1
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Monteiro DA, Florindo LH. Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana. J Exp Biol 2024; 227:jeb247105. [PMID: 38186316 DOI: 10.1242/jeb.247105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiology, Institute of Biosciences (IB), University of São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Victor Hugo da Silva Braga
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| | - Luiz Henrique Florindo
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
2
|
Yu F, Courjaret R, Elmi A, Adap EA, Orie NN, Zghyer F, Hubrack S, Hayat S, Asaad N, Worgall S, Suthanthiran M, Ali VM, Machaca K. Chronic reduction of store operated Ca 2+ entry is viable therapeutically but is associated with cardiovascular complications. J Physiol 2022; 600:4827-4848. [PMID: 36181482 DOI: 10.1113/jp283811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Loss of function mutations in store-operated Ca2+ entry (SOCE) are associated with severe paediatric disorders in humans, including combined immunodeficiency, anaemia, thrombocytopenia, anhidrosis and muscle hypotonia. Given its central role in immune cell activation, SOCE has been a therapeutic target for autoimmune and inflammatory diseases. Treatment for such chronic diseases would require prolonged SOCE inhibition. It is, however, unclear whether chronic SOCE inhibition is viable therapeutically. Here we address this issue using a novel genetic mouse model (SOCE hypomorph) with deficient SOCE, nuclear factor of activated T cells activation, and T cell cytokine production. SOCE hypomorph mice develop and reproduce normally and do not display muscle weakness or overt anhidrosis. They do, however, develop cardiovascular complications, including hypertension and tachycardia, which we show are due to increased sympathetic autonomic nervous system activity and not cardiac or vascular smooth muscle autonomous defects. These results assert that chronic SOCE inhibition is viable therapeutically if the cardiovascular complications can be managed effectively clinically. They further establish the SOCE hypomorph line as a genetic model to define the therapeutic window of SOCE inhibition and dissect toxicities associated with chronic SOCE inhibition in a tissue-specific fashion. KEY POINTS: A floxed stromal interaction molecule 1 (STIM1) hypomorph mouse model was generated with significant reduction in Ca2+ influx through store-operated Ca2+ entry (SOCE), resulting in defective nuclear translocation of nuclear factor of activated T cells, cytokine production and inflammatory response. The hypomorph mice are viable and fertile, with no overt defects. Decreased SOCE in the hypomorph mice is due to poor translocation of the mutant STIM1 to endoplasmic reticulum-plasma membrane contact sites resulting in fewer STIM1 puncta. Hypomorph mice have similar susceptibility to controls to develop diabetes but exhibit tachycardia and hypertension. The hypertension is not due to increased vascular smooth muscle contractility or vascular remodelling. The tachycardia is not due to heart-specific defects but rather seems to be due to increased circulating catecholamines in the hypomorph. Therefore, long term SOCE inhibition is viable if the cardiovascular defects can be managed clinically.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Asha Elmi
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ethel Alcantara Adap
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | - Fawzi Zghyer
- Medical Program, Weill Cornell Medicine Qatar, Doha, Qatar
| | - Satanay Hubrack
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Sajad Hayat
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Nidal Asaad
- Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Departments of Medicine and Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical College, New York, NY, USA
| | | | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Tavares D, da Silva Matos SLB, Duran LM, Castro SA, Taylor EW, Filogonio R, Fernandes MN, Leite CA. Baroreflex responses of decerebrate rattlesnakes (Crotalus durissus) are comparable to awake animals. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111286. [DOI: 10.1016/j.cbpa.2022.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
|
4
|
Experimental uninephrectomy associates with less parasympathetic modulation of heart rate and facilitates sodium-dependent arterial hypertension. PLoS One 2022; 17:e0265086. [PMID: 35263383 PMCID: PMC8906640 DOI: 10.1371/journal.pone.0265086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Blood pressure is known to be increased in kidney donors following living-donor kidney transplantation. However, the physiological underpinnings of the blood-pressure increase following uninephrectomy remain unclear. We hypothesized that changes in sympathetic tone or in parasympathetic modulation of sinus node function are involved in the blood-pressure increase following experimental kidney-mass reduction. Methods C57BL6N mice (6 to 11 per group) subjected to sham surgery (controls) or uninephrectomy with or without a one-week course of sodium chloride-enriched, taurine-deficient diet were studied. Uninephrectomized mice treated with a subcutaneous infusion of angiotensin-II over a period of one week were positive controls. A transfemoral aortic catheter with telemetry unit was implanted, readings of heart-rate and blood-pressure were recorded. Powerspectral analysis of heart rate and systolic blood pressure was performed to gain surrogate parameters of sympathetictone and parasympathetic modulation of sinus node function. Baroreflex sensitivity of heart rate was determined from awake, unrestrained mice using spontaneous baroreflex gain technique. Results Systolic arterial blood pressure, heart rate and baroreflex sensitivity were not different in uninephrectomized mice when compared to controls. Parasympathetic modulation of sinus node function was less in uninephrectomized mice in comparison to controls. Uninephrectomized mice of the high-angiotensin-II model or of the high-salt and taurine-deficiency model had an increased systolic arterial blood pressure. Conclusions Uninephrectomy associated with less parasympathetic modulation of sinus node function. The combination of uninephrectomy, taurine-deficiency and high-salt intake led to arterial hypertension.
Collapse
|
5
|
Sivils A, Yang F, Wang JQ, Chu XP. Acid-Sensing Ion Channel 2: Function and Modulation. MEMBRANES 2022; 12:membranes12020113. [PMID: 35207035 PMCID: PMC8880099 DOI: 10.3390/membranes12020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Correspondence: ; Tel.: +1-816-235-2248; Fax: +1-816-235-6517
| |
Collapse
|
6
|
Poon YY, Liu YW, Huang YH, Chan SHH, Tsai CY. Postoperative Stroke after Spinal Anesthesia and Responses of Carotid or Cerebral Blood Flow and Baroreflex Functionality to Spinal Bupivacaine in Rats. BIOLOGY 2021; 10:biology10070617. [PMID: 34356472 PMCID: PMC8301092 DOI: 10.3390/biology10070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Spinal anesthesia is generally accepted as an effective and safe practice. Three rare incidents of postoperative cerebral infarction after surgery under spinal anesthesia prompted us to assess whether spinal bupivacaine may compromise carotid or cerebral blood flow. Postoperative examination after the stroke incident revealed that all three patients shared a common pathology of stenosis or atheromatosis in the carotid or middle cerebral artery. In a companion study using 69 Sprague-Dawley rats, subarachnoid application of bupivacaine elicited an initial (Phase I) reduction in the mean arterial pressure, carotid blood flow (CBF) and baroreflex-mediated sympathetic vasomotor tone, all of which subsequently returned to baseline (Phase II). Whereas heart rate (HR) exhibited sustained reduction, cardiac vagal baroreflex, baroreflex efficiency index (BEI) and tissue perfusion and oxygen in the cerebral cortex remained unaltered. However, in one-third of the rats studied, Phase II gave way to Phase III characterized by secondary hypotension and depressed baroreflex-mediated sympathetic vasomotor tone, along with declined HR, sustained cardiac vagal baroreflex, decreased BEI, reduced CBF and waning tissue perfusion or oxygen in the cerebral cortex. We concluded that carotid and cerebral blood flow can indeed be compromised after spinal anesthesia, and an impaired baroreflex-mediated sympathetic vasomotor tone, which leads to hypotension, plays a contributory role.
Collapse
Affiliation(s)
- Yan-Yuen Poon
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yueh-Wei Liu
- Department of General Surgery, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Ya-Hui Huang
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Samuel H. H. Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: (S.H.H.C.); (C.-Y.T.)
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: (S.H.H.C.); (C.-Y.T.)
| |
Collapse
|
7
|
Armelin VA, Braga VHDS, Teixeira MT, Guagnoni IN, Wang T, Florindo LH. The nonpharmacological sequence method provides a reliable evaluation of baroreflex sensitivity in fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:348-358. [PMID: 33503334 DOI: 10.1002/jez.2448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022]
Abstract
The most commonly used technique to study the barostatic regulation of blood pressure in ectothermic vertebrates consists of determining the heart rate response to pharmacological manipulations of blood pressure, the so-called "Oxford method." Although well established, the Oxford method has some important limitations, such as induction of hypervolemia in small animals and undesired effects of vasoactive drugs on central and peripheral baroreflex components. As an alternative, the sequence method, which consists in the computerized evaluation of naturally-occurring baroreflex adjustments of heart rate without the need for pharmacological administrations, was developed to study baroreflexes. In the present study, we compare this sequence method with the Oxford technique in two teleost species with different life styles, and we assess the optimal software configuration for the employment of the sequence method in fish. Calculation of baroreflex gain through the sequence method was adequate and reliable when the software was configured to search for baroreflex sequences with a minimum length of three cardiac cycles with a delay of one cardiac cycle between fluctuations in mean ventral aortic blood pressure and reflex changes in pulse interval. When properly configured, the sequence and the Oxford methods yielded similar determinations of the baroreflex gain in fish.
Collapse
Affiliation(s)
- Vinicius A Armelin
- Department of Physiology, University of São Paulo (USP), São Paulo, SP, Brazil.,Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil
| | - Victor H da Silva Braga
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil
| | - Mariana T Teixeira
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil
| | - Igor N Guagnoni
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil
| | - Tobias Wang
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil.,Section for Zoophysiology, Department of Bioscience, Aarhus University (AU), Aarhus, Denmark
| | - Luiz H Florindo
- Department of Zoology and Botany, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq), Rio Claro, SP, Brazil.,Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
8
|
cAMP-dependent regulation of HCN4 controls the tonic entrainment process in sinoatrial node pacemaker cells. Nat Commun 2020; 11:5555. [PMID: 33144559 PMCID: PMC7641277 DOI: 10.1038/s41467-020-19304-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node. The involvement of cAMP-dependent regulation of HCN4 in the chronotropic heart rate response is a matter of debate. Here the authors use a knockin mouse model expressing cAMP-insensitive HCN4 channels to discover an inhibitory nonfiring cell pool in the sinoatrial node and a tonic and mutual interaction between firing and nonfiring pacemaker cells that is controlled by cAMP-dependent regulation of HCN4, with implications in chronotropic heart rate responses.
Collapse
|
9
|
Mol A, Maier AB, van Wezel RJA, Meskers CGM. Multimodal Monitoring of Cardiovascular Responses to Postural Changes. Front Physiol 2020; 11:168. [PMID: 32194438 PMCID: PMC7063121 DOI: 10.3389/fphys.2020.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background In the poorly understood relationship between orthostatic hypotension and falls, next to blood pressure (BP), baroreflex sensitivity (BRS) and cerebral autoregulation (CAR) may be key measures. The posture- and movement dependency of orthostatic hypotension requires continuous and unobtrusive monitoring. This may be possible using simultaneous photoplethysmography (PPG), electrocardiography (ECG), and near-infrared spectroscopy (NIRS) signal recordings, from which pulse wave velocity (PWV; potentially useful for BP estimation), BRS and CAR can be derived. The PPG, NIRS and PWV signal correlation with BP and BRS/CAR reliability and validity need to be addressed. Methods In 34 healthy adults (mean age 25 years, inter quartile range 22–45; 10 female), wrist and finger PPG, ECG, bifrontal NIRS (oxygenated and deoxygenated hemoglobin) and continuous BP were recorded during sit to stand and supine to stand movements. Sixteen participants performed slow and rapid supine to stand movements; eighteen other participants performed a 1-min squat movement. Pulse wave velocity (PWV) was defined as the inverse of the ECG R-peak to PPG pulse delay; PPG, NIRS and PWV signal correlation with BP as their Pearson correlations with mean arterial pressure (MAP) within 30 s after the postural changes; BRS as inter beat interval drop divided by systolic BP (SBP) drop during the postural changes; CAR as oxygenated hemoglobin drop divided by MAP drop. BRS and CAR were separately computed using measured and estimated (linear regression) BP. BRS/CAR reliability was defined by the intra class correlation between repeats of the same postural change; validity as the Pearson correlation between BRS/CAR values based on measured and estimated BP. Results The highest correlation with MAP was found for finger PPG and oxygenated hemoglobin, ranging from 0.75–0.79 (sit to stand), 0.66–0.88 (supine to stand), and 0.82–0.94 (1-min squat). BRS and CAR reliability was highest during the different supine to stand movements, ranging from 0.17 – 0.49 (BRS) and 0.42-0.75 (CAR); validity was highest during rapid supine to stand movements, 0.54 and 0.79 respectively. Conclusion PPG-ECG-NIRS recordings showed high correlation with BP and enabled computation of reliable and valid BRS and CAR estimates, suggesting their potential for continuous unobtrusive monitoring of orthostatic hypotension key measures.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medicine and Aged Care @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Carel G M Meskers
- Department of Human Movement Sciences @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
10
|
Thorsdottir D, Cruickshank NC, Einwag Z, Hennig GW, Erdos B. BDNF downregulates β-adrenergic receptor-mediated hypotensive mechanisms in the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol 2019; 317:H1258-H1271. [PMID: 31603352 DOI: 10.1152/ajpheart.00478.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli such as stress and hyperosmolality, and BDNF acting in the PVN plays a key role in elevating sympathetic activity and blood pressure. However, downstream mechanisms mediating these effects remain unclear. We tested the hypothesis that BDNF increases blood pressure, in part by diminishing inhibitory hypotensive input from nucleus of the solitary tract (NTS) catecholaminergic neurons projecting to the PVN. Male Sprague-Dawley rats received bilateral PVN injections of viral vectors expressing either green fluorescent protein (GFP) or BDNF and bilateral NTS injections of vehicle or anti-dopamine-β-hydroxylase-conjugated saporin (DSAP), a neurotoxin that selectively lesions noradrenergic and adrenergic neurons. BDNF overexpression in the PVN without NTS lesioning significantly increased mean arterial pressure (MAP) in awake animals by 18.7 ± 1.8 mmHg. DSAP treatment also increased MAP in the GFP group, by 9.8 ± 3.2 mmHg, but failed to affect MAP in the BDNF group, indicating a BDNF-induced loss of NTS catecholaminergic hypotensive effects. In addition, in α-chloralose-urethane-anesthetized rats, hypotensive responses to PVN injections of the β-adrenergic agonist isoprenaline were significantly attenuated by BDNF overexpression, whereas PVN injections of phenylephrine had no effect on blood pressure. BDNF treatment was also found to significantly reduce β1-adrenergic receptor mRNA expression in the PVN, whereas expression of other adrenergic receptors was unaffected. In summary, increased BDNF expression in the PVN elevates blood pressure, in part by downregulating β-receptor signaling and diminishing hypotensive catecholaminergic input from the NTS to the PVN.NEW & NOTEWORTHY We have shown that BDNF, a key hypothalamic regulator of blood pressure, disrupts catecholaminergic signaling between the NTS and the PVN by reducing the responsiveness of PVN neurons to inhibitory hypotensive β-adrenergic input from the NTS. This may be occurring partly via BDNF-mediated downregulation of β1-adrenergic receptor expression in the PVN and results in an increase in blood pressure.
Collapse
Affiliation(s)
| | | | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Grant W Hennig
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
11
|
Ma A, Hong J, Shanks J, Rudebush T, Yu L, Hackfort BT, Wang H, Zucker IH, Gao L. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic Biol Med 2019; 141:84-92. [PMID: 31181253 PMCID: PMC6718296 DOI: 10.1016/j.freeradbiomed.2019.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidant stress. We hypothesized that overexpression of Nrf2 in the rostral ventrolateral medulla (RVLM) ameliorates sympatho-excitation in mice with coronary artery ligation-induced chronic heart failure (CHF). To address this, we overexpressed Nrf2 in the RVLM using an HIV-CamKIIa-Nrf2 lenti virus in C57BL/6 mice. In addition, we used a Lenti-Cre virus in Keap1flox/flox mice to upregulate Nrf2 non-selectively in the RVLM. Arterial blood pressure (AP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded under conscious and anesthetized conditions, respectively. Protein expression was assayed using western blotting and immunofluorescence staining. We found that (1) Nrf2 and two target proteins, NQO1 and HO-1 in the RVLM were significantly lower in CHF compared to Sham mice. Nrf2 viral transfection of the RVLM upregulated Nrf2 protein. (2) Urinary NE excretion in CHF mice was markedly attenuated following Nrf2 upregulation (812 ± 133 vs 1120 ± 271 ng/24hr mean. ±SE, *p < 0.05, n = 8/group). (3) In the conscious state, CHF mice overexpressing Nrf2 exhibited an enhancement in spontaneous baroreflex gain and in phenylephrine-induced baroreflex control of HR. (4) Acute experiments under anesthetisa revealed a significant decrease in basal RSNA (44.0 ± 6.5 vs 64.7 ± 8.3% of Max. *P < 0.05 n = 8/group) and enhancement in baroreflex sensitivity (Maximal gain -1.8 ± 0.3 vs 1.1 ± 0.2 of mmHg. **p < 0.01. n = 6/group) in CHF mice that were virally transfected with Nrf2 compared with CHF mice transfected with Lenti-GFP. Finally, Lenti-Cre viral overexpression of Nrf2 in Keap1flox/flox mice reduced Keap1 protein and increased Nrf2, NQO1, and HO-1 in the RVLM of Sham and CHF mice. CHF-Cre mice exhibited a significant decrease in baseline RSNA and plasma NE concentration (8.9 ± 1.1 vs 12.7 ± 0.9 ng/mL *P < 0.05 n = 6/group) as compared with CHF-GFP mice. Based on the above data, we conclude that upregulating Nrf2 selectively in the RVLM attenuates sympatho-excitation in CHF mice. Nrf2 may be an important central target for autonomic modulation in cardiovascular disease and during stress.
Collapse
Affiliation(s)
- Anyun Ma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Tara Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
12
|
Silva LEV, Dias DPM, da Silva CAA, Salgado HC, Fazan R. Revisiting the Sequence Method for Baroreflex Analysis. Front Neurosci 2019; 13:17. [PMID: 30728765 PMCID: PMC6352748 DOI: 10.3389/fnins.2019.00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022] Open
Abstract
The sequence method is an important approach to assess the baroreflex function, mainly because it is based on the spontaneous fluctuations of beat-by-beat arterial pressure (for example, systolic arterial pressure or SAP) and pulse interval (PI). However, some studies revealed that the baroreflex effectiveness index (BEI), calculated through the sequence method, shows an intriguing oscillatory pattern as function of the delay between SAP and PI. It has been hypothesized that this pattern is related to the respiratory influence on SAP and/or PI variability, limiting the SAP ramps to 3 or 4 beats of length. In this study, this hypothesis was tested by assessing the sequence method using raw (original) and filtered series. Results were contrasted to the well-established transfer function, estimated between SAP and PI. Continuous arterial pressure recordings were obtained from healthy rats (N = 61) and beat-by-beat series of SAP and PI were generated. Low-pass (LP) and high-pass (HP) filtered series of SAP and PI were created by filtering the original series with a cutoff frequency of 0.8 Hz. Original series were analyzed by either the sequence method or cross-spectral analysis (transfer function) at low- (LF) and high- (HF) frequency bands, while filtered series were evaluated only by the sequence method. Baroreflex sensitivity (BRS) and BEI of original series, calculated by sequence method, was highly (85–90%) determined by HP series, with no significant association between original and LP series. A high correlation (>0.7) was found between the BRS estimated from original series (sequence method) and HF band (transfer function), as well as for LP series (sequence method) and LF band (transfer function). These findings confirmed the hypothesis that the sequence method quantifies only the high-frequency components of the baroreflex, neglecting the low-frequency influences, such as the Mayer waves. Therefore, we propose using both the original and LP filtered time series for a broader assessment of the baroreflex function using the sequence method.
Collapse
Affiliation(s)
| | | | | | - Hélio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Tsai CY, Poon YY, Huang YH, Chan SH. Activation of spinal nociceptin receptors induces cardiovascular depression and antinociception in an independent manner in mice. J Pain Res 2018; 11:2699-2708. [PMID: 30464587 PMCID: PMC6219425 DOI: 10.2147/jpr.s175259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The nociceptin receptor (NOP) was discovered in 1994 and was designated opioid-like receptor; activation of NOP leads to reduced neuronal excitability. Although suggested by the anatomical localization of NOP in brain or spinal cord, the cardiovascular or nociceptive effects of its endogenous ligand, nociceptin, are equivocal. Taking advantage from intrathecal application of nociceptin to simultaneously activate NOP on sympathetic preganglionic neurons in the intermediolateral column (IML) and superficial laminae of dorsal horn, we investigated whether the nociceptin-induced cardiovascular effects engage the participation of baroreflex, and whether the concurrently elicited changes in blood pressure and pain responses are interrelated. Methods NOPs in the thoracic spinal cord of ICR or C57BL/6 mice were identified with immunofluorescence staining and were activated through intrathecal administration of nocicetpin. The elicited changes in cardiovascular parameters and tail-flick nociceptive responses were measured. Results Positive immunoreactivity against NOP colocalized with neurons in the IML and superficial dorsal horn layers of thoracic spinal cord. Intrathecal administration of nociceptin (1, 2, or 5 nmol) elicited a significant and dose-dependent decrease in blood pressure or heart rate that was paralleled by reduced baroreflex-mediated sympathetic vasomotor tone and mirrored by augmented cardiac vagal baroreflex, alongside prolonged tail-flick latency with an efficacy of hypotension <<< antinociception. Coadministration of the specific NOP antagonist, UFP101 (10 nmol), blunted all nociceptin-elicited responses. However, restoring blood pressure to baseline level failed to affect the antinociceptive actions of nociceptin. Conclusion Activation of thoracic spinal NOP in ICR and C57BL/6 mice induces blood pressure and heart rate by decreasing the sympathetic outflow of both arms of the baroreflex arc to the blood vessels and the heart, and the antinociceptive responses to nociceptin are independent of and disproportional to its cardiovascular actions.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,
| | - Yan-Yuen Poon
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, .,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Hui Huang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,
| | - Samuel Hh Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,
| |
Collapse
|
14
|
Schaich CL, Wellman TL, Einwag Z, Dutko RA, Erdos B. Inhibition of BDNF signaling in the paraventricular nucleus of the hypothalamus lowers acute stress-induced pressor responses. J Neurophysiol 2018; 120:633-643. [PMID: 29694277 DOI: 10.1152/jn.00459.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during stress, and our recent studies indicate that BDNF induces sympathoexcitatory and hypertensive responses when injected acutely or overexpressed chronically in the PVN. However, it remained to be investigated whether BDNF is involved in the mediation of stress-induced cardiovascular responses. Here we tested the hypothesis that inhibition of the high-affinity BDNF receptor TrkB in the PVN diminishes acute stress-induced cardiovascular responses. Male Sprague-Dawley rats were equipped with radiotelemetric transmitters for blood pressure measurement. BDNF-TrkB signaling was selectively inhibited by viral vector-mediated bilateral PVN overexpression of a dominant-negative truncated TrkB receptor (TrkB.T1, n = 7), while control animals ( n = 7) received green fluorescent protein (GFP)-expressing vector injections. Rats were subjected to acute water and restraint stress 3-4 wk after vector injections. We found that body weight, food intake, baseline mean arterial pressure (MAP), and heart rate were unaffected by TrkB.T1 overexpression. However, peak MAP increases were significantly reduced in the TrkB.T1 group compared with GFP both during water stress (GFP: 39 ± 2 mmHg, TrkB.T1: 27 ± 4 mmHg; P < 0.05) and restraint stress (GFP: 41 ± 3 mmHg, TrkB.T1: 34 ± 2 mmHg; P < 0.05). Average MAP elevations during the poststress period were also significantly reduced after both water and restraint stress in the TrkB.T1 group compared with GFP. In contrast, heart rate elevations to both stressors remained unaffected by TrkB.T1 overexpression. Our results demonstrate that activation of BDNF high-affinity TrkB receptors within the PVN is a major contributor to acute stress-induced blood pressure elevations. NEW & NOTEWORTHY We have shown that inhibition of the high-affinity brain-derived neurotrophic factor receptor TrkB in the paraventricular nucleus of the hypothalamus significantly reduces blood pressure elevations to acute stress without having a significant impact on resting blood pressure, body weight, and food intake.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Richard A Dutko
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| |
Collapse
|
15
|
Lo Martire V, Alvente S, Bastianini S, Berteotti C, Bombardi C, Calandra-Buonaura G, Capellari S, Cohen G, Cortelli P, Gasparini L, Padiath Q, Valli A, Zoccoli G, Silvani A. Mice overexpressing lamin B1 in oligodendrocytes recapitulate the age-dependent motor signs, but not the early autonomic cardiovascular dysfunction of autosomal-dominant leukodystrophy (ADLD). Exp Neurol 2018; 301:1-12. [PMID: 29262292 PMCID: PMC5809293 DOI: 10.1016/j.expneurol.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/02/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Autosomal dominant leukodystrophy (ADLD) is a rare adult-onset demyelinating disease caused by overexpression of lamin B1, a nuclear lamina filament. Early autonomic dysfunction involving the cardiovascular system before progressive somatic motor dysfunction is a striking feature of most cases of ADLD. In the Plp-FLAG-LMNB1 transgenic mouse model, lamin B1 overexpression in oligodendrocytes elicits somatic motor dysfunction and neuropathology akin to ADLD. Here, we investigate whether Plp-FLAG-LMNB1 mice also develop autonomic cardiovascular dysfunction before or after somatic motor dysfunction. We find that Plp-FLAG-LMNB1 mice have preserved cardiovascular responses to changes in wake-sleep state and ambient temperature and normal indexes of autonomic modulation at 37-42weeks of age despite a progressive somatic motor dysfunction, which includes impairments of walking ability (the ability to walk on a narrow path was impaired in 80% of mice at 34-38weeks of age) and subtle breathing derangements. Only late in the development of the disease phenotype did Plp-FLAG-LMNB1 mice develop a structural deficit of sympathetic noradrenergic fibers, with a 38% decrease in fiber profiles in the kidneys at 44-47weeks of age. We demonstrate that while the Plp-FLAG-LMNB1 mouse model recapitulates the age-dependent motor dysfunction of ADLD, it does not show signs of early autonomic cardiovascular dysfunction, raising the possibility that oligodendrocyte dysfunction may not be sufficient to cause the full spectrum of clinical features present in ADLD.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Giovanna Calandra-Buonaura
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Sabina Capellari
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Gary Cohen
- Sleep Investigation Laboratory, Centre for Sleep Health and Research, Royal North Shore Hospital, Sydney, Australia
| | - Pietro Cortelli
- Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Bologna, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Valli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
16
|
Lo Martire V, Silvani A, Alvente S, Bastianini S, Berteotti C, Valli A, Zoccoli G. Modulation of sympathetic vasoconstriction is critical for the effects of sleep on arterial pressure in mice. J Physiol 2018; 596:591-608. [PMID: 29266348 DOI: 10.1113/jp275353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/15/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While values of arterial pressure during sleep are predictive of cardiovascular risk, the autonomic mechanisms underlying the cardiovascular effects of sleep remain poorly understood. Here, we assess the autonomic mechanisms of the cardiovascular effects of sleep in C57Bl/6J mice, taking advantage of a novel technique for continuous intraperitoneal infusion of autonomic blockers. Our results indicate that non-REM sleep decreases arterial pressure by decreasing sympathetic vasoconstriction, decreases heart rate by balancing parasympathetic activation and sympathetic withdrawal, and increases cardiac baroreflex sensitivity mainly by increasing fluctuations in parasympathetic activity. Our results also indicate that REM sleep increases arterial pressure by increasing sympathetic activity to the heart and blood vessels, and increases heart rate, at least in part, by increasing cardiac sympathetic activity. These results provide a framework for generating and testing hypotheses on cardiovascular derangements during sleep in mouse models and human patients. ABSTRACT The values of arterial pressure (AP) during sleep predict cardiovascular risk. Sleep exerts similar effects on cardiovascular control in human subjects and mice. We aimed to determine the underlying autonomic mechanisms in 12 C57Bl/6J mice with a novel technique of intraperitoneal infusion of autonomic blockers, while monitoring the electroencephalogram, electromyogram, AP and heart period (HP, i.e. 1/heart rate). In different sessions, we administered atropine methyl nitrate, atenolol and prazosin to block muscarinic cholinergic, β1 -adrenergic and α1 -adrenergic receptors, respectively, and compared each drug infusion with a matched vehicle infusion. The decrease in AP from wakefulness to non-rapid-eye-movement sleep (N) was abolished by prazosin but was not significantly affected by atropine and atenolol, which, however, blunted the accompanying increase in HP to a similar extent. On passing from N to rapid-eye-movement sleep (R), the increase in AP was significantly blunted by prazosin and atenolol, whereas the accompanying decrease in HP was blunted by atropine and abolished by atenolol. Cardiac baroreflex sensitivity (cBRS, sequence technique) was dramatically decreased by atropine and slightly increased by prazosin. These data indicate that in C57Bl/6J mice, N decreases mean AP by decreasing sympathetic vasoconstriction, increases HP by balancing parasympathetic activation and sympathetic withdrawal, and increases cBRS mainly by increasing fluctuations in parasympathetic activity. R increases mean AP by increasing sympathetic vasoconstriction and cardiac sympathetic activity, which also explains, at least in part, the concomitant decrease in HP. These data represent the first comprehensive assessment of the autonomic mechanisms of cardiovascular control during sleep in mice.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Alvente
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alice Valli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Laboratory of Physiological Regulation in Sleeping Mice (PRISM), Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Tsai CY, Poon YY, Chen CH, Chan SHH. Anomalous baroreflex functionality inherent in floxed and Cre-Lox mice: an overlooked physiological phenotype. Am J Physiol Heart Circ Physiol 2017; 313:H700-H707. [PMID: 28778914 DOI: 10.1152/ajpheart.00346.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/22/2022]
Abstract
The last two decades have seen the emergence of Cre-Lox recombination as one of the most powerful and versatile technologies for cell-specific genetic engineering of mammalian cells. Understandably, the primary concerns in the practice of Cre-Lox recombination are whether the predicted genome has been correctly modified and the targeted phenotypes expressed. Rarely are the physiological conditions of the animals routinely examined because the general assumption is that they are normal. Based on corroborative results from radiotelemetric recording, power spectral analysis, and magnetic resonance imaging/diffusion tensor imaging in brain-derived neurotrophic factor-floxed mice, the present study revealed that this assumption requires amendment. We found that despite comparable blood pressure and heart rate with C57BL/6 or Cre mice under the conscious state, floxed and Cre-Lox mice exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex. We further found that the capacity and plasticity of baroreflex of these two strains of mice under isoflurane anesthesia were retarded, as reflected by reduced connectivity between the nucleus tractus solitarii and rostral ventrolateral medulla or nucleus ambiguus. The identification of anomalous baroreflex functionality inherent in floxed and Cre-Lox mice points to the importance of incorporating physiological phenotypes into studies that engage gene manipulations such as Cre-Lox recombination.NEW & NOTEWORTHY We established that anomalous baroreflex functionality is inherent in floxed and Cre-Lox mice. These two mouse strains exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex under the conscious state, retarded capacity and plasticity of baroreflex under isoflurane anesthesia, and reduced connectivity between key nuclei in the baroreflex neural circuits.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| | - Yan-Yuen Poon
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and.,Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chang-Han Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| |
Collapse
|
18
|
Silva LEV, Lataro RM, Castania JA, Silva CAA, Salgado HC, Fazan R, Porta A. Nonlinearities of heart rate variability in animal models of impaired cardiac control: contribution of different time scales. J Appl Physiol (1985) 2017; 123:344-351. [PMID: 28495840 DOI: 10.1152/japplphysiol.00059.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 02/08/2023] Open
Abstract
Heart rate variability (HRV) has been extensively explored by traditional linear approaches (e.g., spectral analysis); however, several studies have pointed to the presence of nonlinear features in HRV, suggesting that linear tools might fail to account for the complexity of the HRV dynamics. Even though the prevalent notion is that HRV is nonlinear, the actual presence of nonlinear features is rarely verified. In this study, the presence of nonlinear dynamics was checked as a function of time scales in three experimental models of rats with different impairment of the cardiac control: namely, rats with heart failure (HF), spontaneously hypertensive rats (SHRs), and sinoaortic denervated (SAD) rats. Multiscale entropy (MSE) and refined MSE (RMSE) were chosen as the discriminating statistic for the surrogate test utilized to detect nonlinearity. Nonlinear dynamics is less present in HF animals at both short and long time scales compared with controls. A similar finding was found in SHR only at short time scales. SAD increased the presence of nonlinear dynamics exclusively at short time scales. Those findings suggest that a working baroreflex contributes to linearize HRV and to reduce the likelihood to observe nonlinear components of the cardiac control at short time scales. In addition, an increased sympathetic modulation seems to be a source of nonlinear dynamics at long time scales. Testing nonlinear dynamics as a function of the time scales can provide a characterization of the cardiac control complementary to more traditional markers in time, frequency, and information domains.NEW & NOTEWORTHY Although heart rate variability (HRV) dynamics is widely assumed to be nonlinear, nonlinearity tests are rarely used to check this hypothesis. By adopting multiscale entropy (MSE) and refined MSE (RMSE) as the discriminating statistic for the nonlinearity test, we show that nonlinear dynamics varies with time scale and the type of cardiac dysfunction. Moreover, as complexity metrics and nonlinearities provide complementary information, we strongly recommend using the test for nonlinearity as an additional index to characterize HRV.
Collapse
Affiliation(s)
- Luiz Eduardo Virgilio Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Maria Lataro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaci Airton Castania
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Aguiar Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; and.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
19
|
Zamir M, Badrov MB, Olver TD, Shoemaker JK. Cardiac Baroreflex Variability and Resetting during Sustained Mild Effort. Front Physiol 2017; 8:246. [PMID: 28529487 PMCID: PMC5418217 DOI: 10.3389/fphys.2017.00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
This exploratory study assessed the pattern of closed-loop baroreflex resetting using multi-logistic-curve analysis. Operating point gain and ranges of RR-interval (RRI) and systolic blood pressure (SBP) are derived to examine how these relate to sympathetic activation. Sustained low-intensity isometric handgrip exercise, with a period of post-exercise circulatory occlusion (PECO), provided a model to study baroreflex resetting because the progression toward fatigue at constant tension induces a continuous increase in volitional contribution to neuro-cardiovascular control. Continuous measurements of muscle sympathetic nerve activity (MSNA), blood pressure, and RRI were made simultaneously throughout the experimental session. Spontaneous sequence analysis was used to detect episodes of baroreflex “engagements”, but the results are examined with a view to the fundamental difference between experimental conditions that isolate the carotid sinus (open-loop) and intact physiological conditions (closed-loop). While baroreflex function under open-loop conditions can be described in terms of a single logistic curve, intact physiologic conditions require a family of logistic curves. The results suggest that the baroreflex is in a “floating” state whereby it is continuously resetting during the timeline of the experiment but with minute-by-minute average values that mimic the less complex step-wise resetting pattern reported under open-loop conditions. Furthermore, the results indicate that baroreflex function and resetting of the operating point gain is reflected not in terms of change in the values of blood pressure or RR-interval but in terms of change in the range of values of these variables prevailing under different experimental conditions.
Collapse
Affiliation(s)
- Mair Zamir
- Department of Applied Mathematics, Western UniversityLondon, ON, Canada.,Department of Medical Biophysics, Western UniversityLondon, ON, Canada
| | - Mark B Badrov
- School of Kinesiology, Western UniversityLondon, ON, Canada
| | - T Dylan Olver
- School of Kinesiology, Western UniversityLondon, ON, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western UniversityLondon, ON, Canada.,Department of Physiology and Pharmacology, Western UniversityLondon, ON, Canada
| |
Collapse
|
20
|
Gao L, Zimmerman MC, Biswal S, Zucker IH. Selective Nrf2 Gene Deletion in the Rostral Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. Hypertension 2017; 69:1198-1206. [PMID: 28461605 DOI: 10.1161/hypertensionaha.117.09123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/05/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcriptional regulator of redox homeostasis that impacts antioxidant gene expression. Central oxidative stress and reduced antioxidant enzyme expression in the rostral ventrolateral medulla (RVLM) contributed to sympathoexcitation in chronic heart failure. In the current study, we hypothesized that deletion of Nrf2 in the RVLM would increase sympathetic drive and blood pressure. Experiments were performed in Nrf2-floxed mice treated with microinjection of lentiviral-Cre-GFP or lentiviral-GFP into the RVLM. Two weeks after viral administration, Nrf2 message, protein, oxidative stress, cardiovascular function, and sympathetic outflow were evaluated. We found that (1) Nrf2 mRNA and protein in the RVLM were significantly lower in Cre mice compared with control GFP mice. Nrf2-targeted antioxidant enzymes were downregulated, whereas reactive oxygen species were elevated. (2) Blood pressure measurements indicated that Cre mice displayed a significant increase in blood pressure (mean arterial pressure, 123.7±3.8 versus 100.2±2.2 mm Hg; P<0.05, n=6), elevated urinary norepinephrine (NE) concentration (456.4±16.9 versus 356.5±19.9 ng/mL; P<0.05, n=6), and decreased spontaneous baroreflex gain (up sequences, 1.66±0.17 versus 3.61±0.22 ms/mm Hg; P<0.05, n=6; down sequences, 1.89±0.12 versus 2.98±0.19 ms/mm Hg; P<0.05, n=6). (3) Cre mice displayed elevated baseline renal sympathetic nerve activity and impaired inducible baroreflex function. These data suggest that Nrf2 gene deletion in the RVLM elevates blood pressure, increases sympathetic outflow, and impairs baroreflex function potentially by impaired antioxidant enzyme expression.
Collapse
Affiliation(s)
- Lie Gao
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Matthew C Zimmerman
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Shyam Biswal
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.)
| | - Irving H Zucker
- From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha (L.G., M.C.Z., I.H.Z.); and Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (S.B.).
| |
Collapse
|
21
|
Becari C, Durand MT, Guimaraes AO, Lataro RM, Prado CM, de Oliveira M, Candido SCO, Pais P, Ribeiro MS, Bader M, Pesquero JB, Salgado MCO, Salgado HC. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice. Front Physiol 2017; 8:170. [PMID: 28386233 PMCID: PMC5363176 DOI: 10.3389/fphys.2017.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice.
Collapse
Affiliation(s)
- Christiane Becari
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Cardiovascular Diseases, Mayo ClinicRochester, MN, USA
| | - Marina T Durand
- Department of Physiology, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil; Department of Medicine, University of Ribeirão PretoRibeirão Preto, Brazil
| | - Alessander O Guimaraes
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Department of Biophysics, Federal University of São PauloSão Paulo, Brazil
| | - Renata M Lataro
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Cibele M Prado
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauro de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Sarai C O Candido
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Paloma Pais
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Mauricio S Ribeiro
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Michael Bader
- Max Delbruck Center for Molecular MedicineBerlin, Germany; Berlin Institute of Health, Charité-University Medicine BerlinBerlin, Germany; German Center for Cardiovascular Research, Partner Site BerlinBerlin, Germany
| | - Joao B Pesquero
- Department of Biophysics, Federal University of São Paulo São Paulo, Brazil
| | - Maria C O Salgado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Lataro RM, Silva LEV, Silva CAA, Salgado HC, Fazan R. Baroreflex control of renal sympathetic nerve activity in early heart failure assessed by the sequence method. J Physiol 2017; 595:3319-3330. [PMID: 28261799 DOI: 10.1113/jp274065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The integrity of the baroreflex control of sympathetic activity in heart failure (HF) remains under debate. We proposed the use of the sequence method to assess the baroreflex control of renal sympathetic nerve activity (RSNA). The sequence method assesses the spontaneous arterial pressure (AP) fluctuations and their related changes in heart rate (or other efferent responses), providing the sensitivity and the effectiveness of the baroreflex. Effectiveness refers to the fraction of spontaneous AP changes that elicits baroreflex-mediated variations in the efferent response. Using three different approaches, we showed that the baroreflex sensitivity between AP and RSNA is not altered in early HF rats. However, the sequence method provided evidence that the effectiveness of baroreflex in changing RSNA in response to AP changes is markedly decreased in HF. The results help us better understand the baroreflex control of the sympathetic nerve activity. ABSTRACT In heart failure (HF), the reflex control of the heart rate is known to be markedly impaired; however, the baroreceptor control of the sympathetic drive remains under debate. Applying the sequence method to a series of arterial pressure (AP) and renal sympathetic nerve activity (RSNA), we demonstrated a clear dysfunction in the baroreflex control of sympathetic activity in rats with early HF. We analysed the baroreflex control of the sympathetic drive using three different approaches: AP vs. RSNA curve, cross-spectral analysis and sequence method between AP and RSNA. The sequence method also provides the baroreflex effectiveness index (BEI), which represents the percentage of AP ramps that actually produce a reflex response. The methods were applied to control rats and rats with HF induced by myocardial infarction. None of the methods employed to assess the sympathetic baroreflex gain were able to detect any differences between the control and the HF group. However, rats with HF exhibited a lower BEI compared to the controls. Moreover, an optimum delay of 1 beat was observed, i.e. 1 beat is required for the RSNA to respond after AP changing, which corroborates with the findings related to the timing between these two variables. For delay 1, the BEI of the controls was 0.45 ± 0.03, whereas the BEI of rats with HF was 0.29 ± 0.09 (P < 0.05). These data demonstrate that while the gain of the baroreflex is not affected in early HF, its effectiveness is markedly decreased. The analysis of the spontaneous changes in AP and RSNA using the sequence method provides novel insights into arterial baroreceptor reflex function.
Collapse
Affiliation(s)
- Renata Maria Lataro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Eduardo Virgilio Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Alberto Aguiar Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Cesar Salgado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
23
|
Dependency Structures in Differentially Coded Cardiovascular Time Series. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:2082351. [PMID: 28127384 PMCID: PMC5240046 DOI: 10.1155/2017/2082351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/05/2022]
Abstract
Objectives. This paper analyses temporal dependency in the time series recorded from aging rats, the healthy ones and those with early developed hypertension. The aim is to explore effects of age and hypertension on mutual sample relationship along the time axis. Methods. A copula method is applied to raw and to differentially coded signals. The latter ones were additionally binary encoded for a joint conditional entropy application. The signals were recorded from freely moving male Wistar rats and from spontaneous hypertensive rats, aged 3 months and 12 months. Results. The highest level of comonotonic behavior of pulse interval with respect to systolic blood pressure is observed at time lags τ = 0, 3, and 4, while a strong counter-monotonic behavior occurs at time lags τ = 1 and 2. Conclusion. Dynamic range of aging rats is considerably reduced in hypertensive groups. Conditional entropy of systolic blood pressure signal, compared to unconditional, shows an increased level of discrepancy, except for a time lag 1, where the equality is preserved in spite of the memory of differential coder. The antiparallel streams play an important role at single beat time lag.
Collapse
|
24
|
Exercise prevents development of autonomic dysregulation and hyperalgesia in a mouse model of chronic muscle pain. Pain 2016; 157:387-398. [PMID: 26313406 DOI: 10.1097/j.pain.0000000000000330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic musculoskeletal pain (CMP) conditions, like fibromyalgia, are associated with widespread pain and alterations in autonomic functions. Regular physical activity prevents the development of CMP and can reduce autonomic dysfunction. We tested if there were alterations in autonomic function of sedentary mice with CMP, and whether exercise reduced the autonomic dysfunction and pain induced by CMP. Chronic musculoskeletal pain was induced by 2 intramuscular injections of pH 5.0 in combination with a single fatiguing exercise task. A running wheel was placed into cages so that the mouse had free access to it for either 5 days or 8 weeks (exercise groups) and these animals were compared to sedentary mice without running wheels. Autonomic function and nociceptive withdrawal thresholds of the paw and muscle were assessed before and after induction of CMP in exercised and sedentary mice. In sedentary mice, we show decreased baroreflex sensitivity, increased blood pressure variability, decreased heart rate variability, and decreased withdrawal thresholds of the paw and muscle 24 hours after induction of CMP. There were no sex differences after induction of the CMP in any outcome measure. We further show that both 5 days and 8 weeks of physical activity prevent the development of autonomic dysfunction and decreases in withdrawal threshold induced by CMP. Thus, this study uniquely shows the development of autonomic dysfunction in animals with chronic muscle hyperalgesia, which can be prevented with as little as 5 days of physical activity, and suggest that physical activity may prevent the development of pain and autonomic dysfunction in people with CMP.
Collapse
|
25
|
Kansal N, Clair DG, Jaye DA, Scheiner A. Carotid baroreceptor stimulation blood pressure response mapped in patients undergoing carotid endarterectomy (C-Map study). Auton Neurosci 2016; 201:60-67. [PMID: 27539629 DOI: 10.1016/j.autneu.2016.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Continuous stimulation of the carotid baroreceptors has been shown to evoke a sustained systolic blood pressure (SBP) reduction in hypertensive subjects. This study conducted a detailed mapping of the SBP and heart rate response to electrical stimulus at different locations in the carotid sinus region in patients undergoing a carotid endarterectomy (CEA). METHODS The Carotid Sinus Autonomic Response Mapping (C-Map) Study is a multicenter, prospective, non-randomized, acute feasibility study conducted in 10 hypertensive subjects undergoing CEA. Electrode pairs were placed in multiple locations in the region of the carotid sinus for acute stimulation, and the tests were repeated after plaque removal and vessel repair. RESULTS The configuration that elicited the largest pressure reduction in 8 of 10 patients was with the electrodes arranged longitudinally along the medial (in relation to the bifurcation) wall of the internal carotid artery (ICA) near the bifurcation (11.2±8.1mmHg, p<0.05). There was no difference in average maximum response pre vs. post plaque removal. Spontaneous baroreflex sensitivity increased from 6.0±3.2ms/mmHg pre-CEA to 8.2±5.4ms/mmHg post-CEA (p=0.040). CONCLUSIONS Endarterectomy surgery did not affect maximal acute stimulation response but improved baroreflex sensitivity acutely. Acute extravascular baroreceptor stimulation (BRS) mapping demonstrated that blood pressure reductions are dependent on electrode location and orientation. In most subjects, the largest SBP reductions were elicited in the region of the medial wall of the ICA. This area can be targeted for future BRS lead design and implant.
Collapse
Affiliation(s)
- Nikhil Kansal
- University of California, San Diego, VA San Diego Healthcare System, Division of Vascular and Endovascular Surgery, San Diego, CA, United States.
| | - Daniel G Clair
- The Cleveland Clinic Foundation, Department of Vascular Surgery, Cleveland, OH, United States
| | - Deborah A Jaye
- Medtronic plc, Cardiac Rhythm and Heart Failure, Minneapolis, MN, United States
| | - Avram Scheiner
- Medtronic plc, Cardiac Rhythm and Heart Failure, Minneapolis, MN, United States
| |
Collapse
|
26
|
Analysis and validation of traits associated with a single nucleotide polymorphism Gly364Ser in catestatin using humanized chromogranin A mouse models. J Hypertens 2016; 34:68-78. [PMID: 26556564 DOI: 10.1097/hjh.0000000000000760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The human prohormone chromogranin A (CHGA), an index member of the granin family is processed to generate catestatin, a peptide that is hypotensive in action and modulates catecholamine release within the sympathoadrenal system. Hypertensive patients with excess sympathetic activity have diminished catestatin. Often the study of physiological consequences of human genetic variation is confounded by elements such as other variations in obligatory linkage disequilibrium with the variant being studied. Also the phenotype of the variant may be influenced by genetic background that varies amongst individuals. This study addresses the effects of a human catestatin polymorphism (rs9658667) using humanized CHGA mouse models. METHODS We created pertinent humanized mouse models wherein the mouse Chga gene locus was replaced by the human ortholog wild-type and the variant versions. This allowed for probing of the effects of catestatin variation in vivo with controls for other variations and global genetic background. RESULTS Both the wild-type and variant human catestatin expressing mouse models were normotensive. The variant catestatin mouse model recapitulated physiological influence of the polymorphism on autonomic traits. These mice had diminished catecholamine, attenuated stress response and increased baroreceptor slopes that would suggest reduced risk of developing hypertension. Elevated plasma glucose, a trait observed in humans was not observed in mice expressing the variant catestatin. CONCLUSION This functional genomics approach of creating humanized mouse models to study rs9658667 polymorphism recapitulated and validated many of the human trait associations. This approach can also be applied in the study of other human gene polymorphisms.
Collapse
|
27
|
Su CH, Tsai CY, Chang AY, Chan JY, Chan SH. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications. Theranostics 2016; 6:837-48. [PMID: 27162554 PMCID: PMC4860892 DOI: 10.7150/thno.14837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/06/2016] [Indexed: 01/29/2023] Open
Abstract
Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.
Collapse
Affiliation(s)
- Chia-Hao Su
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ching-Yi Tsai
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Alice Y.W. Chang
- 2. Institute of Physiology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Julie Y.H. Chan
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H.H. Chan
- 1. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
28
|
Stöckigt F, Jüngst P, Linhart M, Nickenig G, Andrié R, Beiert T, Schrickel JW. Association of Heart Rate Turbulence With Arrhythmia Susceptibility and Heart Disease in Mice. J Cardiovasc Electrophysiol 2015. [PMID: 26222888 DOI: 10.1111/jce.12766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Recent studies have demonstrated the feasibility of measuring heart rate turbulence (HRT) as a marker of baroreflex function in healthy mice. The aim of this investigation was to measure HRT in a mouse model with induced structural heart defects and to determine if there were threshold values of HRT for inducible ventricular tachycardias (VTs). METHODS AND RESULTS HRT was measured during electrophysiological investigations 2 weeks after transverse aortic constriction (TAC, n = 13) or myocardial cryoinfarction (MCI, n = 14). Sham-operated mice served as controls (n = 8 for TAC controls and n = 9 for MCI controls). Mice with heart disease lacked an early acceleration (turbulence onset [TO]) in heart rate after extrastimulus pacing (heart disease: 0.39% [0.19%-0.59%] vs. all controls: -0.04% [-0.25-0.19%]; P < 0.01). At a cutoff value of >0.25%, TO could be used to classify mice with induced heart disease with a sensitivity of 64.0% and specificity of 88.2% (P < 0.01) but did not identify mice at higher risk of induced VTs. Animals that were susceptible to VTs (n = 8) had lower values for turbulence slope (TS) compared with noninducible mice (6.2 milliseconds/beat [3.1-9.5 milliseconds/beat] vs. 10.1 milliseconds/beat [7.2-14.2 milliseconds/beat]; P = 0.03). TS <7.8 milliseconds/beat identified mice with inducible VTs with a sensitivity of 75.0% and specificity of 75.8% (P = 0.02). CONCLUSION Measurement of HRT is feasible in mouse models with induced structural heart disease. More abnormal values for TO were found in the presence of structural heart disease but did not predict susceptibility to VTs. Decreased TS was associated with VTs induced by programmed stimulation.
Collapse
Affiliation(s)
- Florian Stöckigt
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - Philipp Jüngst
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - Markus Linhart
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - Georg Nickenig
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - René Andrié
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - Thomas Beiert
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| | - Jan Wilko Schrickel
- University Hospital Bonn, Department of Medicine-Cardiology, Sigmund Freud, Bonn, Germany
| |
Collapse
|
29
|
Sabharwal R, Weiss RM, Zimmerman K, Domenig O, Cicha MZ, Chapleau MW. Angiotensin-dependent autonomic dysregulation precedes dilated cardiomyopathy in a mouse model of muscular dystrophy. Exp Physiol 2015; 100:776-95. [PMID: 25921929 PMCID: PMC4505616 DOI: 10.1113/ep085066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is autonomic dysregulation in a mouse model of muscular dystrophy dependent on left ventricular systolic dysfunction and/or activation of the renin-angiotensin system (RAS) and does it predict development of dilated cardiomyopathy (DCM)? What is the main finding and its importance? The results demonstrate that autonomic dysregulation precedes and predicts left ventricular dysfunction and DCM in sarcoglycan-δ-deficient (Sgcd-/-) mice. The autonomic dysregulation is prevented by treatment of young Sgcd-/- mice with the angiotensin II type 1 receptor blocker losartan. Measurements of RAS activation and autonomic dysregulation may predict risk of DCM, and therapies targeting the RAS and autonomic dysregulation at a young age may slow disease progression in patients. Sarcoglycan mutations cause muscular dystrophy. Patients with muscular dystrophy develop autonomic dysregulation and dilated cardiomyopathy (DCM), but the temporal relationship and mechanism of autonomic dysregulation are not well understood. We hypothesized that activation of the renin-angiotensin system (RAS) causes autonomic dysregulation prior to development of DCM in sarcoglycan-δ-deficient (Sgcd-/-) mice and that the severity of autonomic dysfunction at a young age predicts the severity of DCM at older ages. At 10-12 weeks of age, when left ventricular function assessed by echocardiography remained normal, Sgcd-/- mice exhibited decreases in arterial pressure, locomotor activity, baroreflex sensitivity and cardiovagal tone and increased sympathetic tone compared with age-matched C57BL/6 control mice (P < 0.05). Systemic and skeletal muscle RAS were activated, and angiotensin II type 1 receptor (AT1 R) expression, superoxide and fibrosis were increased in dystrophic skeletal muscle (P < 0.05). Treatment with the AT1 R blocker losartan for 7-9 weeks beginning at 3 weeks of age prevented or strongly attenuated the abnormalities in Sgcd-/- mice (P < 0.05). Repeated assessment of phenotypes between 10 and 75 weeks of age demonstrated worsening of autonomic function, progressive cardiac dysfunction and DCM and increased mortality in Sgcd-/- mice. High sympathetic tone predicted subsequent left ventricular dysfunction. We conclude that activation of the RAS causes severe autonomic dysregulation in young Sgcd-/- mice, which portends a worse long-term prognosis. Therapeutic targeting of the RAS at a young age may improve autonomic function and slow disease progression in muscular dystrophy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Kathy Zimmerman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Oliver Domenig
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Austria
| | | | - Mark W. Chapleau
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
30
|
Durand MT, Becari C, Tezini GCSV, Fazan R, Oliveira M, Guatimosim S, Prado VF, Prado MAM, Salgado HC. Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. Am J Physiol Heart Circ Physiol 2015; 309:H655-62. [PMID: 26092977 DOI: 10.1152/ajpheart.00114.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/15/2015] [Indexed: 01/13/2023]
Abstract
In cardiovascular diseases, sympathetic tone has been comprehensively studied, whereas parasympathetic tone has received minor attention. The vesicular ACh transporter (VAChT) knockdown homozygous (VAChT KD(HOM)) mouse is a useful model for examining the cardiocirculatory sympathovagal balance. Therefore, we investigated whether cholinergic dysfunction caused by reduced VAChT expression could adversely impact hemodynamic parameter [arterial pressure (AP) and heart rate (HR)] daily oscillation, baroreflex sensitivity, hemodynamic variability, sympathovagal balance, and cardiovascular reactivity to restraint stress. Wild-type and VAChT KD(HOM) mice were anesthetized for telemetry transmitter implantation, and APs and HRs were recorded 10 days after surgical recovery. Changes in HR elicited by methylatropine and propranolol provided the indexes of sympathovagal tone. Cardiovascular reactivity in response to a restraint test was examined 24 h after continuous recordings of AP and HR. VAChT KD(HOM) mice exhibited reduced parasympathetic and elevated sympathetic tone. Daily oscillations of AP and HR as well as AP variability were similar between groups. Nevertheless, HR variability, patterns with two dissimilar variations from symbolic analysis, and baroreflex sensitivity were reduced in VAChT KD(HOM) mice. The change in mean AP due to restraint stress was greater in VAChT KD(HOM) mice, whereas the tachycardic response was not. These findings demonstrate that the cholinergic dysfunction present in the VAChT KD(HOM) mouse did not adversely impact basal hemodynamic parameters but promoted autonomic imbalance, an attenuation of baroreflex sensitivity, and a greater pressure response to restraint stress. These results provide a framework for understanding how autonomic imbalance impacts cardiovascular function.
Collapse
Affiliation(s)
- Marina T Durand
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Christiane Becari
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geisa C S V Tezini
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mauro Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Vania F Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
31
|
Pliquett RU, Benkhoff S, Jung O, Brandes RP. Sympathoactivation and rho-kinase-dependent baroreflex function in experimental renovascular hypertension with reduced kidney mass. BMC PHYSIOLOGY 2014; 14:4. [PMID: 24946879 PMCID: PMC4074138 DOI: 10.1186/1472-6793-14-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/13/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dysregulation of the autonomic nervous system is frequent in subjects with cardiovascular disease. The contribution of different forms of renovascular hypertension and the mechanisms contributing to autonomic dysfunction in hypertension are incompletely understood. Here, murine models of renovascular hypertension with preserved (2-kidneys-1 clip, 2K1C) and reduced (1-kidney-1 clip, 1K1C) kidney mass were studied with regard to autonomic nervous system regulation (sympathetic tone: power-spectral analysis of systolic blood pressure; parasympathetic tone: power-spectral analysis of heart rate) and baroreflex sensitivity of heart rate by spontaneous, concomitant changes of systolic blood pressure and pulse interval. Involvement of the renin-angiotensin system and the rho-kinase pathway were determined by application of inhibitors. RESULTS C57BL6N mice (6 to 11) with reduced kidney mass (1K1C) or with preserved kidney mass (2K1C) developed a similar degree of hypertension. In comparison to control mice, both models presented with a significantly increased sympathetic tone and lower baroreflex sensitivity of heart rate. However, only 2K1C animals had a lower parasympathetic tone, whereas urinary norepinephrine excretion was reduced in the 1K1C model. Rho kinase inhibition given to a subset of 1K1C and 2K1C animals improved baroreflex sensitivity of heart rate selectively in the 1K1C model. Rho kinase inhibition had no additional effects on autonomic nervous system in either model of renovascular hypertension and did not change the blood pressure. Blockade of AT1 receptors (in 2K1C animals) normalized the sympathetic tone, decreased resting heart rate, improved baroreflex sensitivity of heart rate and parasympathetic tone. CONCLUSIONS Regardless of residual renal mass, blood pressure and sympathetic tone are increased, whereas baroreflex sensitivity is depressed in murine models of renovascular hypertension. Reduced norepinephrine excretion and/or degradation might contribute to sympathoactivation in renovascular hypertension with reduced renal mass (1K1C). Overall, the study helps to direct research to optimize medical therapy of hypertension.
Collapse
Affiliation(s)
- Rainer U Pliquett
- Institute for Cardiovascular Physiology, Vascular Research Centre, Fachbereich Medizin, Goethe University, Frankfurt (Main), Germany.
| | | | | | | |
Collapse
|
32
|
Baroreflex variability and "resetting": a new perspective. J Biomech 2014; 47:237-44. [PMID: 24182696 DOI: 10.1016/j.jbiomech.2013.09.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 01/18/2023]
Abstract
A new framework is proposed for the interpretation of spontaneous cardiac baroreflex sensitivity data and the general concept of baroreflex resetting. The framework is used to explore baroreflex function along two separate lines of inquiry: one following a direct intervention in baroreflex function in individual subjects, another in a group of subjects where baroreflex function may have been compromised by coronary artery disease or aging. It is found that under baseline conditions the baroreflex is in a "free-floating" state in which the gain or "sensitivity" is highly variable, while under orthostatic stress or in the absence of or reduced vagal input the gain is more tightly controlled with an expected decline in sensitivity but a very large decline in the variability of that sensitivity. It is concluded that baroreflex "resetting" is better viewed not simply as a change in baroreflex sensitivity but rather as a change in the "focus" or "attention" of the baroreflex as expressed by an observed decline in the variability of the measured gain. The results do not support the interpretation of baroreflex "resetting" as a departure from or return to a universal "set point" as in homeostasis or open loop models.
Collapse
|
33
|
Visualizing oxidative stress-induced depression of cardiac vagal baroreflex by MRI/DTI in a mouse neurogenic hypertension model. Neuroimage 2013; 82:190-9. [DOI: 10.1016/j.neuroimage.2013.05.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 11/21/2022] Open
|
34
|
Development of autonomic dysfunction with intermittent hypoxia in a lean murine model. Respir Physiol Neurobiol 2013; 188:143-51. [PMID: 23774144 DOI: 10.1016/j.resp.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 11/20/2022]
Abstract
Intermittent hypoxia (IH) has been previously shown in a lean murine model to produce sustained hypertension and reverse the diurnal variation of blood glucose (BG). Concomitant glucose infusion attenuated the hypertension but exacerbated the BG fluctuations. In this study, cardiovascular variability analysis was employed to track the development of autonomic dysfunction in mice exposed to room air (IA) or IH, in combination with saline or glucose infusion. Baroreflex sensitivity was found to decrease in all animals, except in the control group. Low-frequency power of pulse interval spectrum, reflecting vagal activity, decreased more rapidly in glucose relative to saline while low-frequency power of blood pressure, reflecting sympathetic activity, decreased more slowly in IH relative to IA. Ultradian (≈ 12 h) rhythmicity was substantially suppressed in IH groups. These findings suggest that IH acted to increase sympathetic activity while glucose infusion led to reduced parasympathetic activity. The combination of IH and hyperglycemia leads to progressively adverse effects on autonomic control independent of obesity.
Collapse
|
35
|
Masuki S, Sumiyoshi E, Koshimizu TA, Qian J, Higuchi K, Tsujimoto G, Nose H. Voluntary locomotion linked with cerebral activation is mediated by vasopressin V1a receptors in free-moving mice. J Physiol 2013; 591:3651-65. [PMID: 23671158 DOI: 10.1113/jphysiol.2013.251876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We previously reported that cerebral activation suppressed baroreflex control of heart rate (HR) at the onset of voluntary locomotion. In the present study, we examined whether vasopressin V1a receptors in the brain were involved in these responses by using free-moving V1a receptor knockout (KO, n = 8), wild-type mice locally infused with a V1a receptor antagonist into the nucleus tractus solitarii (BLK, n = 8) and control mice (CNT, n = 8). Baroreflex sensitivity (HR/MAP) was determined from HR response (HR) to a spontaneous change in mean arterial pressure (MAP) every 4 s during the total resting period, which was ∼8.7 h, of the 12 h measuring period in the three groups. HR/MAP was determined during the periods when the cross-correlation function (R(t)) between HR and MAP was significant (P < 0.05). Cerebral activity was determined from the power density ratio of to δ wave band (/δ) on the electroencephalogram every 4 s. Spontaneous changes in /δ were significantly correlated with R(t) during 62 ± 3% of the total resting period in CNT (P < 0.05), but only 38 ± 4% in KO and 47 ± 2% in BLK (vs. CNT, both P < 0.001). When R(t) and HR/MAP were divided into six bins according to the level of /δ, both were positively correlated with /δ in CNT (both P < 0.001), while neither was correlated in KO or BLK (all P > 0.05). Moreover, the probability that mice started to move after an increase in /δ was 24 ± 4% in KO and 24 ± 6% in BLK, markedly lower than 61 ± 5% in CNT (both P < 0.001), with no suppression of the baroreflex control of HR. Thus, central V1a receptors might play an important role in suppressing baroreflex control of HR during cerebral activation at the onset of voluntary locomotion.
Collapse
Affiliation(s)
- Shizue Masuki
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Rinne P, Harjunpää J, Mäkelä S, Savontaus E. Genetic and pharmacological mouse models of chronic melanocortin activation show enhanced baroreflex control of heart rate. ACTA ACUST UNITED AC 2013; 182:19-27. [DOI: 10.1016/j.regpep.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/05/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
37
|
Lo Martire V, Silvani A, Bastianini S, Berteotti C, Zoccoli G. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons. PLoS One 2012; 7:e47032. [PMID: 23056568 PMCID: PMC3466227 DOI: 10.1371/journal.pone.0047032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.
Collapse
Affiliation(s)
- Viviana Lo Martire
- Department of Human and General Physiology, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Human and General Physiology, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Human and General Physiology, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Human and General Physiology, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Department of Human and General Physiology, Alma Mater Studiorum – University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
38
|
Xiao L, Gao L, Lazartigues E, Zucker IH. Brain-selective overexpression of angiotensin-converting enzyme 2 attenuates sympathetic nerve activity and enhances baroreflex function in chronic heart failure. Hypertension 2011; 58:1057-65. [PMID: 22025374 DOI: 10.1161/hypertensionaha.111.176636] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been suggested to be involved in the central regulation of autonomic function. During chronic heart failure (CHF), elevated central angiotensin II signaling contributes to the sustained increase of sympathetic outflow. This is accompanied by a downregulation of ACE2 in the brain. We hypothesized that central overexpression of ACE2 decreases sympathetic outflow and enhances baroreflex function in CHF. Transgenic mice overexpressing human ACE2 selectively in the brain (SYN-hACE2 [SA]) and wild-type littermates (WT) were used. CHF was induced by permanent coronary artery ligation. Four weeks after coronary artery ligation, both WT and SA mice exhibited a significant decrease in left ventricular ejection fraction (<40%). A slight decrease in mean arterial pressure was found only in SA mice. Compared with WT mice with CHF, brain-selective ACE2 overexpression attenuated left ventricular end-diastolic pressure; decreased urinary norepinephrine excretion; baseline renal sympathetic nerve activity (WT CHF: 71.6±7.6% max versus SA CHF: 49.3±6.1% max); and enhanced baroreflex sensitivity (maximum slope: WT sham: 1.61±0.16%/mm Hg versus SA CHF: 1.51±0.17%/mm Hg). Chronic subcutaneous blockade of mas receptor increased renal sympathetic nerve activity in SA mice with CHF (A779: 67.3±5.8% versus vehicle: 46.4±3.6% of max). An upregulation in angiotensin II type 1 receptor expression was detected in medullary nuclei in WT CHF mice, which was significantly attenuated in SA mice with CHF. These data suggest that central ACE2 overexpression exerts a potential protective effect in CHF through attenuating sympathetic outflow. The mechanism for this effect involves angiotensin (1-7) mas signaling, as well as a decrease in angiotensin II type 1 receptor signaling in the medulla.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
39
|
Hollow MR, Clutton-Brock TH, Parkes MJ. Can baroreflex measurements with spontaneous sequence analysis be improved by also measuring breathing and by standardization of filtering strategies? Physiol Meas 2011; 32:1193-212. [PMID: 21725145 DOI: 10.1088/0967-3334/32/8/013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Baroreflex sensitivity (BRS) is known to be attenuated by inspiration and all the original BRS methodologies took this into account by measuring only in expiration. Spontaneous sequence analysis (SSA) is a non-invasive clinical tool widely used to estimate BRS in Man but does not take breathing into account. We have therefore modified it to test whether it too can detect inspiratory attenuation. Traditional SSA is also entangled with issues of distinguishing causal from random relationships between blood pressure and heart period and of the optimum choice of data filter settings. We have also tested whether the sequences our modified SSA rejects do behave as random relationships and show the limitations of the absence of filter standardization. SSA was performed on eupneic data from 1 h periods in 20 healthy subjects. Applying SSA traditionally produced a mean BRS of 23 ± 3 ms mmHg(-1). After modification to measure breathing, SSA detected significant inspiratory attenuation (11 ± 1 ms mmHg(-1)), and the mean expiratory BRS was significantly higher (26 ± 5 ms mmHg(-1)). Traditional SSA therefore underestimates BRS by an amount (3 ms mmHg(-1)) as big as the major physiological and clinical factors known to alter BRS. We show that the sequences rejected by SSA do behave like random associations between pressure and period. We also show the minimal effect of the r(2) filter and the biases that some pressure and heart period filters can introduce. We discuss whether SSA might be improved by standardization of filter settings and by also measuring breathing.
Collapse
Affiliation(s)
- M R Hollow
- Wellcome Trust Clinical Research Facility
| | | | | |
Collapse
|
40
|
Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol 2011; 301:H654-62. [PMID: 21705676 DOI: 10.1152/ajpheart.00355.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A growing body of evidence indicates that a number of common complex diseases, including hypertension, heart failure, and obesity, are characterized by alterations in central neurocardiovascular regulation. However, our understanding of how changes within the central nervous system contribute to the development and progression of these and other diseases remains unclear. As with many areas of cardiovascular research, the mouse has emerged as a key species for investigations of neuroregulatory processes because of its amenability to highly specific genetic manipulations. In parallel with the development of increasingly sophisticated murine models has come the miniaturization and advancement in methodologies for in vivo assessment of neurocardiovascular end points in the mouse. The following brief review will focus on a number of key direct and indirect experimental approaches currently in use, including measurement of arterial blood pressure, assessment of cardiovascular autonomic control, and evaluation of arterial baroreflex function. The advantages and limitations of each methodology are highlighted to allow for a critical evaluation by the reader when considering these approaches.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA.
| | | |
Collapse
|
41
|
Abstract
The methods used to assess cardiac parasympathetic (cardiovagal) activity and its effects on the heart in both humans and animal models are reviewed. Heart rate (HR)-based methods include measurements of the HR response to blockade of muscarinic cholinergic receptors (parasympathetic tone), beat-to-beat HR variability (HRV) (parasympathetic modulation), rate of post-exercise HR recovery (parasympathetic reactivation), and reflex-mediated changes in HR evoked by activation or inhibition of sensory (afferent) nerves. Sources of excitatory afferent input that increase cardiovagal activity and decrease HR include baroreceptors, chemoreceptors, trigeminal receptors, and subsets of cardiopulmonary receptors with vagal afferents. Sources of inhibitory afferent input include pulmonary stretch receptors with vagal afferents and subsets of visceral and somatic receptors with spinal afferents. The different methods used to assess cardiovagal control of the heart engage different mechanisms, and therefore provide unique and complementary insights into underlying physiology and pathophysiology. In addition, techniques for direct recording of cardiovagal nerve activity in animals; the use of decerebrate and in vitro preparations that avoid confounding effects of anesthesia; cardiovagal control of cardiac conduction, contractility, and refractoriness; and noncholinergic mechanisms are described. Advantages and limitations of the various methods are addressed, and future directions are proposed.
Collapse
Affiliation(s)
- Mark W Chapleau
- The Cardiovascular Center and Department of Internal Medicine, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | |
Collapse
|
42
|
Turukalo TL, Bajic D, Zigon NJ. Temporal Sequence Parameters in Isodistributional Surrogate Data: Model and Exact Expressions. IEEE Trans Biomed Eng 2011; 58:16-24. [DOI: 10.1109/tbme.2010.2083661] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Bhatia V, Rarick KR, Stauss HM. Effect of the data sampling rate on accuracy of indices for heart rate and blood pressure variability and baroreflex function in resting rats and mice. Physiol Meas 2010; 31:1185-201. [PMID: 20664161 DOI: 10.1088/0967-3334/31/9/009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to determine the minimal sampling rate (SR) required for blood pressure (BP) waveform recordings to accurately determine BP and heart rate (HR) variability indices and baroreceptor reflex sensitivity in rats and mice. We also determined if an 8-bit (versus 12-bit) analog-to-digital converter (ADC) resolution is sufficient to accurately determine these hemodynamic parameters and if spline interpolation to 1000 Hz of BP waveforms sampled at lower SRs can improve accuracy. BP and ECG recordings (1000 Hz SR, 12-bit ADC resolution) from two strains of rats and BP recordings (1000 Hz SR, 12-bit ADC resolution) from two strains of mice were mathematically converted to lower SRs and/or 8-bit ADC resolution. Time-domain HR variability and frequency-domain HR and BP variability indices and baroreflex sensitivity (using the sequence technique) were determined and the results obtained from the original files were compared to the results obtained from the mathematically altered files. Our results demonstrate that an ADC resolution of 8 bit is not sufficient to determine HR and BP variability in rats and mice and baroreceptor reflex sensitivity in mice. Average values for systolic, mean and diastolic BP and HR can be accurately derived from BP waveforms recorded at a minimal SR of 200 Hz in rats and mice. Spline interpolation of BP waveforms to 1000 Hz prior to extracting derived parameters reduces this minimal SR to 50 Hz in rats but still requires 200 Hz in mice. Frequency-domain BP variability (very low and low frequency spectral powers) can be estimated accurately at a minimum SR of 100 Hz in rats and mice and spline interpolation of BP waveforms to 1000 Hz reduces this minimal SR to 50 Hz in rats but does not reduce the minimal SR in mice. Time- and frequency-domain HR variability parameters require at least a SR of 1000 Hz in rats and mice. Spline interpolation of BP waveforms to 1000 Hz reduces this minimal SR to 100 Hz in rats and to 200 Hz in mice. Estimation of baroreflex sensitivity using the sequence technique requires a SR of at least 1000 Hz in rats and mice. Spline interpolation of BP waveforms to 1000 Hz reduces this minimal SR to 100 Hz in rats but does not reduce the minimum SR in mice. Finally, our results indicate that HR time series derived from BP waveforms are not totally consistent with HR time series derived from the ECG in rats. In conclusion, accurate assessment of HR variability and baroreflex sensitivity from BP waveform recordings requires a SR of at least 1000 Hz in rats and mice. If lower SRs are used for BP waveform recordings, a cubic spline interpolation to 1000 Hz (or an even higher SR) prior to extracting derived parameters significantly improves accuracy.
Collapse
Affiliation(s)
- Vivek Bhatia
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10467, USA.
| | | | | |
Collapse
|
44
|
Palma-Rigo K, Baudrie V, Laude D, Petrel C, Clauser E, Elghozi JL. Cardiovascular rhythms and cardiac baroreflex sensitivity in AT(1A) receptor gain-of-function mutant mice. Chronobiol Int 2010; 27:128-37. [PMID: 20205562 DOI: 10.3109/07420520903398591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A mutant mouse expressing a gain-of-function of the AT(1A) angiotensin II receptor was engineered to study the consequences of a constitutive activation of this receptor on blood pressure (BP). Cardiovascular rhythms and spontaneous cardiac baroreflex sensitivity (BRS) were evaluated using telemetric BP recordings of five transgenic (AT(1A)MUT) and five wild (AT(1A)WT) mice. The circadian rhythms were described with the Chronos-Fit program. The gain of the transfer function between systolic BP (SBP) and pulse intervals used to estimate the spontaneous BRS (ms/mmHg) was calculated in the low frequency (0.15-0.60 Hz) band. Transgenic AT(1A)MUT exhibited higher BP and heart rate (HR) levels compared to controls (SBP AT(1A)MUT 134.6 +/- 5.9 mmHg vs. AT(1A)WT 110.5 +/- 5.9; p < 0.05; HR AT(1A)MUT 531.0 +/- 14.9 vs. AT(1A)WT 454.8 +/- 5.4 beats/min; p = 0.001). Spontaneous BRS was diminished in transgenic mice (AT(1A)MUT 1.23 +/- 0.17 ms/mmHg vs. AT(1A)WT 1.91 +/- 0.18 ms/mmHg; p < 0.05). Motor activity did not differ between groups. These variables exhibited circadian changes, and the differences between the strains were maintained throughout the cycle. The highest values for BP, HR, and locomotor activity were observed at night. Spontaneous BRS varied in the opposite direction, with the lowest gain estimated when BP and HR were elevated (i.e., at night, when the animals were active). It is likely the BP elevation of the mutant mice results from the amplification of the effects of AngII at different sites. Future studies are necessary to explore whether AT(1A) receptor activation at the central nervous system level effectively contributed to the observed differences.
Collapse
Affiliation(s)
- Kesia Palma-Rigo
- INSERM U970, Paris - Centre de Recherche Cardiovasculaire; Université Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
SilvanI A, Bastianini S, Berteotti C, Franzini C, Lenzi P, Lo Martire V, Zoccoli G. Dysregulation of heart rhythm during sleep in leptin-deficient obese mice. Sleep 2010; 33:355-61. [PMID: 20337194 DOI: 10.1093/sleep/33.3.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES sleep deeply affects cardiac autonomic control, the impairment of which is associated with cardiovascular mortality. Obesity entails increased cardiovascular risk and derangements in sleep and cardiac autonomic control. We investigated whether cardiac autonomic control is impaired during sleep in ob/ob mice with morbid obesity caused by congenital leptin deficiency. DESIGN indexes of cardiac autonomic control based on spontaneous cardiovascular fluctuations were compared between ob/ob and lean wild-type (+/+) mice during wakefulness, non-rapid eye movement sleep (NREMS), and rapid eye movement sleep (REMS). SETTING N/A PATIENTS OR PARTICIPANTS: 7 ob/ob and 11 +/+ male mice. INTERVENTIONS instrumentation with electrodes for sleep recordings and a telemetric transducer for measuring blood pressure and heart period. MEASUREMENTS AND RESULTS In ob/ob mice, the variability of heart period and cardiac baroreflex sensitivity (sequence technique) were significantly lower than in +/+ mice during each wake-sleep state. The vagal modulation of heart period was significantly weaker in ob/ob than in +/+ mice during NREMS and REMS. In ob/ob mice, the cross-correlation function between heart period and blood pressure suggested that the baroreflex contribution to cardiac control was lower than in +/+ mice during wakefulness and NREMS, whereas the contribution of central autonomic commands was lower than in +/+ mice during NREMS and REMS. CONCLUSIONS These data indicate a dysregulation of cardiac autonomic control during sleep in ob/ob mice. Ob/ob mice may represent a useful tool to understand the molecular pathways that lead to cardiac autonomic dysregulation during sleep in obesity.
Collapse
Affiliation(s)
- Alessandro SilvanI
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The sequence method was first described by Di Rienzo in cats and applied in different species including humans. Until now, no systematic study of spontaneous baroreflex sensitivity (BRS) has been performed by the sequence method in mice. This study aimed to characterize the best estimates of BRS using the sequence method by tuning all the possible parameters, specifically, the number of beats involved in a sequence, the minimal changes in blood-pressure (BP) ramps, and the minimal changes in pulse-interval (PI) ramps. Also, the relevance to set a minimal correlation coefficient in the regression line between BP and PI was tested. An important point was the delay to be applied between BP and PI. This delay represents the physiological time for the baroreflex loop to efficiently correct the BP variations.
Collapse
Affiliation(s)
- Dominique Laude
- INSERM U872, Equipe 1, 15 Rue de l'Ecole de Médecine, 75006 Paris, France.
| | | | | |
Collapse
|
47
|
Lu Y, Ma X, Sabharwal R, Snitsarev V, Morgan D, Rahmouni K, Drummond HA, Whiteis CA, Costa V, Price M, Benson C, Welsh MJ, Chapleau MW, Abboud FM. The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron 2010; 64:885-97. [PMID: 20064394 DOI: 10.1016/j.neuron.2009.11.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2009] [Indexed: 12/18/2022]
Abstract
Arterial baroreceptors provide a neural sensory input that reflexly regulates the autonomic drive of circulation. Our goal was to test the hypothesis that a member of the acid-sensing ion channel (ASIC) subfamily of the DEG/ENaC superfamily is an important determinant of the arterial baroreceptor reflex. We found that aortic baroreceptor neurons in the nodose ganglia and their terminals express ASIC2. Conscious ASIC2 null mice developed hypertension, had exaggerated sympathetic and depressed parasympathetic control of the circulation, and a decreased gain of the baroreflex, all indicative of an impaired baroreceptor reflex. Multiple measures of baroreceptor activity each suggest that mechanosensitivity is diminished in ASIC2 null mice. The results define ASIC2 as an important determinant of autonomic circulatory control and of baroreceptor sensitivity. The genetic disruption of ASIC2 recapitulates the pathological dysautonomia seen in heart failure and hypertension and defines a molecular defect that may be relevant to its development.
Collapse
Affiliation(s)
- Yongjun Lu
- Department of Internal Medicine and Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sabharwal R, Zhang Z, Lu Y, Abboud FM, Russo AF, Chapleau MW. Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates Angiotensin-induced hypertension. Hypertension 2010; 55:627-35. [PMID: 20100989 DOI: 10.1161/hypertensionaha.109.148171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a powerful vasodilator that interacts with the autonomic nervous system. A subunit of the CGRP receptor complex, receptor activity-modifying protein 1 (RAMP1), is required for trafficking of the receptor to the cell surface and high-affinity binding to CGRP. We hypothesized that upregulation of RAMP1 would favorably enhance autonomic regulation and attenuate hypertension. Blood pressure, heart rate, and locomotor activity were measured by radiotelemetry in transgenic mice with ubiquitous expression of human RAMP1 (hRAMP1) and littermate controls. Compared with control mice, hRAMP1 mice exhibited similar mean arterial pressure, a lower mean heart rate, increased heart rate variability, reduced blood pressure variability, and increased baroreflex sensitivity (2.83+/-0.20 versus 1.49+/-0.10 ms/mm Hg in controls; P<0.05). In control mice, infusion of angiotensin II (Ang-II) increased mean arterial pressure from 118+/-2 mm Hg to 153+/-4 and 174+/-6 mm Hg after 7 and 14 days of infusion, respectively (P<0.05). In contrast, Ang-II hypertension was markedly attenuated in hRAMP1 mice with corresponding values of mean arterial pressure of 111+/-2, 119+/-2, and 132+/-3 mm Hg. Ang-II induced decreases in baroreflex sensitivity and heart rate variability, and increases in blood pressure variability observed in control mice were also abrogated or reversed in hRAMP1 mice (P<0.05). Moreover, during the Ang-II infusion, the pressor response to the CGRP receptor antagonist CGRP(8-37) was significantly greater (P<0.05) in hRAMP1 mice (+30+/-2 mm Hg) than in control mice (+19+/-2 mm Hg), confirming a significantly greater antihypertensive action of endogenous CGRP in hRAMP1 mice. We conclude that RAMP1 overexpression attenuates Ang-II-induced hypertension and induces a protective change in cardiovascular autonomic regulation.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
49
|
Aubert AE, Vandeput S, Beckers F, Liu J, Verheyden B, Van Huffel S. Complexity of cardiovascular regulation in small animals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1239-1250. [PMID: 19324706 DOI: 10.1098/rsta.2008.0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oscillations of heart rate and blood pressure are related to the activity of the underlying control mechanism. They have been investigated mostly with linear methods in the time and frequency domains. Also, in recent years, many different nonlinear analysis methods have been applied for the evaluation of cardiovascular variability. This review presents the most commonly used nonlinear methods. Physiological understanding is obtained from various results from small animals.
Collapse
Affiliation(s)
- André E Aubert
- Laboratory Experimental Cardiology and Interdisciplinary Centre for Space Studies (ICSS), University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| | | | | | | | | | | |
Collapse
|
50
|
Roghair RD, Segar JL, Volk KA, Chapleau MW, Dallas LM, Sorenson AR, Scholz TD, Lamb FS. Vascular nitric oxide and superoxide anion contribute to sex-specific programmed cardiovascular physiology in mice. Am J Physiol Regul Integr Comp Physiol 2009; 296:R651-62. [PMID: 19144750 DOI: 10.1152/ajpregu.90756.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intrauterine environmental pertubations have been linked to the development of adult hypertension. We sought to evaluate the interrelated roles of sex, nitric oxide, and reactive oxygen species (ROS) in programmed cardiovascular disease. Programming was induced in mice by maternal dietary intervention (DI; partial substitution of protein with carbohydrates and fat) or carbenoxolone administration (CX, to increase fetal glucocorticoid exposure). Adult blood pressure and locomotor activity were recorded by radiotelemetry at baseline, after a week of high salt, and after a week of high salt plus nitric oxide synthase inhibition (by l-NAME). In male offspring, DI or CX programmed an elevation in blood pressure that was exacerbated by N(omega)-nitro-l-arginine methyl ester administration, but not high salt alone. Mesenteric resistance vessels from DI male offspring displayed impaired vasorelaxation to ACh and nitroprusside, which was blocked by catalase and superoxide dismutase. CX-exposed females were normotensive, while DI females had nitric oxide synthase-dependent hypotension and enhanced mesenteric dilation. Despite the disparate cardiovascular phenotypes, both male and female DI offspring displayed increases in locomotor activity and aortic superoxide production. Despite dissimilar blood pressures, DI and CX-exposed females had reductions in cardiac baroreflex sensitivity. In conclusion, both maternal malnutrition and fetal glucocorticoid exposure program increases in arterial pressure in male but not female offspring. While maternal DI increased both superoxide-mediated vasoconstriction and nitric oxide mediated vasodilation, the balance of these factors favored the development of hypertension in males and hypotension in females.
Collapse
Affiliation(s)
- Robert D Roghair
- Dept. of Pediatrics, Univ. of Iowa Carver College of Medicine, Iowa City, 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|