anaerobic end products) is the most sensitive biomarker of temperature-induced transition to energetically non-sustainable state in oysters, whereas disturbances in the cellular energy status (i.e. decline in adenylate and phosphagen levels) and oxidative stress ensue at considerably higher temperatures, nearing the lethal range. This study indicates that long-term exposure of oysters to environmentally relevant levels of Cd may increase their sensitivity to elevated temperatures during seasonal warming and/or the global climate change in polluted estuaries.
Collapse
Affiliation(s)
- Rita Bagwe
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA; Great Basin College, Pahrump Valley Center, Elko, NV, USA
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
31
|
Brunst KJ, Baccarelli AA, Wright RJ. Integrating mitochondriomics in children's environmental health. J Appl Toxicol 2015; 35:976-91. [PMID: 26046650 PMCID: PMC4714560 DOI: 10.1002/jat.3182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
The amount of scientific research linking environmental exposures and childhood health outcomes continues to grow; yet few studies have teased out the mechanisms involved in environmentally-induced diseases. Cells can respond to environmental stressors in many ways: inducing oxidative stress/inflammation, changes in energy production and epigenetic alterations. Mitochondria, tiny organelles that each retains their own DNA, are exquisitely sensitive to environmental insults and are thought to be central players in these pathways. While it is intuitive that mitochondria play an important role in disease processes, given that every cell of our body is dependent on energy metabolism, it is less clear how environmental exposures impact mitochondrial mechanisms that may lead to enhanced risk of disease. Many of the effects of the environment are initiated in utero and integrating mitochondriomics into children's environmental health studies is a critical priority. This review will highlight (i) the importance of exploring environmental mitochondriomics in children's environmental health, (ii) why environmental mitochondriomics is well suited to biomarker development in this context, and (iii) how molecular and epigenetic changes in mitochondria and mitochondrial DNA (mtDNA) may reflect exposures linked to childhood health outcomes.
Collapse
Affiliation(s)
- Kelly J. Brunst
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Laboratory of Environmental Epigenetics, Exposure Epidemiology and Risk Program, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Rosalind J. Wright
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
32
|
Nguyen KC, Rippstein P, Tayabali AF, Willmore WG. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes. Toxicol Sci 2015; 146:31-42. [PMID: 25809595 PMCID: PMC4476459 DOI: 10.1093/toxsci/kfv068] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
There are an increasing number of studies indicating that mitochondria are relevant targets in nanomaterial-induced toxicity. However, the underlying mechanisms by which nanoparticles (NPs) interact with these organelles and affect their functions are unknown. The aim of this study was to investigate the effects of cadmium telluride quantum dot (CdTe-QD) NPs on mitochondria in human hepatocellular carcinoma HepG2 cells. CdTe-QD treatment resulted in the enlargement of mitochondria as examined with transmission electron microscopy and confocal microscopy. CdTe-QDs appeared to associate with the isolated mitochondria as detected by their inherent fluorescence. Further analyses revealed that CdTe-QD caused disruption of mitochondrial membrane potential, increased intracellular calcium levels, impaired cellular respiration, and decreased adenosine triphosphate synthesis. The effects of CdTe-QDs on mitochondrial oxidative phosphorylation were evidenced by changes in levels and activities of the enzymes of the electron transport chain. Elevation of peroxisome proliferator-activated receptor-γ coactivator levels after CdTe-QD treatment suggested the effects of CdTe-QDs on mitochondrial biogenesis. Our results also showed that the effects of CdTe-QDs were similar or greater to those of cadmium chloride at equivalent concentrations of cadmium, suggesting that the toxic effects of CdTe-QDs were not solely due to cadmium released from the NPs. Overall, the study demonstrated that CdTe-QDs induced multifarious toxicity by causing changes in mitochondrial morphology and structure, as well as impairing their function and stimulating their biogenesis.
Collapse
Affiliation(s)
- Kathy C Nguyen
- *Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6 and The University of Ottawa, Heart Institute, Ottawa, Ontario, Canada K1Y 4W7 *Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6 and The University of Ottawa, Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Peter Rippstein
- *Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6 and The University of Ottawa, Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Azam F Tayabali
- *Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6 and The University of Ottawa, Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - William G Willmore
- *Biotechnology Laboratory, Mechanistic Studies Division, Environmental Health Science Research Bureau, HECSB, Health Canada, Ottawa, Ontario, Canada K1A 0K9, Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6 and The University of Ottawa, Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| |
Collapse
|
33
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:75-87. [PMID: 25461747 DOI: 10.1016/j.aquatox.2014.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0-100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q10 values for state 3 respiration increased at low temperature (5-13 °C) while those for state 4 increased at high temperature (13-25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying the effects. Lastly, using specific modulators of mitochondrial ion channels, we demonstrated that the mitochondrial volume changes were associated with Cd uptake via the mitochondrial calcium uniporter (MCU) without significant contribution of the permeability transition pore and/or potassium channels. Overall, it appears that high temperature exacerbates Cd-induced mitochondrial dysfunction and volume changes in part by increasing metal uptake through the MCU.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3.
| |
Collapse
|
34
|
González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 2014; 9:e114459. [PMID: 25486066 PMCID: PMC4259338 DOI: 10.1371/journal.pone.0114459] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
Collapse
Affiliation(s)
- Claudia P. González-Hunt
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Rakesh K. Bodhicharla
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Madeline G. McKeever
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Andrew E. Arrant
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Kathleen M. Margillo
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Technology, Duke University, Durham, North Carolina, United States of America
| | - Sara G. Kosmaczewski
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail: mailto:
| |
Collapse
|
35
|
Al Kaddissi S, Legeay A, Elia AC, Gonzalez P, Floriani M, Cavalie I, Massabuau JC, Gilbin R, Simon O. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure. ENVIRONMENTAL TOXICOLOGY 2014; 29:893-907. [PMID: 23065898 DOI: 10.1002/tox.21817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 05/29/2023]
Abstract
The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- Laboratory of Radioecology and Ecotoxicology (LRE), Institute of Radioprotection and Nuclear Safety (IRSN), Bd 186, BP 3, 13115 Saint-Paul-Lez-Durance, France; Laboratory of Aquatic Ecotoxicology (EA), University of Bordeaux1/UMR CNRS 5805, Dr Peyneau Square, 33120 Arcachon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ivanina AV, Hawkins C, Sokolova IM. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. FISH & SHELLFISH IMMUNOLOGY 2014; 37:299-312. [PMID: 24594010 DOI: 10.1016/j.fsi.2014.02.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Estuarine organisms are exposed to multiple stressors including large fluctuations in partial pressure of carbon dioxide (P2CO) and concentrations of trace metals such as cadmium (Cd) that can affect their survival and fitness. Ocean acidification due to the increasing atmospheric (P2CO) leads to a decrease in pH and shifts in the carbonate chemistry of seawater which can change bioavailability and toxicity of metals. We studied the interactive effects of (P2CO) and Cd exposure on metal levels, metabolism and immune-related functions in hemocytes of two ecologically and economically important bivalve species, Mercenaria mercenaria (hard shell clam) and Crassostrea virginica (Eastern oyster). Clams and oysters were exposed to combinations of three (P2CO) levels (∼400, 800 and 2000 μatm (P2CO), corresponding to the present day conditions and the projections for the years 2100 and 2250, respectively) and two Cd concentrations (0 and 50 μg l(-1)) in seawater. Following four weeks of exposure to Cd, hemolymph of both species contained similar Cd levels (50-70 μg l(-1)), whereas hemocytes accumulated intracellular Cd burdens up to 15-42 mg l(-1), regardless of the exposure P2CO. Clam hemocytes had considerably lower Cd burdens than those of oysters (0.7-1 ng 10(-6) cells vs. 4-6 ng 10(-6) cells, respectively). Cd exposure suppressed hemocyte metabolism and increased the rates of mitochondrial proton leak in normocapnia indicating partial mitochondrial uncoupling. This Cd-induced mitochondrial uncoupling was alleviated in hypercapnia. Cd exposure suppressed immune-related functions in hemocytes of clams and oysters, and these effects were exacerbated at elevated (P2CO). Thus, elevated (P2CO) combined with Cd exposure resulted in decrease in phagocytic activity and adhesion capacity as well as lower expression of mRNA for lectin and heat shock protein (HSP70) in clam and oyster hemocytes. In oysters, combined exposure to elevated (P2CO) and Cd also led to reduced activity of lysozyme in hemocytes and hemolymph. Overall, our study shows that moderately elevated (P2CO) (∼800-2000 μatm P2CO) potentiates the negative effects of Cd on immunity and thus may sensitize clams and oysters to pathogens and diseases during seasonal hypercapnia and/or ocean acidification in polluted estuaries.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Chelsea Hawkins
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
37
|
Byun HM, Baccarelli AA. Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum Genet 2014; 133:247-57. [PMID: 24402053 DOI: 10.1007/s00439-013-1417-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.
Collapse
Affiliation(s)
- Hyang-Min Byun
- Exposure Epidemiology and Risk Program, Laboratory of Environmental Epigenetics, Harvard School of Public Health, Boston, MA, 02115, USA,
| | | |
Collapse
|
38
|
Ivanina AV, Sokolova IM. Interactive effects of pH and metals on mitochondrial functions of intertidal bivalves Crassostrea virginica and Mercenaria mercenaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:303-309. [PMID: 24211794 DOI: 10.1016/j.aquatox.2013.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 06/02/2023]
Abstract
Intertidal bivalves experience broad fluctuations of environmental temperature, pH and oxygen content which could change their intracellular pH. They are also exposed to trace metals such as cadmium (Cd) and copper (Cu) that accumulate in their tissues and may negatively affect mitochondrial functions and bioenergetics. We determined the interactive effects of pH and trace metals (25 μM Cd or Cu) on mitochondrial functions (including respiration and membrane potentials in both ADP-stimulated (state 3) and resting (state 4) states) of two common marine bivalves, the hard clams (Mercenaria mercenaria) and eastern oysters (Crassostrea virginica). In the absence of the trace metals, mitochondrial functions of C. virginica and M. mercenaria were insensitive to pH in a broad physiologically relevant range (6.6-7.8). Mitochondrial respiration was generally suppressed by 25 μM Cd or Cu (with the stronger effects observed for ADP-stimulated compared to the resting respiration) while the mitochondrial membrane potential was unaffected. pH modulated the effects of Cu and Cd on mitochondrial respiration of the bivalves. In oysters, Cu suppressed ADP-stimulated mitochondrial respiration at high and low pH values (6.6 and 7.8, respectively), but had no effect in the intermediate pH range (7.0-7.4). In clams, the negative effect of Cu on ADP-stimulated respiration was only observed at extremely high pH (7.8). A decrease in pH was also protective against Cd in mitochondria of clams and oysters. In clams, 25 μM Cd suppressed ADP-stimulated respiration at all pH; however, at low pH (6.6-7.0) this suppression was paralleled by a decrease in the rates of proton leak thereby effectively restoring mitochondrial coupling. In oysters, the inhibitory effects of Cd on ADP-stimulated respiration were fully abolished at low pH (6.6-7.0). This indicates that moderate acidosis (such as occurs during exposure to air, extreme salinities or elevated CO2 levels in the intertidal zone) may have a beneficial side-effect of protecting mitochondria of clams and oysters against the toxic effects of trace metals in polluted estuaries.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | |
Collapse
|
39
|
Sokolova IM. Energy-Limited Tolerance to Stress as a Conceptual Framework to Integrate the Effects of Multiple Stressors. Integr Comp Biol 2013; 53:597-608. [DOI: 10.1093/icb/ict028] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. MARINE ENVIRONMENTAL RESEARCH 2012; 79:1-15. [PMID: 22622075 DOI: 10.1016/j.marenvres.2012.04.003] [Citation(s) in RCA: 708] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 05/22/2023]
Abstract
Energy balance is a fundamental requirement of stress adaptation and tolerance. We explore the links between metabolism, energy balance and stress tolerance using aquatic invertebrates as an example and demonstrate that using key parameters of energy balance (aerobic scope for growth, reproduction and activity; tissue energy status; metabolic rate depression; and compensatory onset of anaerobiosis) can assist in integrating the effects of multiple stressors and their interactions and in predicting the whole-organism and population-level consequences of environmental stress. We argue that limitations of both the amount of available energy and the rates of its acquisition and metabolic conversions result in trade-offs between basal maintenance of a stressed organism and energy costs of fitness-related functions such as reproduction, development and growth and can set limit to the tolerance of a broad range of environmental stressors. The degree of stress-induced disturbance of energy balance delineates transition from moderate stress compatible with population persistence (pejus range) to extreme stress where only time-limited existence is possible (pessimum range). It also determines the predominant adaptive strategy of metabolic responses (energy compensation vs. conservation) that allows an organism to survive the disturbance. We propose that energy-related biomarkers can be used to determine the conditions when these metabolic transitions occur and thus predict ecological consequences of stress exposures. Bioenergetic considerations can also provide common denominator for integrating stress responses and predicting tolerance limits under the environmentally realistic scenarios when multiple and often variable stressors act simultaneously on an organism. Determination of bioenergetic sustainability at the organism's level (or lack thereof) has practical implications. It can help identify the habitats and/or conditions where a population can survive (even if at the cost of reduced reproduction and growth) and those that are incapable of supporting viable populations. Such an approach will assist in explaining and predicting the species' distribution limits in the face of the environmental change and informing the conservation efforts and resource management practices.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | | | | | | | | |
Collapse
|
41
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
42
|
Adiele RC, Stevens D, Kamunde C. Differential Inhibition of Electron Transport Chain Enzyme Complexes by Cadmium and Calcium in Isolated Rainbow Trout (Oncorhynchus mykiss) Hepatic Mitochondria. Toxicol Sci 2012; 127:110-9. [DOI: 10.1093/toxsci/kfs091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Adiele RC, Stevens D, Kamunde C. Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 2012; 26:164-73. [DOI: 10.1016/j.tiv.2011.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/25/2011] [Accepted: 10/28/2011] [Indexed: 12/14/2022]
|
44
|
Huber HJ, Connolly NMC, Dussmann H, Prehn JHM. A structured approach to the study of metabolic control principles in intact and impaired mitochondria. MOLECULAR BIOSYSTEMS 2012; 8:828-42. [PMID: 22218564 DOI: 10.1039/c2mb05434e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.
Collapse
Affiliation(s)
- Heinrich J Huber
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
45
|
Adiele RC, Stevens D, Kamunde C. Cadmium- and calcium-mediated toxicity in rainbow trout (Oncorhynchus mykiss) in vivo: interactions on fitness and mitochondrial endpoints. CHEMOSPHERE 2011; 85:1604-1613. [PMID: 21885087 DOI: 10.1016/j.chemosphere.2011.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/30/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
Rainbow trout were exposed to sublethal waterborne Cd (5 and 10 μg L(-1)) and dietary Ca (60 mg g(-1)), individually and in combination, for 30 d to elucidate the interactive effects and evaluate the toxicological significance of mitochondrial responses to these cations in vivo. Indices of fish condition and mortality were measured and livers, centers of metabolic homeostasis, were harvested to assess mitochondrial function and cation accumulation. All indices of condition assessed (body weight, hepatosomatic index and condition factor) were reduced in all the treatment groups. Mortality occurred in the Cd-exposed groups with dietary Ca partly protecting against and enhancing it in the lower and higher Cd exposure, respectively. State 3 mitochondrial respiration was inhibited by 30%, 35% and 40% in livers of fish exposed to Ca, Cd and Cd+Ca, respectively, suggesting reduced ATP turnover and/or impaired substrate oxidation. While the phosphorylation efficiency was unaffected, state 4 and state 4+ (+ oligomycin) respirations were inhibited by all the exposures. Mitochondrial coupling was reduced and transiently restored denoting partially effective compensatory mechanisms to counteract Cd/Ca toxicity. The respiratory dysfunction was associated with accumulation of both Cd and Ca in the mitochondria. Although fish that survived acute effects of Cd and Ca exposure apparently made adjustments to energy generation such that liver mitochondria functioned more efficiently albeit at reduced capacity, reduced fitness was persistent possibly due to increased demands for maintenance and defense against toxicity. Overall, interactions between Cd and Ca on condition indices and mitochondrial responses were competitive or cooperative depending on exposure concentrations and duration.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | | | | |
Collapse
|