1
|
Yue S, Meng J. Role of Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia. Am J Reprod Immunol 2025; 93:e70033. [PMID: 39739937 DOI: 10.1111/aji.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance. Furthermore, it explores how disruptions in these mechanisms and changes in the decidual microenvironment alter dNK cell properties, driving the progression of preeclampsia. Understanding the mechanisms of dNK cells and identifying potential therapeutic targets may provide new insights for clinical intervention.
Collapse
Affiliation(s)
- Shuang Yue
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinlai Meng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
2
|
Rodenberg RR, Spadafora D, Fitzpatrick S, Daly G, Lausch R, Barrington RA. γδ T17 Cells Regulate the Acute Antiviral Response of NK Cells in HSV-1-Infected Corneas. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39504049 PMCID: PMC11549926 DOI: 10.1167/iovs.65.13.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/13/2024] [Indexed: 11/09/2024] Open
Abstract
Purpose To determine whether γδ T cells regulate natural killer (NK) cells in the herpes simplex virus 1 (HSV-1)-infected cornea. Methods CD57Bl/6 (wild-type [WT]), TCRδ-/-, and IFN-γ-/- mice were infected intracorneally with HSV-1. TCR-/- mice were treated with IL-17A at 24 hours post-infection (PI), and the WT mice received treatments of fingolimod (FTY720) and anti-IL-17A. At 48 hours PI, corneas were excised, and intracellular staining flow cytometry was performed, as well as multiplex analysis. Additionally, single-cell RNA sequencing (scRNAseq) was done to analyze the transcriptome of NK cells from WT and TCRδ-/- mice. Results In mice lacking γδ T cells, there were significantly fewer NK cells following ocular HSV-1 infection. This reduction of NK cells corresponded with lower levels of cytokines and chemokines associated with the antiviral response. Furthermore, NK cells from WT mice had enriched IL-17A signaling compared to those from TCRδ-/- mice. The NK cell response was partially rescued in TCRδ-/- mice by administration of IL-17A. Correspondingly, the NK cell response could be blunted in WT mice by administration of anti-IL-17A. Finally, IFN-γ-/- mice had significantly less IL-17A production compared to WT mice. Conclusions γδ T17 cells promote NK cell accumulation in HSV-1-infected corneas. In turn, NK cells secrete IFN-γ, which negatively regulates further IL-17A production by γδ T cells.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Cornea/virology
- Cornea/immunology
- Cornea/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Flow Cytometry
- Herpesvirus 1, Human/physiology
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Intraepithelial Lymphocytes/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/virology
- Killer Cells, Natural/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- Rachel R. Rodenberg
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Domenico Spadafora
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| | - Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Grant Daly
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
| | - Robert A. Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, Alabama, United States
- Flow Cytometry Shared Resources Laboratory, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
3
|
Degnes MHL, Westerberg AC, Andresen IJ, Henriksen T, Roland MCP, Zucknick M, Michelsen TM. Protein biomarker signatures of preeclampsia - a longitudinal 5000-multiplex proteomics study. Sci Rep 2024; 14:23654. [PMID: 39390022 PMCID: PMC11467422 DOI: 10.1038/s41598-024-73796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
We aimed to explore novel biomarker candidates and biomarker signatures of late-onset preeclampsia (LOPE) by profiling samples collected in a longitudinal discovery cohort with a high-throughput proteomics platform. Using the Somalogic 5000-plex platform, we analyzed proteins in plasma samples collected at three visits (gestational weeks (GW) 12-19, 20-26 and 28-34 in 35 women with LOPE (birth ≥ 34 GW) and 70 healthy pregnant women). To identify biomarker signatures, we combined Elastic Net with Stability Selection for stable variable selection and validated their predictive performance in a validation cohort. The biomarker signature with the highest predictive performance (AUC 0.88 (95% CI 0.85-0.97)) was identified in the last trimester of pregnancy (GW 28-34) and included the Fatty acid amid hydrolase 2 (FAAH2), HtrA serine peptidase 1 (HTRA1) and Interleukin-17 receptor C (IL17RC) together with sFLT1 and maternal age, BMI and nulliparity. Our biomarker signature showed increased or similar predictive performance to the sFLT1/PGF-ratio within our data set, and we were able to validate the biomarker signature in a validation cohort (AUC ≥ 0.90). Further validation of these candidates should be performed using another protein quantification platform in an independent cohort where the negative and positive predictive values can be validly calculated.
Collapse
Affiliation(s)
- Maren-Helene Langeland Degnes
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway.
| | - Ane Cecilie Westerberg
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Ina Jungersen Andresen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Marie Cecilie Paasche Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Zhao J, Yang Y, Qin J, Tao S, Jiang C, Huang H, Wan Q, Chen Y, Xu S, Qiao H. Transcutaneous Auricular Vagus Nerve Stimulation Ameliorates Preeclampsia-Induced Apoptosis of Placental Trophoblastic Cells Via Inhibiting the Mitochondrial Unfolded Protein Response. Neurosci Bull 2024; 40:1502-1518. [PMID: 38874677 PMCID: PMC11422338 DOI: 10.1007/s12264-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/28/2024] [Indexed: 06/15/2024] Open
Abstract
Preeclampsia is a serious obstetric complication. Currently, there is a lack of effective preventive approaches for this disease. Recent studies have identified transcutaneous auricular vagus nerve stimulation (taVNS) as a potential novel non-pharmaceutical therapeutic modality for preeclampsia. In this study, we investigated whether taVNS inhibits apoptosis of placental trophoblastic cells through ROS-induced UPRmt. Our results showed that taVNS promoted the release of acetylcholine (ACh). ACh decreased the expression of UPRmt by inhibiting the formation of mitochondrial ROS (mtROS), presumably through M3AChR. This reduced the release of pro-apoptotic proteins (cleaved caspase-3, NF-κB-p65, and cytochrome C) and helped preserve the morphological and functional integrity of mitochondria, thus reducing the apoptosis of placental trophoblasts, improving placental function, and relieving preeclampsia. Our study unravels the potential pathophysiological mechanism of preeclampsia. In-depth characterization of the UPRmt is essential for developing more effective therapeutic strategies for preeclampsia targeting mitochondrial function.
Collapse
Affiliation(s)
- Jing Zhao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yanan Yang
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Jiayi Qin
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Siyu Tao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Chunmei Jiang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Huixuan Huang
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Qiunan Wan
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Yuqi Chen
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China
| | - Shouzhu Xu
- Department of Public Health, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
| | - Haifa Qiao
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang, 712046, China.
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xixian New Area, Xianyang, 712046, China.
| |
Collapse
|
5
|
van Kammen CM, Taal SEL, Wever KE, Granger JP, Lely AT, Terstappen F. Reduced uterine perfusion pressure as a model for preeclampsia and fetal growth restriction in murine: a systematic review and meta-analysis. Am J Physiol Heart Circ Physiol 2024; 327:H89-H107. [PMID: 38758122 PMCID: PMC11380978 DOI: 10.1152/ajpheart.00056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The reduced uterine perfusion pressure (RUPP) model is frequently used to study preeclampsia and fetal growth restriction. An improved understanding of influential factors might improve reproducibility and reduce animal use considering the variability in RUPP phenotype. We performed a systematic review and meta-analysis by searching Medline and Embase (until 28 March, 2023) for RUPP studies in murine. Primary outcomes included maternal blood pressure (BP) or proteinuria, fetal weight or crown-rump length, fetal reabsorptions, or antiangiogenic factors. We aimed to identify influential factors by meta-regression analysis. We included 155 studies. Our meta-analysis showed that the RUPP procedure results in significantly higher BP (MD = 24.1 mmHg; [22.6; 25.7]; n = 148), proteinuria (SMD = 2.3; [0.9; 3.8]; n = 28), fetal reabsorptions (MD = 50.4%; [45.5; 55.2]; n = 42), circulating soluble FMS-like tyrosine kinase-1 (sFlt-1) (SMD = 2.6; [1.7; 3.4]; n = 34), and lower fetal weight (MD = -0.4 g; [-0.47; -0.34]; n = 113. The heterogeneity (variability between studies) in primary outcomes appeared ≥90%. Our meta-regression identified influential factors in the method and time point of BP measurement, randomization in fetal weight, and type of control group in sFlt-1. The RUPP is a robust model considering the evident differences in maternal and fetal outcomes. The high heterogeneity reflects the observed variability in phenotype. Because of underreporting, we observed reporting bias and a high risk of bias. We recommend standardizing study design by optimal time point and method chosen for readout measures to limit the variability. This contributes to improved reproducibility and thereby eventually improves the translational value of the RUPP model.
Collapse
Affiliation(s)
- Caren M van Kammen
- Division of Nanomedicine, Department CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Seija E L Taal
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain, and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joey P Granger
- Department of Physiology and Biophysics, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - A Titia Lely
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Fieke Terstappen
- Department of Woman and Baby, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wang X, Shields CA, Thompson D, McKay J, Wilson R, Robbins MK, Glenn H, Fontenot M, Williams JM, Cornelius DC. IL-33 Signaling Inhibition Leads to a Preeclampsia-Like Phenotype in Pregnant Rats. Am J Reprod Immunol 2024; 92:e13895. [PMID: 39001587 PMCID: PMC11250770 DOI: 10.1111/aji.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
PROBLEM Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Corbin A Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Deanna Thompson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jie McKay
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rachel Wilson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Marcus K Robbins
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Glenn
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Molly Fontenot
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
7
|
Knez J, Kovačič B, Goropevšek A. The role of regulatory T-cells in the development of endometriosis. Hum Reprod 2024:deae103. [PMID: 38756099 DOI: 10.1093/humrep/deae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Endometriosis is a benign disease of the female reproductive tract, characterized by the process of chronic inflammation and alterations in immune response. It is estimated to affect 2-19% of women in the general population and is commonly associated with symptoms of chronic pelvic pain and infertility. Regulatory T cells (Treg) are a subpopulation of T lymphocytes that are potent suppressors of inflammatory immune response, essential in preventing destructive immunity in all tissues. In endometriosis, several studies have investigated the possible role of Treg cells in the development of the disease. Most studies to date are heterogeneous in methodology and are based on a small number of cases, which means that it is impossible to define their exact role at present. Based on current knowledge, it seems that disturbed Treg homeostasis, leading to increased systemic and local inflammation within ectopic and eutopic endometrium, is present in women who eventually develop endometriosis. It is also evident that different subsets of human Treg cells have different roles in suppressing the immune response. Recent studies in patients with endometriosis have investigated naive/resting FOXP3lowCD45RA+ Treg cells, which upon T cell receptor stimulation, differentiate into activated/effector FOXP3highCD45RA- Treg cells, characterized by a strong immunosuppressive activity. In addition, critical factors controlling expression of Treg/effector genes, including reactive oxygen species and heme-responsive master transcription factor BACH2, were found to be upregulated in endometriotic lesions. As shown recently for cancer microenvironments, microbial inflammation may also contribute to the local composition of FOXP3+ subpopulations in endometriotic lesions. Furthermore, cytokines, such as IL-7, which control the homeostasis of Treg subsets through the tyrosine phosphorylation STAT5 signalling pathway, have also been shown to be dysregulated. To better understand the role of Treg in the development of endometriosis, future studies should use clear definitions of Tregs along with specific characterization of the non-Treg (FOXP3lowCD45RA-) fraction, which itself is a mixture of follicular Tregs and cells producing inflammatory cytokines.
Collapse
Affiliation(s)
- Jure Knez
- Clinic for Gynaecology, Department for Gynaecological Oncology, University Medical Centre Maribor, Maribor, Slovenia
| | - Borut Kovačič
- Clinic for Gynaecology, Department for Reproductive Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Aleš Goropevšek
- Department of Laboratory Diagnostics, University Medical Centre Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Wang X, Shields C, Tardo G, Peacock G, Hester E, Anderson M, Williams JM, Cornelius DC. IL-33 supplementation improves uterine artery resistance and maternal hypertension in response to placental ischemia. Am J Physiol Heart Circ Physiol 2024; 326:H1006-H1016. [PMID: 38363211 PMCID: PMC11279736 DOI: 10.1152/ajpheart.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Corbin Shields
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Geilda Tardo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Greg Peacock
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Emily Hester
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Marissa Anderson
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
9
|
Hogg JP, Campbell N, Deer E, Fitzgerald S, Cornelius D, Hoang N, Turner T, Amaral L, Lemon JP, Ibrahim T, LaMarca B. The role of T cell stimulated agonistic autoantibodies to the angiotensin II type I receptor (AT1-AA) in mediating multiorgan dysfunction in IL-17 induced hypertension during pregnancy. Am J Reprod Immunol 2024; 91:e13843. [PMID: 38606700 DOI: 10.1111/aji.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
PROBLEM Preeclampsia (PE), new-onset hypertension during pregnancy accompanied by organ dysfunction, is associated with chronic inflammation including elevated IL-17, CD4+ T cells, B cells and natural killer (NK) cells. IL-17 can serve as a signal for either the adaptive or innate immune activation. We have previously shown that IL-17 contributes to increased blood pressure in association with elevated TH17 cells, NK cells and B cells secreting angiotensin II type 1 receptor agonistic autoantibodies (AT1-AA) during pregnancy. Moreover, we have shown an important role for CD4+T cells and AT1-AA in multiorgan dysfunction as measured by mitochondrial oxidative stress (mt ROS). However, we do not know the role of adaptive immune cells such as T cells or B cells secreting AT1-AA in mediating the PE phenotype in response to elevated IL-17. METHOD OF STUDY In order to answer this question, we infused IL-17 (150 pg/day i.p.) into either Sprague Dawley (SD) or athymic nude rats via mini-osmotic pump from gestational day (GD) 14-19 of pregnancy. On GD 19, blood pressure was determined and NK cells, mtROS and respiration and AT1-AA production from B cells were measured. RESULTS Infusion of IL-17 increased blood pressure in the presence or absence of T cells. Mean arterial pressure (MAP) increased with IL-17 from 98 ± 2 mm Hg (n = 12) to 114 ± 2 (n = 12) in SD rats and from 99 ± 4 mm Hg (n = 7) versus 115 ± 2 mm Hg (n = 7) in athymic nude rats. Similar trends were seen in NK cells and placental mt ROS. Knowing that IL-17 stimulates AT1-AA in SD pregnant rats, we included a group of SD and athymic nude pregnant rats infused with IL-17 and the AT1-AA inhibitor peptide ('n7AAc'). The inhibitor attenuated blood pressure (104.9 ± 3.2, p = .0001) and normalized NK cells and mt function in SD pregnant rats. Importantly, the AT1-AA was not produced in pregnant nude IL-17 treated rats, nor did 'n7AAc' effect MAP, in nude athymic rats. CONCLUSION These findings suggest two conclusions; one is that IL-17 causes hypertension and multiorgan dysfunction in the absence of T cells and AT1-AA, possibly through its activation of innate cells and secondly, in the presence of T cells, blockade of the AT1-AA attenuates the effect of IL-17. This study indicates the critical effects of elevated IL-17 during pregnancy and suggest treatment modalities to consider for PE women.
Collapse
Affiliation(s)
- James P Hogg
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, USA
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Denise Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Ngoc Hoang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Ty Turner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Lorena Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - James P Lemon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| | - Babbette LaMarca
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, USA
| |
Collapse
|
10
|
Shields CA, Tardo GA, Wang X, Peacock G, Robbins M, Glenn H, Wilson R, Williams JM, Cornelius DC. Inhibition of Caspase 1 Reduces Blood Pressure, Cytotoxic NK Cells, and Inflammatory T-Helper 17 Cells in Placental Ischemic Rats. Int J Mol Sci 2024; 25:863. [PMID: 38255935 PMCID: PMC10815407 DOI: 10.3390/ijms25020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, fetal growth restriction (FGR), and increased inflammation and populations of cytotoxic NK cells (cNKs) and inflammatory T-Helper 17 cells (TH17s). Both cytotoxic NK cells and TH17 cells are heavily influenced via IL-1β signaling. Caspase 1 activity leads to the release of the inflammatory cytokine IL-1β, which is increased in women with PE. Therefore, we tested the hypothesis that the inhibition of Caspase 1 with VX-765 in rats with reduced uterine perfusion pressure (RUPP) will attenuate PE pathophysiology. On gestation day (GD) 14, timed pregnant Sprague-Dawley rats underwent the RUPP or Sham procedure and were separated into groups that received either vehicle or VX-765 (50 mg/kg/day i.p.). On GD19, MAP was measured via carotid catheter and blood and tissues were collected. Bio-Plex and flow cytometry analysis were performed on placental tissues. Placental IL-1β was increased in the RUPP rats vs. the Sham rats and treatment with VX-765 reduced IL-1β in the RUPP rats. Caspase 1 inhibition reduced placental cNKs and TH17s in RUPP rats compared to vehicle-treated RUPP rats. Increased MAP was observed in RUPP rats compared with Sham rats and was reduced in RUPP + VX-765 rats. Placental reactive oxygen species (ROS) were elevated in RUPP rats compared to Sham rats. VX-765 administration reduced ROS in treated RUPP rats. Caspase 1 inhibition increased the number of live pups, yet had no effect on fetal weight or placental efficiency in the treated groups. In conclusion, Caspase 1 inhibition reduces placental IL-1β, inflammatory TH17 and cNK populations, and reduces MAP in RUPP rats. These data suggest that Caspase 1 is a key contributor to PE pathophysiology. This warrants further investigation of Caspase 1 as a potential therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Corbin A. Shields
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Geilda A. Tardo
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Xi Wang
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Gregory Peacock
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Marcus Robbins
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Hannah Glenn
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Rachel Wilson
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Jan M. Williams
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Denise C. Cornelius
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
11
|
Fitzgerald S, Deer E, Hogg J, Cornelius DC, Turner T, Amaral LM, Hoang N, Edwards K, Herrock O, Campbell N, Ibrahim T, LaMarca B. RUPP Th17s cause hypertension and mitochondrial dysfunction in the kidney and placenta during pregnancy. Pregnancy Hypertens 2023; 32:50-56. [PMID: 37104924 PMCID: PMC11494691 DOI: 10.1016/j.preghy.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Preeclampsia (PE), new-onset hypertension (HTN), and organ dysfunction during the second half of pregnancy, is associated with an increase in inflammatory immune cells, including T helper 17 (Th17) cells. Studies have demonstrated that mitochondrial (mt) dysfunction is important in the pathogenesis of PE though causative factors have yet to be fully identified. Although Th17 cells, natural killer (NK) cells, and mt dysfunction contribute to HTN in the reduced uterine perfusion pressure (RUPP) rat model, the role of Th17 cells or IL-17 in mt dysfunction is unknown. Therefore, we hypothesize that RUPP stimulated Th17 cells cause HTN and mt dysfunction, which is alleviated with the blockade of IL-17. METHODS On gestational day 12 (GD12), RUPP Th17 cells were transferred into normal pregnant (NP) Sprague Dawley rats. A subset of NP + RUPPTh17 rats received IL-17RC (100 pg/day) on GD14-19. Blood pressure (MAP), NK cells, and mt function were measured on GD19 in all groups. RESULTS MAP increased in response to NP + RUPP Th17 compared to NP rats and was lowered with IL-17RC. Circulating and placental NK cells increased with NP + RUPP Th17 compared to NP and were lowered with IL-17RC. Renal mtROS increased in NP + RUPP Th17 compared to NP and was normalized with IL-17RC. Similar to PE women, placental mtROS decreased in NP + RUPP Th17 and was normalized with IL-17RC. CONCLUSION Our results indicate that IL-17RC inhibition normalizes HTN, NK cell activation, and multi-organ mt dysfunction caused by Th17 cells stimulated in response to placental ischemia.
Collapse
Affiliation(s)
- Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - James Hogg
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Denise C Cornelius
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ty Turner
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ngoc Hoang
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kristin Edwards
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Tarek Ibrahim
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, United States; Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States.
| |
Collapse
|
12
|
Wang X, Shields CA, Ekperikpe U, Amaral LM, Williams JM, Cornelius DC. VASCULAR AND RENAL MECHANISMS OF PREECLAMPSIA. CURRENT OPINION IN PHYSIOLOGY 2023; 33:100655. [PMID: 37009057 PMCID: PMC10062189 DOI: 10.1016/j.cophys.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology, University of Mississippi Medical Center
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center
| | - Ubong Ekperikpe
- Department of Pharmacology, University of Mississippi Medical Center
| | - Lorena M Amaral
- Department of Pharmacology, University of Mississippi Medical Center
| | | | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center
- Department of Emergency Medicine, University of Mississippi Medical Center
| |
Collapse
|
13
|
Wang X, Travis OK, Shields CA, Tardo GA, Giachelli C, Nutter CW, Glenn HL, Cooper OG, Davis T, Thomas R, Williams JM, Cornelius DC. NLRP3 inhibition improves maternal hypertension, inflammation, and vascular dysfunction in response to placental ischemia. Am J Physiol Regul Integr Comp Physiol 2023; 324:R556-R567. [PMID: 36847598 PMCID: PMC10069976 DOI: 10.1152/ajpregu.00192.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder with end-organ damage that presents after 20 wk of gestation. PE pathophysiology often includes vascular dysfunction and increased inflammation that continues to damage patient health even after PE resolves. Currently, there is no cure for PE beyond delivery of the fetal-placental unit. Previous clinical studies have identified elevated placental NLRP3 expression in patients with PE and suggest NLRP3 as a potential therapeutic target. In this study, we examined the effect of NLRP3 inhibition on PE pathophysiology in the reduced uterine perfusion pressure (RUPP) model rat using MCC950 (20 mg/kg/day) or esomeprazole (3.5 mg/kg/day). We hypothesized that increased NLRP3 in response to placental ischemia impairs anti-inflammatory IL-33 signaling to induce T-helper 17 cell (TH17) and cytolytic NK cell (cNK) activation, which is known to mediate oxidative stress and vascular dysfunction leading to maternal HTN and intrauterine growth restriction. RUPP rats had significantly higher placental NLRP3 expression, maternal blood pressure, fetal reabsorption rate, vascular resistance, oxidative stress, cNKs and TH17s, and decreased IL-33 compared with normal pregnant (NP) rats. NLRP3 inhibition, with either treatment, significantly reduced placental NLRP3 expression, maternal blood pressure, fetal reabsorption rates, vascular resistance, oxidative stress, cNK, and TH17 populations in RUPP rats. Based on our findings, NLRP3 inhibition reduces PE pathophysiology and esomeprazole may be a potential therapeutic for PE treatment.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - G Ann Tardo
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Christopher W Nutter
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Hannah L Glenn
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Olive G Cooper
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Tatiana Davis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Rashauna Thomas
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
14
|
Herrock O, Deer E, Amaral LM, Campbell N, Whitney D, Ingram N, Cornelius DC, Turner T, Hardy-Hardin J, Booz GW, Ibrahim T, LaMarca B. Inhibiting B cell activating factor attenuates preeclamptic symptoms in placental ischemic rats. Am J Reprod Immunol 2023; 89:e13693. [PMID: 36794639 PMCID: PMC10009902 DOI: 10.1111/aji.13693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
PROBLEM Preeclampsia (PE), new-onset hypertension during pregnancy, is associated with a pro-inflammatory state with activated T cells, cytolytic natural killer (NK) cells, dysregulated complement proteins, and B cells secreting agonistic autoantibodies to the angiotensin II type-1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these features of PE. Blocking CD40L-CD40 communication between T and B cells or B cell depletion with Rituximab prevents hypertension and AT1-AA production in RUPP rats. This suggests that T cell-dependent B cell activation contributes to the hypertension and AT1-AA associated with PE. B2 cells maturing into antibody producing plasma cells are the product of T cell-dependent B cell-interactions and B cell Activating Factor (BAFF) is an integral cytokine in the development of B2 cells specifically. Thus, we hypothesize that BAFF blockade will selectively deplete B2 cells, therefore reducing blood pressure, AT1-AA, activated NK Cells, and complement in the RUPP rat model of PE. METHOD OF STUDY Gestational Day (GD) 14 pregnant rats underwent the RUPP procedure, and a subset were treated with 1 mg/kg Anti-BAFF antibodies via jugular catheters. On GD19, blood pressure was measured, B cells and NK cells were measured by flow cytometry, AT1-AA was measured by cardiomyocyte bioassay, and complement activation was measured by ELISA. RESULTS Anti-BAFF therapy attenuated hypertension, AT1-AA, NK cell activation, and APRIL levels in RUPP rats without negatively impacting fetal outcomes. CONCLUSIONS This study demonstrates that B2 cells contribute to hypertension, AT1-AA, and NK cell activation in response to placental ischemia during pregnancy.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Lorena M. Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Darby Whitney
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Nicole Ingram
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | | | - Ty Turner
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Ja’Nasa Hardy-Hardin
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - George W. Booz
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Tarek Ibrahim
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
15
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
16
|
Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol 2023; 14:1130116. [PMID: 36909242 PMCID: PMC9995795 DOI: 10.3389/fphys.2023.1130116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality worldwide. The immune system plays a critical role in normal pregnancy progression; however, inappropriate inflammatory responses have been consistently linked with PE pathophysiology. This inflammatory phenotype consists of activation of the innate immune system, adaptive immune system, and increased inflammatory mediators in circulation. Moreover, recent studies have shown that the inflammatory profile seen in PE persists into the postpartum period. This manuscript aims to highlight recent advances in research relating to inflammation in PE as well as the inflammation that persists postpartum in women after a PE pregnancy. With the advent of the COVID-19 pandemic, there has been an increase in obstetric disorders associated with COVID-19 infection during pregnancy. This manuscript also aims to shed light on the relationship between COVID-19 infection during pregnancy and the increased incidence of PE in these women.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
17
|
Herrock OT, Deer E, Amaral LM, Campbell N, Lemon J, Ingram N, Cornelius DC, Turner TW, Fitzgerald S, Ibrahim T, Dechend R, Wallukat G, LaMarca B. B2 cells contribute to hypertension and natural killer cell activation possibly via AT1-AA in response to placental ischemia. Am J Physiol Renal Physiol 2023; 324:F179-F192. [PMID: 36417275 PMCID: PMC9844978 DOI: 10.1152/ajprenal.00190.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Preeclampsia, new onset hypertension during pregnancy, is associated with activated T helper cells (Th) and B cells secreting agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these characteristics. We have shown that Th-B cell communication contributes to AT1-AA and symptoms of preeclampsia in the RUPP rat. B2 cells are classical B cells that communicate with Th cells and are then transformed into memory B cells. We hypothesize that B2 cells cause hypertension, natural killer (NK) cell activation, and complement activation during pregnancy through the production of AT1-AA. To test this hypothesis, total splenic B cells and B2 cells were isolated from normal pregnant (NP) or RUPP rats on gestational day (GD)19 and adoptively transferred into GD12 NP rats. A group of recipient rats was treated with a specific inhibitor peptide of AT1-AA. On GD19, mean arterial pressure was measured, tissues were collected, activated NK cells were measured by flow cytometry, and AT1-AA was measured by cardiomyocyte assay. NP recipients of RUPP B cells or RUPP B2 cells had increased mean arterial pressure, AT1-AA, and circulating activated NK cells compared with recipients of NP B cells. Hypertension in NP recipients of RUPP B cells or RUPP B2 was attenuated with AT1-AA blockade. This study demonstrates that B cells and B2 cells from RUPP rats cause hypertension and increased AT1-AA and NK cell activation in response to placental ischemia during pregnancy.NEW & NOTEWORTHY This study demonstrates that placental ischemia-stimulated B2 cells induce hypertension and circulating natural killer cell activation and angiotensin II type 1 receptor production in normal pregnant rats.
Collapse
Affiliation(s)
- Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - James Lemon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicole Ingram
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ty W Turner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ralf Dechend
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Gerd Wallukat
- Experimental and Clinical Research Center, HELIOS Clinic, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
18
|
Campbell NE, Deer EM, Herrock OT, LaMarca BB. The Role of Different Lymphoid Cell Populations in Preeclampsia Pathophysiology. KIDNEY360 2022; 3:1785-1794. [PMID: 36514732 PMCID: PMC9717666 DOI: 10.34067/kid.0001282022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), new-onset hypertension during pregnancy, affects up to 10% of pregnancies worldwide. Despite being the leading cause of maternal and fetal morbidity and mortality, PE has no cure beyond the delivery of the fetal-placental unit. Although the exact pathogenesis of PE is unclear, there is a strong correlation between chronic immune activation; intrauterine growth restriction; uterine artery resistance; dysregulation of the renin-angiotensin system. Which contributes to renal dysfunction; and the resulting hypertension during pregnancy. The genesis of PE is thought to begin with insufficient trophoblast invasion leading to reduced spiral artery remodeling, resulting in decreased placental perfusion and thereby causing placental ischemia. The ischemic placenta releases factors that shower the endothelium and contribute to peripheral vasoconstriction and chronic immune activation and oxidative stress. Studies have shown imbalances in proinflammatory and anti-inflammatory cell types in women with PE and in animal models used to examine mediators of a PE phenotype during pregnancy. T cells, B cells, and natural killer cells have all emerged as potential mediators contributing to the production of vasoactive factors, renal and endothelial dysfunction, mitochondrial dysfunction, and hypertension during pregnancy. The chronic immune activation seen in PE leads to a higher risk for other diseases, such as cardiovascular disease, CKD, dementia during the postpartum period, and PE during a subsequent pregnancy. The purpose of this review is to highlight studies demonstrating the role that different lymphoid cell populations play in the pathophysiology of PE. Moreover, we will discuss treatments focused on restoring immune balance or targeting specific immune mediators that may be potential strategies to improve maternal and fetal outcomes associated with PE.
Collapse
Affiliation(s)
- Nathan E Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline M Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette B LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
19
|
Murray EJ, Gumusoglu SB, Santillan DA, Santillan MK. Manipulating CD4+ T Cell Pathways to Prevent Preeclampsia. Front Bioeng Biotechnol 2022; 9:811417. [PMID: 35096797 PMCID: PMC8789650 DOI: 10.3389/fbioe.2021.811417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PreE) is a placental disorder characterized by hypertension (HTN), proteinuria, and oxidative stress. Individuals with PreE and their children are at an increased risk of serious short- and long-term complications, such as cardiovascular disease, end-organ failure, HTN, neurodevelopmental disorders, and more. Currently, delivery is the only cure for PreE, which remains a leading cause of morbidity and mortality among pregnant individuals and neonates. There is evidence that an imbalance favoring a pro-inflammatory CD4+ T cell milieu is associated with the inadequate spiral artery remodeling and subsequent oxidative stress that prime PreE's clinical symptoms. Immunomodulatory therapies targeting CD4+ T cell mechanisms have been investigated for other immune-mediated inflammatory diseases, and the application of these prevention tactics to PreE is promising, as we review here. These immunomodulatory therapies may, among other things, decrease tumor necrosis factor alpha (TNF-α), cytolytic natural killer cells, reduce pro-inflammatory cytokine production [e.g. interleukin (IL)-17 and IL-6], stimulate regulatory T cells (Tregs), inhibit type 1 and 17 T helper cells, prevent inappropriate dendritic cell maturation, and induce anti-inflammatory cytokine action [e.g. IL-10, Interferon gamma (IFN-γ)]. We review therapies including neutralizing monoclonal antibodies against TNF-α, IL-17, IL-6, and CD28; statins; 17-hydroxyprogesterone caproate, a synthetic hormone; adoptive exogenous Treg therapy; and endothelin-1 pathway inhibitors. Rebalancing the maternal inflammatory milieu may allow for proper spiral artery invasion, placentation, and maternal tolerance of foreign fetal/paternal antigens, thereby combatting early PreE pathogenesis.
Collapse
Affiliation(s)
- Eileen J. Murray
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Serena B. Gumusoglu
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Psychiatry, Iowa City, IA, United States
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Institute for Clinical and Translational Science, Iowa City, IA, United States
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Institute for Clinical and Translational Science, Iowa City, IA, United States
- Francois M. Abboud Cardiovascular Research Center, Iowa City, IA, United States
- Interdisciplinary Program in Molecular Medicine, Iowa City, IA, United States
- Center for Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Zhang Z, Yang Y, Lv X, Liu H. Interleukin-17 promotes proliferation, migration, and invasion of trophoblasts via regulating PPAR-γ/RXR-α/Wnt signaling. Bioengineered 2022; 13:1224-1234. [PMID: 35258399 PMCID: PMC8805847 DOI: 10.1080/21655979.2021.2020468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the effect of Interleukin 17 (IL-17) on the invasive capacity of trophoblast cells and the underlying mechanism, we collected placental tissues samples from pregnant women with preeclampsia (PE) and healthy pregnant women. The expression levels of IL-17 mRNA and protein in tissue samples were determined using qRT-PCR and Western blot, respectively. Cell viability and cell proliferation was determined using CCK-8 assay, and colony formation assay, respectively. Cell migration and invasion capacity were determined using transwell cell migration assay. Our results showed that the mRNA expression of IL-17 was significantly increased in PE patients and may be used as a sensitive biomarker for PE (P < 0.01). IL-17 overexpression promoted cell viability, migration, and invasion of human extravillous trophoblast cell line, HTR8/SVneo; however, IL-17 knockdown inhibited these effects. Additionally, IL-17 activated PPAR-γ/RXR-α signaling pathway, which promoted proliferation, migration, and invasion of trophoblast cells. Moreover, PPAR-γ/RXR-α heterodimers activated Wnt signaling. In conclusion, our study provides evidence that IL-17 is overexpressed in PE and promotes proliferation, migration and invasion of trophoblast cells via activating PPAR-γ/RXR-α/Wnt signaling.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Yuhua Yang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Xiaomei Lv
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Hongyuan Liu
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
21
|
Biology and pathology of the uterine microenvironment and its natural killer cells. Cell Mol Immunol 2021; 18:2101-2113. [PMID: 34426671 PMCID: PMC8429689 DOI: 10.1038/s41423-021-00739-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Tissues are the new frontier of discoveries in immunology. Cells of the immune system are an integral part of tissue physiology and immunity. Determining how immune cells inhabit, housekeep, and defend gut, lung, brain, liver, uterus, and other organs helps revealing the intimate details of tissue physiology and may offer new therapeutic targets to treat pathologies. The uterine microenvironment modulates the development and function of innate lymphoid cells [ILC, largely represented by natural killer (NK) cells], macrophages, T cells, and dendritic cells. These immune cells, in turn, contribute to tissue homeostasis. Regulated by ovarian hormones, the human uterine mucosa (endometrium) undergoes ~400 monthly cycles of breakdown and regeneration from menarche to menopause, with its fibroblasts, glands, blood vessels, and immune cells remodeling the tissue into the transient decidua. Even more transformative changes occur upon blastocyst implantation. Before the placenta is formed, the endometrial glands feed the embryo by histiotrophic nutrition while the uterine spiral arteries are stripped of their endothelial layer and smooth muscle actin. This arterial remodeling is carried out by invading fetal trophoblast and maternal immune cells, chiefly uterine NK (uNK) cells, which also assist fetal growth. The transformed arteries no longer respond to maternal stimuli and meet the increasing demands of the growing fetus. This review focuses on how the everchanging uterine microenvironment affects uNK cells and how uNK cells regulate homeostasis of the decidua, placenta development, and fetal growth. Determining these pathways will help understand the causes of major pregnancy complications.
Collapse
|
22
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson TD, Brown AK, Booz GW, Smith AN, Williams JM, Cornelius DC. Interferon γ neutralization reduces blood pressure, uterine artery resistance index, and placental oxidative stress in placental ischemic rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R112-R124. [PMID: 34075808 PMCID: PMC8409917 DOI: 10.1152/ajpregu.00349.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 μg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Geilda A Tardo
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shani Siddiq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Henry T Nguyen
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Madison T Crosby
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tyler D Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea K Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alex N Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan Michael Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
23
|
Dasinger JH, Abais-Battad JM, Bukowy JD, Lund H, Alsheikh AJ, Fehrenbach DJ, Zemaj J, Mattson DL. Dietary protein source contributes to the risk of developing maternal syndrome in the Dahl salt-sensitive rat. Pregnancy Hypertens 2021; 24:126-134. [PMID: 33971615 PMCID: PMC8182412 DOI: 10.1016/j.preghy.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Preeclampsia (PE) is a disorder of pregnancy, which is categorized by hypertension and proteinuria or signs of end-organ damage. Though PE is the leading cause of maternal and fetal morbidity and mortality, the mechanisms leading to PE remain unclear. The present study examined the contribution of dietary protein source (casein versus wheat gluten) to the risk of developing maternal syndrome utilizing two colonies of Dahl salt-sensitive (SS/JrHsdMcwi) rats. While the only difference between the colonies is the diet, the colonies exhibit profound differences in the pregnancy phenotypes. The SS rats maintained on the wheat gluten (SSWG) chow are protected from developing maternal syndrome; however, approximately half of the SS rats fed a casein-based diet (SSC) exhibit maternal syndrome. Those SSC rats that develop pregnancy-specific increases in blood pressure and proteinuria have no observable differences in renal or placental immune profiles compared to the protected SS rats. A gene profile array of placental tissue revealed a downregulation in Nos3 and Cyp26a1 in the SSC rats that develop maternal syndrome accompanied with increases in uterine artery resistance index suggesting the source of this phenotype could be linked to inadequate remodeling within the placenta. Investigations into the effects of multiple pregnancies on maternal health replicated similar findings. The SSC colony displayed an exacerbation in proteinuria, renal hypertrophy and renal immune cell infiltration associated with an increased mortality rate while the SSWG colony were protected highlighting how dietary protein source could have beneficial effects in PE.
Collapse
Affiliation(s)
| | | | - John D Bukowy
- Department of Electrical Engineering and Computer Science, Milwaukee School of Engineering, United States
| | - Hayley Lund
- Department of Physiology, Medical College of Wisconsin, United States
| | - Ammar J Alsheikh
- Department of Physiology, Medical College of Wisconsin, United States
| | | | - Jeylan Zemaj
- Department of Physiology, Medical College of Wisconsin, United States
| | | |
Collapse
|
24
|
Travis OK, Baik C, Tardo GA, Amaral L, Jackson C, Greer M, Giachelli C, Ibrahim T, Herrock OT, Williams JM, Cornelius DC. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. Am J Reprod Immunol 2021; 85:e13386. [PMID: 33315281 PMCID: PMC8131208 DOI: 10.1111/aji.13386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The Reduced Uterine Perfusion Pressure (RUPP) rat model of placental ischemia recapitulates many characteristics of preeclampsia including maternal hypertension, intrauterine growth restriction (IUGR), and increased cytolytic natural killer cells (cNKs). While we have previously shown a 5-fold higher cytotoxicity of RUPP NKs versus normal pregnant NKs, their role in RUPP pathophysiology remains unclear. In this study, we tested the hypotheses that (1) adoptive transfer of RUPP-stimulated NKs will induce maternal hypertension and IUGR in normal pregnant control (Sham) rats and (2) adoptive transfer of Sham NKs will attenuate maternal hypertension and IUGR in RUPP rats. METHOD OF STUDY On gestation day (GD)14, vehicle or 5 × 106 RUPP NKs were infused i.v. into a subset of Sham rats (Sham+RUPP NK), and vehicle or 5 × 106 Sham NKs were infused i.v. into a subset of RUPP rats (RUPP+Sham NK; n = 12/group). On GD18, Uterine Artery Resistance Index (UARI) was measured. On GD19, mean arterial pressure (MAP) was measured, animals were sacrificed, and blood and tissues were collected for analysis. RESULTS Adoptive transfer of RUPP NKs into Sham rats resulted in elevated NK activation, UARI, placental oxidative stress, and preproendothelin expression as well as reduced circulating nitrate/nitrite. This led to maternal hypertension and IUGR. RUPP recipients of Sham NKs demonstrated normalized NK activation, sFlt-1, circulating and placental VEGF, and UARI, which led to improved maternal blood pressure and normal fetal growth. CONCLUSION These data suggest a direct role for cNKs in causing preeclampsia pathophysiology and a role for normal NKs to improve maternal outcomes and IUGR during late gestation.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Cedar Baik
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Geilda A Tardo
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Lorena Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Carmilya Jackson
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Mallory Greer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Chelsea Giachelli
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Owen T. Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
- Department of Emergency Medicine University of Mississippi Medical Center
| |
Collapse
|
25
|
Ishimwe JA. Maternal microbiome in preeclampsia pathophysiology and implications on offspring health. Physiol Rep 2021; 9:e14875. [PMID: 34042284 PMCID: PMC8157769 DOI: 10.14814/phy2.14875] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Preeclampsia is a devastating hypertensive pregnancy disorder that currently affects 2%–8% of pregnancies worldwide. It is associated with maternal and fetal mortality and morbidity and adverse health outcomes both in mom and offspring beyond pregnancy. The pathophysiology is not completely understood, and there are no approved therapies to specifically treat for the disease, with only few therapies approved to manage symptoms. Recent advances suggest that aberrations in the composition of the microbiome may play a role in the pathogenesis of various diseases including preeclampsia. The maternal and uteroplacental environments greatly influence the long‐term health outcomes of the offspring through developmental programming mechanisms. The current review summarizes recent developments on the role of the microbiome in adverse pregnancy outcomes with a focus on preeclampsia. It also discusses the potential role of the maternal microbiome in fetal programming; explores gut‐targeted therapeutics advancement and their implications in the treatment of preeclampsia.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
26
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson T, Brown AK, Williams JM, Cornelius DC. Tumor Necrosis Factor-alpha Blockade Improves Uterine Artery Resistance, Maternal Blood Pressure, and Fetal Growth in Placental Ischemic Rats. Pregnancy Hypertens 2021; 25:39-47. [PMID: 34051437 DOI: 10.1016/j.preghy.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/25/2022]
Abstract
We recently reported that adoptive transfer of cytolytic Natural Killer cells (cNKs) from the Reduced Uterine Perfusion Pressure (RUPP) rat induces a preeclampsia (PE)-like phenotype in pregnant rats, accompanied by increased TNF-α. The purpose of this study was to investigate a role for increased TNF-α to induce oxidative stress (ROS), decrease nitric oxide (NO) bioavailability, and induce vascular dysfunction as mechanisms of hypertension (HTN) and intrauterine growth restriction (IUGR) in RUPPs. Pregnant Sprague Dawley rats underwent the RUPP or a Sham procedure on gestation day (GD) 14. On GDs 15 and 18, a subset of Sham and RUPP rats received i.p.injections of vehicle or 0.4 mg/kg of Etanercept (ETA), a soluble TNF-α receptor (n = 10/group). On GD18, Uterine Artery Resistance Index (UARI) was measured, and on GD19, mean arterial pressure (MAP), fetal and placental weights were measured, and blood and tissues were processed for analysis. TNF-α blockade normalized the elevated MAP observed RUPP. Additionally, both fetal and placental weights were decreased in RUPP compared to Sham, and were normalized in RUPP + ETA. Placental ROS was also increased in RUPP rats compared to Sham, and remained elevated in RUPP + ETA. Compared to Sham, UARI was elevated in RUPPs while plasma total nitrate was reduced, and these were normalized in ETA treated RUPPs. In conclusion, TNF-α blockade in RUPPs reduced MAP and UARI, improved fetal growth, and increased NO bioavailability. These data suggest that TNF-α regulation of NO bioavailability is a potential mechanism that contributes to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes and fetal growth.
Collapse
Affiliation(s)
- Olivia K Travis
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Geilda A Tardo
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Chelsea Giachelli
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Shani Siddiq
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Henry T Nguyen
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Madison T Crosby
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Tyler Johnson
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Andrea K Brown
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Jan M Williams
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Denise C Cornelius
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States; Emergency Medicine, University of Mississippi Medical Center, United States.
| |
Collapse
|