1
|
Acquarone D, Bertero A, Brancaccio M, Sorge M. Chaperone Proteins: The Rising Players in Muscle Atrophy. J Cachexia Sarcopenia Muscle 2024. [PMID: 39707668 DOI: 10.1002/jcsm.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Despite significant progress in understanding the molecular aetiology of muscle atrophy, there is still a great need for new targets and drugs capable of counteracting muscle wasting. The role of an impaired proteostasis as the underlying causal mechanism of muscle atrophy is a well-established concept. From the earliest work on muscle atrophy and the identification of the first atrogenes, the hyper-activation of the proteolytic systems, such as autophagy and the ubiquitin proteasome system, has been recognized as the major driver of atrophy. However, the role of other key regulators of proteostasis, the chaperone proteins, has been largely overlooked. Chaperone proteins play a pivotal role in protein folding and in preventing the aggregation of misfolded proteins. Indeed, some chaperones, such as αB-crystallin and Hsp25, are involved in compensatory responses aimed at counteracting protein aggregation during sarcopenia. Chaperones also regulate different intracellular signalling pathways crucial for atrogene expression and the control of protein catabolism, such as the AKT and NF-kB pathways, which are regulated by Hsp70 and Hsp90. Furthermore, the downregulation of certain chaperones causes severe muscle wasting per se and experimental strategies aimed at preventing this downregulation have shown promising results in mitigating or reversing muscle atrophy. This highlights the therapeutic potential of targeting chaperones and confirms their crucial anti-atrophic functions. In this review, we summarize the most relevant data showing the modulation and the causative role of chaperone proteins in different types of skeletal muscle atrophies.
Collapse
Affiliation(s)
- Davide Acquarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Bonanni R, Cariati I, Marini M, Tarantino U, Tancredi V. Microgravity and Musculoskeletal Health: What Strategies Should Be Used for a Great Challenge? Life (Basel) 2023; 13:1423. [PMID: 37511798 PMCID: PMC10381503 DOI: 10.3390/life13071423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Space colonization represents the most insidious challenge for mankind, as numerous obstacles affect the success of space missions. Specifically, the absence of gravitational forces leads to systemic physiological alterations, with particular emphasis on the musculoskeletal system. Indeed, astronauts exposed to spaceflight are known to report a significant impairment of bone microarchitecture and muscle mass, conditions clinically defined as osteoporosis and sarcopenia. In this context, space medicine assumes a crucial position, as the development of strategies to prevent and/or counteract weightlessness-induced alterations appears to be necessary. Furthermore, the opportunity to study the biological effects induced by weightlessness could provide valuable information regarding adaptations to spaceflight and suggest potential treatments that can preserve musculoskeletal health under microgravity conditions. Noteworthy, improving knowledge about the latest scientific findings in this field of research is crucial, as is thoroughly investigating the mechanisms underlying biological adaptations to microgravity and searching for innovative solutions to counter spaceflight-induced damage. Therefore, this narrative study review, performed using the MEDLINE and Google Scholar databases, aims to summarize the most recent evidence regarding the effects of real and simulated microgravity on the musculoskeletal system and to discuss the effectiveness of the main defence strategies used in both real and experimental settings.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Mario Marini
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
3
|
Trivedi T, Manaa M, John S, Reiken S, Murthy S, Pagnotti GM, Dole NS, She Y, Suresh S, Hain BA, Regan J, Ofer R, Wright L, Robling A, Cao X, Alliston T, Marks AR, Waning DL, Mohammad KS, Guise TA. Zoledronic acid improves bone quality and muscle function in a high bone turnover state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543305. [PMID: 37333318 PMCID: PMC10274651 DOI: 10.1101/2023.06.01.543305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
SUMMARY Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFβ release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance TGFβ is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFβ causes several bone disorders and skeletal muscle weakness. Reducing excess TGFβ release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.
Collapse
|
4
|
Wiggs MP, Lee Y, Shimkus KL, O'Reilly CI, Lima F, Macias BR, Shirazi-Fard Y, Greene ES, Hord JM, Braby LA, Carroll CC, Lawler JM, Bloomfield SA, Fluckey JD. Combined effects of heavy ion exposure and simulated Lunar gravity on skeletal muscle. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:39-49. [PMID: 37087178 DOI: 10.1016/j.lssr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, United States.
| | - Yang Lee
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Kevin L Shimkus
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Colleen I O'Reilly
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Florence Lima
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Brandon R Macias
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Johnson Space Center, Houston, Texas, United States
| | - Yasaman Shirazi-Fard
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Ames Research Center, Moffett Field, CA, United States
| | - Elizabeth S Greene
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States
| | - Chad C Carroll
- Department of Physiology, Purdue University, West Lafayette, IN, United States
| | - John M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - James D Fluckey
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Nox2 Inhibition Regulates Stress Response and Mitigates Skeletal Muscle Fiber Atrophy during Simulated Microgravity. Int J Mol Sci 2021; 22:ijms22063252. [PMID: 33806917 PMCID: PMC8005132 DOI: 10.3390/ijms22063252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.
Collapse
|
6
|
Hord JM, Garcia MM, Farris KR, Guzzoni V, Lee Y, Lawler MS, Lawler JM. Nox2 signaling and muscle fiber remodeling are attenuated by losartan administration during skeletal muscle unloading. Physiol Rep 2021; 9:e14606. [PMID: 33400850 PMCID: PMC7785102 DOI: 10.14814/phy2.14606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced mechanical loading results in atrophy of skeletal muscle fibers. Increased reactive oxygen species (ROS) are causal in sarcolemmal dislocation of nNOS and FoxO3a activation. The Nox2 isoform of NADPH oxidase and mitochondria release ROS during disuse in skeletal muscle. Activation of the angiotensin II type 1 receptor (AT1R) can elicit Nox2 complex formation. The AT1R blocker losartan was used to test the hypothesis that AT1R activation drives Nox2 assembly, nNOS dislocation, FoxO3a activation, and thus alterations in morphology in the unloaded rat soleus. Male Fischer 344 rats were divided into four groups: ambulatory control (CON), ambulatory + losartan (40 mg kg-1 day-1 ) (CONL), 7 days of tail-traction hindlimb unloading (HU), and HU + losartan (HUL). Losartan attenuated unloading-induced loss of muscle fiber cross-sectional area (CSA) and fiber-type shift. Losartan mitigated unloading-induced elevation of ROS levels and upregulation of Nox2. Furthermore, AT1R blockade abrogated nNOS dislocation away from the sarcolemma and elevation of nuclear FoxO3a. We conclude that AT1R blockade attenuates disuse remodeling by inhibiting Nox2, thereby lessening nNOS dislocation and activation of FoxO3a.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Marcela M Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Katherine R Farris
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Yang Lee
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Gorza L, Sorge M, Seclì L, Brancaccio M. Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 2021; 10:cells10010061. [PMID: 33401549 PMCID: PMC7823551 DOI: 10.3390/cells10010061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The loss of muscle mass and force characterizes muscle atrophy in several different conditions, which share the expression of atrogenes and the activation of their transcriptional regulators. However, attempts to antagonize muscle atrophy development in different experimental contexts by targeting contributors to the atrogene pathway showed partial effects in most cases. Other master regulators might independently contribute to muscle atrophy, as suggested by our recent evidence about the co-requirement of the muscle-specific chaperone protein melusin to inhibit unloading muscle atrophy development. Furthermore, melusin and other muscle mass regulators, such as nNOS, belong to costameres, the macromolecular complexes that connect sarcolemma to myofibrils and to the extracellular matrix, in correspondence with specific sarcomeric sites. Costameres sense a mechanical load and transduce it both as lateral force and biochemical signals. Recent evidence further broadens this classic view, by revealing the crucial participation of costameres in a sarcolemmal “signaling hub” integrating mechanical and humoral stimuli, where mechanical signals are coupled with insulin and/or insulin-like growth factor stimulation to regulate muscle mass. Therefore, this review aims to enucleate available evidence concerning the early involvement of costamere components and additional putative master regulators in the development of major types of muscle atrophy.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- Correspondence:
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (M.S.); (L.S.); (M.B.)
| |
Collapse
|
8
|
Nakada S, Yamashita Y, Machida S, Miyagoe-Suzuki Y, Arikawa-Hirasawa E. Perlecan Facilitates Neuronal Nitric Oxide Synthase Delocalization in Denervation-Induced Muscle Atrophy. Cells 2020; 9:cells9112524. [PMID: 33238404 PMCID: PMC7700382 DOI: 10.3390/cells9112524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Perlecan is an extracellular matrix molecule anchored to the sarcolemma by a dystrophin–glycoprotein complex. Perlecan-deficient mice are tolerant to muscle atrophy, suggesting that perlecan negatively regulates mechanical stress-dependent skeletal muscle mass. Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma to the cytosol triggers protein degradation, thereby initiating skeletal muscle atrophy. We hypothesized that perlecan regulates nNOS delocalization and activates protein degradation during this process. To determine the role of perlecan in nNOS-mediated mechanotransduction, we used sciatic nerve transection as a denervation model of gastrocnemius muscles. Gastrocnemius muscle atrophy was significantly lower in perinatal lethality-rescued perlecan-knockout (Hspg2−/−-Tg) mice than controls (WT-Tg) on days 4 and 14 following surgery. Immunofluorescence microscopy showed that cell membrane nNOS expression was reduced by denervation in WT-Tg mice, with marginal effects in Hspg2−/−-Tg mice. Moreover, levels of atrophy-related proteins—i.e., FoxO1a, FoxO3a, atrogin-1, and Lys48-polyubiquitinated proteins—increased in the denervated muscles of WT-Tg mice but not in Hspg2−/−-Tg mice. These findings suggest that during denervation, perlecan promotes nNOS delocalization from the membrane and stimulates protein degradation and muscle atrophy by activating FoxO signaling and the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Satoshi Nakada
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
| | - Yuri Yamashita
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Shuichi Machida
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan;
| | - Eri Arikawa-Hirasawa
- Japanese Center for Research on Women in Sport, Juntendo University Graduate School of Health and Sports Science, Chiba 270-1695, Japan; (S.N.); (S.M.)
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Correspondence: ; Tel.: +81-3-3813-3111
| |
Collapse
|
9
|
Thoma A, Lyon M, Al-Shanti N, Nye GA, Cooper RG, Lightfoot AP. Eukarion-134 Attenuates Endoplasmic Reticulum Stress-Induced Mitochondrial Dysfunction in Human Skeletal Muscle Cells. Antioxidants (Basel) 2020; 9:antiox9080710. [PMID: 32764412 PMCID: PMC7466046 DOI: 10.3390/antiox9080710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022] Open
Abstract
Maladaptive endoplasmic reticulum (ER) stress is associated with modified reactive oxygen species (ROS) generation and mitochondrial abnormalities; and is postulated as a potential mechanism involved in muscle weakness in myositis, an acquired autoimmune neuromuscular disease. This study investigates the impact of ROS generation in an in vitro model of ER stress in skeletal muscle, using the ER stress inducer tunicamycin (24 h) in the presence or absence of a superoxide dismutase/catalase mimetic Eukarion (EUK)-134. Tunicamycin induced maladaptive ER stress, which was mitigated by EUK-134 at the transcriptional level. ER stress promoted mitochondrial dysfunction, described by substantial loss of mitochondrial membrane potential, as well as a reduction in respiratory control ratio, reserve capacity, phosphorylating respiration, and coupling efficiency, which was ameliorated by EUK-134. Tunicamycin induced ROS-mediated biogenesis and fusion of mitochondria, which, however, had high propensity of fragmentation, accompanied by upregulated mRNA levels of fission-related markers. Increased cellular ROS generation was observed under ER stress that was prevented by EUK-134, even though no changes in mitochondrial superoxide were noticeable. These findings suggest that targeting ROS generation using EUK-134 can amend aspects of ER stress-induced changes in mitochondrial dynamics and function, and therefore, in instances of chronic ER stress, such as in myositis, quenching ROS generation may be a promising therapy for muscle weakness and dysfunction.
Collapse
Affiliation(s)
- Anastasia Thoma
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
| | - Max Lyon
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.L.); (R.G.C.)
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
| | - Gareth A. Nye
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK;
| | - Robert G. Cooper
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.L.); (R.G.C.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.T.); (N.A.-S.)
- Correspondence:
| |
Collapse
|
10
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
11
|
Eshima H, Siripoksup P, Mahmassani ZS, Johnson JM, Ferrara PJ, Verkerke ARP, Salcedo A, Drummond MJ, Funai K. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice. J Appl Physiol (1985) 2020; 129:124-132. [PMID: 32552434 DOI: 10.1152/japplphysiol.00456.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess reactive oxygen species (ROS) induced by physical inactivity is associated with muscle atrophy and muscle weakness. However, the role of mitochondrial ROS on disuse-induced muscle atrophy is not fully understood. The purpose of this study was to utilize a genetic strategy to examine the effect of neutralizing mitochondrial ROS on disuse-induced skeletal muscle atrophy. This was accomplished by placing wild-type (WT) and mitochondrial-targeted catalase-expressing (MCAT) littermate mice on 7 days of hindlimb unloading. After assessment of body weight and composition, muscles were analyzed for individual muscle mass, force-generating capacity, fiber type, cross-sectional area, and mitochondrial function, including H2O2 production. Despite a successful attenuation of mitochondrial ROS, MCAT mice were not protected from muscle atrophy. No differences were observed in body composition, lean mass, individual muscle masses, force-generating capacity, or muscle fiber cross-sectional area. These data suggest that neutralizing mitochondrial ROS is insufficient to suppress disuse-induced loss of skeletal muscle mass and contractile function.NEW & NOTEWORTHY The premise of this study was to examine the efficacy of genetic suppression of mitochondrial reactive oxygen species (ROS) to attenuate disuse-induced muscle atrophy and muscle weakness. Neutralization of mitochondrial ROS by MCAT expression was insufficient to rescue muscle atrophy and muscle weakness.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Piyarat Siripoksup
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan M Johnson
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anthony R P Verkerke
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anahy Salcedo
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
12
|
Vitadello M, Sorge M, Percivalle E, Germinario E, Danieli-Betto D, Turco E, Tarone G, Brancaccio M, Gorza L. Loss of melusin is a novel, neuronal NO synthase/FoxO3-independent master switch of unloading-induced muscle atrophy. J Cachexia Sarcopenia Muscle 2020; 11:802-819. [PMID: 32154658 PMCID: PMC7296270 DOI: 10.1002/jcsm.12546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unloading/disuse induces skeletal muscle atrophy in bedridden patients and aged people, who cannot prevent it by means of exercise. Because interventions against known atrophy initiators, such as oxidative stress and neuronal NO synthase (nNOS) redistribution, are only partially effective, we investigated the involvement of melusin, a muscle-specific integrin-associated protein and a recognized regulator of protein kinases and mechanotransduction in cardiomyocytes. METHODS Muscle atrophy was induced in the rat soleus by tail suspension and in the human vastus lateralis by bed rest. Melusin expression was investigated at the protein and transcript level and after treatment of tail-suspended rats with atrophy initiator inhibitors. Myofiber size, sarcolemmal nNOS activity, FoxO3 myonuclear localization, and myofiber carbonylation of the unloaded rat soleus were studied after in vivo melusin replacement by cDNA electroporation, and muscle force, myofiber size, and atrogene expression after adeno-associated virus infection. In vivo interference of exogenous melusin with dominant-negative kinases and other atrophy attenuators (Grp94 cDNA; 7-nitroindazole) on size of unloaded rat myofibers was also explored. RESULTS Unloading/disuse reduced muscle melusin protein levels to about 50%, already after 6 h in the tail-suspended rat (P < 0.001), and to about 35% after 8 day bed rest in humans (P < 0.05). In the unloaded rat, melusin loss occurred despite of the maintenance of β1D integrin levels and was not abolished by treatments inhibiting mitochondrial oxidative stress, or nNOS activity and redistribution. Expression of exogenous melusin by cDNA transfection attenuated atrophy of 7 day unloaded rat myofibers (-31%), compared with controls (-48%, P = 0.001), without hampering the decrease in sarcolemmal nNOS activity and the increase in myonuclear FoxO3 and carbonylated myofibers. Infection with melusin-expressing adeno-associated virus ameliorated contractile properties of 7 day unloaded muscles (P ≤ 0.05) and relieved myofiber atrophy (-33%) by reducing Atrogin-1 and MurF-1 transcripts (P ≤ 0.002), despite of a two-fold increase in FoxO3 protein levels (P = 0.03). Atrophy attenuation by exogenous melusin did not result from rescue of Akt, ERK, or focal adhesion kinase activity, because it persisted after co-transfection with dominant-negative kinase forms (P < 0.01). Conversely, melusin cDNA transfection, combined with 7-nitroindazole treatment or with cDNA transfection of the nNOS-interacting chaperone Grp94, abolished 7 day unloaded myofiber atrophy. CONCLUSIONS Disuse/unloading-induced loss of melusin is an early event in muscle atrophy which occurs independently from mitochondrial oxidative stress, nNOS redistribution, and FoxO3 activation. Only preservation of melusin levels and sarcolemmal nNOS localization fully prevented muscle mass loss, demonstrating that both of them act as independent, but complementary, master switches of muscle disuse atrophy.
Collapse
Affiliation(s)
- Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR-Institute for Neuroscience, Padova Section, Padova, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Percivalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Yamada T, Ashida Y, Tatebayashi D, Himori K. Myofibrillar function differs markedly between denervated and dexamethasone-treated rat skeletal muscles: Role of mechanical load. PLoS One 2019; 14:e0223551. [PMID: 31596883 PMCID: PMC6785062 DOI: 10.1371/journal.pone.0223551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 01/24/2023] Open
Abstract
Although there is good evidence to indicate a major role of intrinsic impairment of the contractile apparatus in muscle weakness seen in several pathophysiological conditions, the factors responsible for control of myofibrillar function are not fully understood. To investigate the role of mechanical load in myofibrillar function, we compared the skinned fiber force between denervated (DEN) and dexamethasone-treated (DEX) rat skeletal muscles with or without neuromuscular electrical stimulation (ES) training. DEN and DEX were induced by cutting the sciatic nerve and daily injection of dexamethasone (5 mg/kg/day) for 7 days, respectively. For ES training, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. In situ maximum torque was markedly depressed in the DEN muscles compared to the DEX muscles (-74% vs. -10%), whereas there was not much difference in the degree of atrophy in gastrocnemius muscles between DEN and DEX groups (-24% vs. -17%). Similar results were obtained in the skinned fiber preparation, with a greater reduction in maximum Ca2+-activated force in the DEN than in the DEX group (-53% vs. -16%). Moreover, there was a parallel decline in myosin heavy chain (MyHC) and actin content per muscle volume in DEN muscles, but not in DEX muscles, which was associated with upregulation of NADPH oxidase (NOX) 2, neuronal nitric oxide synthase (nNOS), and endothelial NOS expression, translocation of nNOS from the membrane to the cytosol, and augmentation of mRNA levels of muscle RING finger protein 1 (MuRF-1) and atrogin-1. Importantly, mechanical load evoked by ES protects against DEN- and DEX-induced myofibrillar dysfunction and these molecular alterations. Our findings provide novel insights regarding the difference in intrinsic contractile properties between DEN and DEX and suggest an important role of mechanical load in preserving myofibrillar function in skeletal muscle.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| |
Collapse
|
14
|
Tomiga Y, Ito A, Sudo M, Ando S, Eshima H, Sakai K, Nakashima S, Uehara Y, Tanaka H, Soejima H, Higaki Y. One week, but not 12 hours, of cast immobilization alters promotor DNA methylation patterns in the nNOS gene in mouse skeletal muscle. J Physiol 2019; 597:5145-5159. [PMID: 31490543 DOI: 10.1113/jp277019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS DNA methylation may play an important role in regulating gene expression in skeletal muscle to adapt to physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) in skeletal muscle is a key regulator of skeletal muscle mass; however, it is unclear whether nNOS expression is regulated by DNA methylation. We found that 1 week of cast immobilization increased nNOS DNA methylation levels and downregulated nNOS gene expression in atrophic slow-twitch soleus muscle from the mouse leg. These changes were not detected in non-atrophic fast-twitch extensor digitorum longus muscle. Twelve hours of cast immobilization decreased nNOS gene expression, whereas nNOS DNA methylation levels were unchanged, suggesting that downregulation of nNOS gene expression by short-term muscle inactivity is independent of the DNA methylation pattern. These findings contribute to a better understanding of the maintenance of skeletal muscle mass and prevention of muscle atrophy by epigenetic mechanisms via the nNOS/NO pathway. ABSTRACT DNA methylation is a mechanism that controls gene expression in skeletal muscle under various environmental stimuli, such as physical activity and inactivity. Neuronal nitric oxide synthase (nNOS) regulates muscle atrophy in skeletal muscle. However, the mechanisms regulating nNOS expression in atrophic muscle remain unclear. We hypothesized that nNOS expression in atrophic muscle is regulated by DNA methylation of the nNOS promotor in soleus (Sol; slow-twitch fibre dominant) and extensor digitorum longus (EDL; fast-twitch fibre dominant) muscles. One week of cast immobilization induced significant muscle atrophy in Sol but not in EDL. We showed that 1 week of cast immobilization increased nNOS DNA methylation levels in Sol, although only a minor change was detected in EDL. Consistent with the increased DNA methylation levels in atrophic Sol, the gene expression levels of total nNOS and nNOSµ (i.e. the major splicing variant of nNOS in skeletal muscle) decreased. The abundance of the nNOS protein and cell membrane (especially type IIa fibre) immunoreactivity also decreased in atrophic Sol. These changes were not observed in EDL after 1 week of cast immobilization. Furthermore, despite the lack of significant atrophy, 12 h of cast immobilization decreased gene expression levels of total nNOS and nNOSµ in Sol. However, no association was detected between nNOS DNA methylation and gene expression. The expression of the nNOSβ gene, another splicing variant of nNOS, in EDL was unchanged by cast immobilization, whereas its expression was not detected in Sol. We concluded that chronic adaptation of nNOS gene expression in cast immobilized muscle may involve nNOS DNA methylation.
Collapse
Affiliation(s)
- Yuki Tomiga
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,The Fukuoka University Institute for Physical Activity, Fukuoka, Japan
| | - Ai Ito
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Mizuki Sudo
- Physical Fitness Research Institute Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Hiroaki Eshima
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan.,Diabetes and Metabolism Research Centre, Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Kazuya Sakai
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Shihoko Nakashima
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Tanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
15
|
Zhao J, Yang HT, Wasala L, Zhang K, Yue Y, Duan D, Lai Y. Dystrophin R16/17 protein therapy restores sarcolemmal nNOS in trans and improves muscle perfusion and function. Mol Med 2019; 25:31. [PMID: 31266455 PMCID: PMC6607532 DOI: 10.1186/s10020-019-0101-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Background Delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma leads to functional muscle ischemia. This contributes to the pathogenesis in cachexia, aging and muscular dystrophy. Mutations in the gene encoding dystrophin result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). In many BMD patients and DMD patients that have been converted to BMD by gene therapy, sarcolemmal nNOS is missing due to the lack of dystrophin nNOS-binding domain. Methods Dystrophin spectrin-like repeats 16 and 17 (R16/17) is the sarcolemmal nNOS localization domain. Here we explored whether R16/17 protein therapy can restore nNOS to the sarcolemma and prevent functional ischemia in transgenic mice which expressed an R16/17-deleted human micro-dystrophin gene in the dystrophic muscle. The palmitoylated R16/17.GFP fusion protein was conjugated to various cell-penetrating peptides and produced in the baculovirus-insect cell system. The best fusion protein was delivered to the transgenic mice and functional muscle ischemia was quantified. Results Among five candidate cell-penetrating peptides, the mutant HIV trans-acting activator of transcription (TAT) protein transduction domain (mTAT) was the best in transferring the R16/17.GFP protein to the muscle. Systemic delivery of the mTAT.R16/17.GFP protein to micro-dystrophin transgenic mice successfully restored sarcolemmal nNOS without inducing T cell infiltration. More importantly, R16/17 protein therapy effectively prevented treadmill challenge-induced force loss and improved muscle perfusion during contraction. Conclusions Our results suggest that R16/17 protein delivery is a highly promising therapy for muscle diseases involving sarcolemmal nNOS delocalizaton. Electronic supplementary material The online version of this article (10.1186/s10020-019-0101-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Hsiao Tung Yang
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Lakmini Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA. .,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA.
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
16
|
Kobayashi J, Uchida H, Kofuji A, Ito J, Shimizu M, Kim H, Sekiguchi Y, Kushibe S. Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: A review. FASEB Bioadv 2019; 1:364-374. [PMID: 32123839 PMCID: PMC6996321 DOI: 10.1096/fba.2018-00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
A variety of internal and external factors such as exercise, nutrition, inflammation, and cancer-associated cachexia affect the regulation of skeletal muscle mass. Because skeletal muscle functions as a crucial regulator of whole body metabolism, rather than just as a motor for locomotion, the enhancement and maintenance of muscle mass and function are required to maintain health and reduce the morbidity and mortality associated with diseases involving muscle wasting. Recent studies in this field have made tremendous progress; therefore, identification of the mechanisms that regulate skeletal muscle mass is necessary for the physical and nutritional management of both athletes and patients with muscle wasting disease. In this review, we present an overall picture of the interactions regulating skeletal muscle mass, particularly focusing on the insulin-like growth factor-I (IGF-I)/insulin-Akt-mammalian target of rapamycin (mTOR) pathway, skeletal muscle inactivity, and endurance and resistance exercise. We also discuss the contribution of nitric oxide (NO) to the regulation of skeletal muscle mass based on the current knowledge of the novel role of NO in these processes.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hiroyuki Uchida
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Ayaka Kofuji
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Junta Ito
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Maki Shimizu
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hyounju Kim
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Yusuke Sekiguchi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Seiji Kushibe
- Department of Management, Faculty of ManagementJosai UniversitySaitamaJapan
| |
Collapse
|
17
|
Watanabe D, Aibara C, Wada M. Treatment with EUK-134 improves sarcoplasmic reticulum Ca2+ release but not myofibrillar Ca2+ sensitivity after fatiguing contraction of rat fast-twitch muscle. Am J Physiol Regul Integr Comp Physiol 2019; 316:R543-R551. [DOI: 10.1152/ajpregu.00387.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscles undergoing vigorous activity can enter a state of prolonged low-frequency force depression (PLFFD). This study was conducted to examine whether antioxidant treatment is capable of accelerating the recovery from PLFFD, with a focus on the function of the sarcoplasmic reticulum (SR) and myofibril. One hour before fatiguing stimulation (FS) was administered, rats received an intraperitoneal injection of Eukarion (EUK-134), which mimics the activities of superoxide dismutase and catalase. Intact muscles of the hindlimbs were electrically stimulated via the sciatic nerve until the force was reduced to ~50% of the initial force (FS). Thirty minutes after cessation of FS, the superficial regions of gastrocnemius muscles were dissected and used for biochemical and skinned-fiber analyses. Whole muscle analyses revealed that antioxidant alleviated the FS-induced decrease in the reduced glutathione content. Skinned-fiber analyses showed that the antioxidant did not affect the FS-induced decrease in the ratio of force at 1 Hz to that at 50 Hz. However, the antioxidant partially inhibited the FS-mediated decrease in the ratio of depolarization-induced force to the maximum Ca2+-activated force. Furthermore, the antioxidant completely suppressed the FS-induced increase in myofibrillar Ca2+ sensitivity. These results suggest that antioxidant treatment is ineffective in facilitating the restoration of PLFFD, probably due to its negative effect on myofibrillar Ca2+ sensitivity, which supersedes its positive effect on SR Ca2+ release.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Engineering Science, University of Electro-Communication, Tokyo, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Balke JE, Zhang L, Percival JM. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide 2018; 82:35-47. [PMID: 30503614 DOI: 10.1016/j.niox.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Defects in neuronal nitric oxide synthase (nNOS) splice variant localization and signaling in skeletal muscle are a firmly established pathogenic characteristic of many neuromuscular diseases, including Duchenne and Becker muscular dystrophy (DMD and BMD, respectively). Therefore, substantial efforts have been made to understand and therapeutically target skeletal muscle nNOS isoform signaling. The purpose of this review is to summarize recent salient advances in understanding of the regulation, targeting, and function of nNOSμ and nNOSβ splice variants in normal and dystrophic skeletal muscle, primarily using findings from mouse models. The first focus of this review is how the differential targeting of nNOS splice variants creates spatially and functionally distinct nitric oxide (NO) signaling compartments at the sarcolemma, Golgi complex, and cytoplasm. Particular attention is given to the functions of sarcolemmal nNOSμ and limitations of current nNOS knockout models. The second major focus is to review current understanding of cGMP-mediated nNOS signaling in skeletal muscle and its emergence as a therapeutic target in DMD and BMD. Accordingly, we address the preclinical and clinical successes and setbacks with the testing of phosphodiesterase 5 inhibitors to redress nNOS signaling defects in DMD and BMD. In summary, this review of nNOS function in normal and dystrophic muscle aims to advance understanding how the messenger NO is harnessed for cellular signaling from a skeletal muscle perspective.
Collapse
Affiliation(s)
- Jordan E Balke
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Ling Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA.
| |
Collapse
|
19
|
Patel A, Zhao J, Yue Y, Zhang K, Duan D, Lai Y. Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSμ. Skelet Muscle 2018; 8:36. [PMID: 30466494 PMCID: PMC6251231 DOI: 10.1186/s13395-018-0182-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background Loss of sarcolemmal nNOSμ is a common manifestation in a wide variety of muscle diseases and contributes to the dysregulation of multiple muscle activities. Given the critical role sarcolemmal nNOSμ plays in muscle, restoration of sarcolemmal nNOSμ should be considered as an important therapeutic goal. Methods nNOSμ is anchored to the sarcolemma by dystrophin spectrin-like repeats 16 and 17 (R16/17) and the syntrophin PDZ domain (Syn PDZ). To develop a strategy that can independently restore sarcolemmal nNOSμ, we engineered an R16/17-Syn PDZ fusion construct and tested whether this construct alone is sufficient to anchor nNOSμ to the sarcolemma in three different mouse models of Duchenne muscular dystrophy (DMD). Results Membrane-associated nNOSμ is completely lost in DMD. Adeno-associated virus (AAV)-mediated delivery of the R16/17-Syn PDZ fusion construct successfully restored sarcolemmal nNOSμ in all three models. Further, nNOS restoration was independent of the dystrophin-associated protein complex. Conclusions Our results suggest that the R16/17-Syn PDZ fusion construct is sufficient to restore sarcolemmal nNOSμ in the dystrophin-null muscle. Electronic supplementary material The online version of this article (10.1186/s13395-018-0182-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aman Patel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Junling Zhao
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA. .,Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA.
| | - Yi Lai
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Medical Sciences Building, One Hospital Drive, Columbia, MO, 65212, USA.
| |
Collapse
|
20
|
Lechado I Terradas A, Vitadello M, Traini L, Namuduri AV, Gastaldello S, Gorza L. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy. J Pathol 2018; 246:433-446. [PMID: 30066461 DOI: 10.1002/path.5149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/28/2018] [Accepted: 07/27/2018] [Indexed: 01/08/2023]
Abstract
Skeletal muscle atrophy following unloading or immobilization represents a major invalidating event in bedridden patients. Among mechanisms involved in atrophy development, a controversial role is played by neuronal NOS (nNOS; NOS1), whose dysregulation at the protein level and/or subcellular distribution also characterizes other neuromuscular disorders. This study aimed to investigate unloading-induced changes in nNOS before any evidence of myofiber atrophy, using vastus lateralis biopsies obtained from young healthy subjects after a short bed-rest and rat soleus muscles after exposure to short unloading periods. Our results showed that (1) changes in nNOS subcellular distribution using NADPH-diaphorase histochemistry to detect enzyme activity were observed earlier than using immunofluorescence to visualize the protein; (2) loss of active nNOS from the physiological subsarcolemmal localization occurred before myofiber atrophy, i.e. in 8-day bed-rest biopsies and in 6 h-unloaded rat soleus, and was accompanied by increased nNOS activity in the sarcoplasm; (3) nNOS (Nos1) transcript and protein levels decreased significantly in the rat soleus after 6 h and 1 day unloading, respectively, to return to ambulatory levels after 4 and 7 days of unloading, respectively; (4) unloading-induced nNOS redistribution appeared dependent on mitochondrial-derived oxidant species, indirectly measured by tropomyosin disulfide bonds which had increased significantly in the rat soleus already after a 6 h-unloading bout; (5) activity of displaced nNOS molecules is required for translocation of the FoxO3 transcription factor to myofiber nuclei. FoxO3 nuclear localization in rat soleus increased after 6 h unloading (about four-fold the ambulatory level), whereas it did not when nNOS expression and activity were inhibited in vivo before and during 6 h unloading. In conclusion, this study demonstrates that the redistribution of active nNOS molecules from sarcolemma to sarcoplasm not only is ahead of the atrophy of unloaded myofibers, and is induced by increased production of mitochondrial superoxide anion, but also drives FoxO3 activation to initiate muscle atrophy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - Leonardo Traini
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Stefano Gastaldello
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.,Precision Medicine Research Center (Department), Binzhou Medical University, Shandong Province, Yantai, PR China
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
21
|
A review of interventions against fetal alcohol spectrum disorder targeting oxidative stress. Int J Dev Neurosci 2018; 71:140-145. [PMID: 30205148 DOI: 10.1016/j.ijdevneu.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 09/01/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fetal alcohol spectrum disorder is caused by maternal ethanol exposure; it causes physical, behavioral, cognitive, and neural impairments (Murawski et al., 2015). Mechanisms of FASD causing damage are not yet fully elucidated. Oxidative stress might be one of its mechanisms (Henderson et al., 1995). Yet no effective treatment against FASD has been found other than ethanol abstention (Long et al., 2010). METHODS This review summarizes relevant literatures regarding interventions targeting oxidative stress that may relieve fetal alcohol spectrum disorder. RESULTS Astaxanthin was found to mitigate embryonic growth retardation induced by prenatal ethanol treatment through ameliorating the down regulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) caused by alcohol in a mice model (Zheng et al., 2014; Vabulas et al., 2002). Vitamin E protected against fatal alchol spectrum disorders by ameliorating oxidative stress in rat models (Mitchell et al., 1999a), and yielded a better outcome when it was combined with Vitamin C (Packer et al., 1979; Peng et al., 2005). Vitamin C mitigated embryonic retardation caused by alcohol and reversed ethanol induced NF-κB activation and ROS (reactive oxygen species) formation in a Xenopus laevis model (Peng et al., 2005). Beta carotene supplement was proved to protect against neurotoxicity in hippocampal cultures of embryos induced by alcohol in a rats model (Mitchell et al., 1999a). Prenatal folic acid supplement reversed the decrease of body weight caused by maternal ethanol treatment and ameliorated the increment of glutathione reductase specific activities as well as the increase of thiobarbituric acid reactive substances (TBARS) induced by alcohol in a rats model (Cano et al., 2001). Omega-3 fatty acids reversed the decrease of reduced glutathione (GSH) levels in brain caused by prenatal ethanol treatment in a rats model (Patten et al., 2013). EUK-134 treatment reduced the incidence of forelimb defects caused by ethanol treatment in a mice model (Chen et al., 2004). Pretreatment of activity-dependent neurotrophic factor-9 (ADNF-9) and NAPVSIPQ (NAP) protected against prenatal ethanol induced fetal death as well as fetal growth abnormalities in a mice model, and such treatment reversed the decrease of the rate of reduced glutathione (GSH)/ oxidative glutathione (GSSG) caused by alcohol (Spong et al., 2001). CONCLUSION By now interventions against fetal alcohol spectrum disorder targeting oxidative stress includes astaxanthin, Ascorbic acid (Vitamin C), Vitamin E, beta-carotene, (-)-Epigallocatechin-3-gallate (EGCG), Omega-3 fatty acids, etc (see Fig. 1). However, most interventions are only assayed in animal models, more clinical trials are needed to show whether antioxidants make an effort against FASD damage.
Collapse
|
22
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
23
|
Kuczmarski JM, Hord JM, Lee Y, Guzzoni V, Rodriguez D, Lawler MS, Garcia-Villatoro EL, Holly D, Ryan P, Falcon K, Garcia M, Janini Gomes M, Fluckey JD, Lawler JM. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading. Exp Physiol 2018; 103:545-558. [PMID: 29315934 DOI: 10.1113/ep086649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Translocation of nNOSμ initiates catabolic signalling via FoxO3a and skeletal muscle atrophy during mechanical unloading. Recent evidence suggests that unloading-induced muscle atrophy and FoxO3a activation are redox sensitive. Will a mimetic of superoxide dismutase and catalase (i.e. Eukarion-134) also mitigate suppression of the Akt-mTOR pathway? What is the main finding and its importance? Eukarion-134 rescued Akt-mTOR signalling and sarcolemmal nNOSμ, which were linked to protection against the unloading phenotype, muscle fibre atrophy and partial fibre-type shift from slow to fast twitch. The loss of nNOSμ from the sarcolemma appears crucial to Akt phosphorylation and is redox sensitive, although the mechanisms remain unresolved. ABSTRACT Mechanical unloading stimulates rapid changes in skeletal muscle morphology, characterized by atrophy of muscle fibre cross-sectional area and a partial fibre-type shift from slow to fast twitch. Recent studies revealed that oxidative stress contributes to activation of forkhead box O3a (FoxO3a), proteolytic signalling and unloading-induced muscle atrophy via translocation of the μ-splice variant of neuronal nitric oxide synthase (nNOSμ) and activation of FoxO3a. There is limited understanding of the role of reactive oxygen species in the Akt-mammalian target of rapamycin (mTOR) pathway signalling during unloading. We hypothesized that Eukarion-134 (EUK-134), a mimetic of the antioxidant enzymes superoxide dismutase and catalase, would protect Akt-mTOR signalling in the unloaded rat soleus. Male Fischer 344 rats were separated into the following three study groups: ambulatory control (n = 11); 7 days of hindlimb unloading + saline injections (HU, n = 11); or 7 days of HU + EUK-134; (HU + EUK-134, n = 9). EUK-134 mitigated unloading-induced dephosphorylation of Akt, as well as FoxO3a, in the soleus. Phosphorylation of mTOR in the EUK-treated HU rats was not different from that in control animals. However, EUK-134 did not significantly rescue p70S6K phosphorylation. EUK-134 attenuated translocation of nNOSμ from the membrane to the cytosol, reduced nitration of tyrosine residues and suppressed upregulation of caveolin-3 and dysferlin. EUK-134 ameliorated HU-induced remodelling, atrophy of muscle fibres and the 12% increase in type II myosin heavy chain-positive fibres. Attenuation of the unloaded muscle phenotype was associated with decreased reactive oxygen species, as assessed by ethidium-positive nuclei. We conclude that oxidative stress affects Akt-mTOR signalling in unloaded skeletal muscle. Direct linkage of abrogation of nNOSμ translocation with Akt-mTOR signalling during unloading is the subject of future investigation.
Collapse
Affiliation(s)
- J Matthew Kuczmarski
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Jeff M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Yang Lee
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Vinicius Guzzoni
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Laboratory of Biochemistry and Molecular Biology, Department of Physiological Science, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Dinah Rodriguez
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Matthew S Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Biomedical Engineering, Georgia Tech University, Atlanta, GA, USA
| | - Erika L Garcia-Villatoro
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Dylan Holly
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Patrick Ryan
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Kristian Falcon
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Marcela Garcia
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Mariana Janini Gomes
- Physiopathology Program in Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter II - Abstracts of March 15, 2018. Eur J Transl Myol 2018; 28:7364. [PMID: 30057726 PMCID: PMC6047880 DOI: 10.4081/ejtm.2018.7364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/03/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the "Giovanni Salviati Memorial", was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni "will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do". Since Giovanni's friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. In this chapter II are listed the abstracts of the March 15, 2018 Padua Muscle Day. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova
- A&C M-C Foundation for Translational Myology, Padova
- IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
25
|
Yamada T, Steinz MM, Kenne E, Lanner JT. Muscle Weakness in Rheumatoid Arthritis: The Role of Ca 2+ and Free Radical Signaling. EBioMedicine 2017; 23:12-19. [PMID: 28781131 PMCID: PMC5605300 DOI: 10.1016/j.ebiom.2017.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
In addition to the primary symptoms arising from inflammatory processes in the joints, muscle weakness is commonly reported by patients with rheumatoid arthritis (RA). Muscle weakness not only reduces the quality of life for the affected patients, but also dramatically increases the burden on society since patients' work ability decreases. A 25–70% reduction in muscular strength has been observed in pateints with RA when compared with age-matched healthy controls. The reduction in muscle strength is often larger than what could be explained by the reduction in muscle size in patients with RA, which indicates that intracellular (intrinsic) muscle dysfunction plays an important role in the underlying mechanism of muscle weakness associated with RA. In this review, we highlight the present understanding of RA-associated muscle weakness with special focus on how enhanced Ca2 + release from the ryanodine receptor and free radicals (reactive oxygen/nitrogen species) contributes to muscle weakness, and recent developments of novel therapeutic interventions. Muscle weakness is commonly reported by patients with rheumatoid arthritis (RA). Intrinsic muscle weakness is important in the underlying mechanisms of muscle weakness associated with rheumatoid arthritis. Enhanced Ca2 + release and peroxynitrite-induced stress contributes to RA-induced muscle weakness.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Maarten M Steinz
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner JT, Yamada T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS One 2017; 12:e0169146. [PMID: 28152009 PMCID: PMC5289453 DOI: 10.1371/journal.pone.0169146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Patients with pulmonary hypertension (PH) suffer from inspiratory insufficiency, which has been associated with intrinsic contractile dysfunction in diaphragm muscle. Here, we examined the role of redox stress in PH-induced diaphragm weakness by using the novel antioxidant, EUK-134. Male Wistar rats were randomly divided into control (CNT), CNT + EUK-134 (CNT + EUK), monocrotaline-induced PH (PH), and PH + EUK groups. PH was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg body weight). EUK-134 (3 mg/kg body weight/day), a cell permeable mimetic of superoxide dismutase (SOD) and catalase, was daily intraperitoneally administered starting one day after induction of PH. After four weeks, diaphragm muscles were excised for mechanical and biochemical analyses. There was a decrease in specific tetanic force in diaphragm bundles from the PH group, which was accompanied by increases in: protein expression of NADPH oxidase 2/gp91phox, SOD2, and catalase; 3-nitrotyrosine content and aggregation of actin; glutathione oxidation. Treatment with EUK-134 prevented the force decrease and the actin modifications in PH diaphragm bundles. These data show that redox stress plays a pivotal role in PH-induced diaphragm weakness. Thus, antioxidant treatment can be a promising strategy for PH patients with inspiratory failure.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Jaesik Lee
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
27
|
Chang H, Jiang SF, Dang K, Wang HP, Xu SH, Gao YF. iTRAQ-based proteomic analysis of myofibrillar contents and relevant synthesis and proteolytic proteins in soleus muscle of hibernating Daurian ground squirrels ( Spermophilus dauricus). Proteome Sci 2016; 14:16. [PMID: 27833457 PMCID: PMC5101720 DOI: 10.1186/s12953-016-0105-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Daurian ground squirrels (Spermophilus dauricus) deviate from significant increase of protein catabolism and loss of myofibrillar contents during long period of hibernation inactivity. METHODS Here we use iTRAQ based quantitative analysis to examine proteomic changes in the soleus of squirrels in pre-hibernation, hibernation and post-hibernation states. The total proteolysis rate of soleus was measured by the release of the essential amino acid tyrosine from isolated muscles. Immunofluorescent analysis was used to determine muscle fiber cross-sectional area. Western blot was used for the validation of the quantitative proteomic analysis. RESULTS The proteomic responses to hibernation had a 0.4- to 0.8-fold decrease in the myofibrillar contractile protein levels of myosin-3, myosin-13 and actin, but a 2.1-fold increase in myosin-2 compared to pre-hibernation group. Regulatory proteins such as troponin C and tropomodulin-1 were 1.4-fold up-regulated and 0.7-fold down-regulated, respectively, in hibernation compared to pre-hibernation group. Moreover, 10 proteins with proteolytic function in hibernation, which was less than 14 proteins in the post-hibernation group, were up-regulated relative to the pre-hibernation group. The total proteolysis rates of soleus in hibernation and post-hibernation groups were significantly inhibited as compared with pre-hibernation group. CONCLUSION These findings suggest that the myofibrillar remodeling and partial suppression of myofibrillar proteolysis were likely responsible for preventing skeletal muscle atrophy during prolonged disuse in hibernation. This is the first study where the myofibrillar contents and relevant synthesis and proteolytic proteins in slow soleus was discussed based on proteomic investigation performed on wild Daurian ground squirrels. Our results lay the foundation for further research in preventing disuse-induced skeletal muscle atrophy in mammals.
Collapse
Affiliation(s)
- Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, 710069 People’s Republic of China
| | - Shan-Feng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
| | - Kai Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
| | - Hui-Ping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
| | - Shen-Hui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
| | - Yun-Fang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an, 710069 People’s Republic of China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an, 710069 People’s Republic of China
| |
Collapse
|
28
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
29
|
Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 2016; 98:197-207. [PMID: 26744239 DOI: 10.1016/j.freeradbiomed.2015.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
In the literature, the terms physical inactivity and immobilization are largely used as synonyms. The present review emphasizes the need to establish a clear distinction between these two situations. Physical inactivity is a behavior characterized by a lack of physical activity, whereas immobilization is a deprivation of movement for medical purpose. In agreement with these definitions, appropriate models exist to study either physical inactivity or immobilization, leading thereby to distinct conclusions. In this review, we examine the involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, respectively, physical inactivity and immobilization. A large body of evidence demonstrates that immobilization-induced atrophy depends on the chronic overproduction of reactive oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in physical inactivity-induced insulin resistance has not been investigated. This observation outlines the need to elucidate the mechanism by which physical inactivity promotes insulin resistance.
Collapse
Affiliation(s)
- Nicolas Pierre
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Zephyra Appriou
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Arlette Gratas-Delamarche
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France.
| |
Collapse
|
30
|
Powers SK, Morton AB, Ahn B, Smuder AJ. Redox control of skeletal muscle atrophy. Free Radic Biol Med 2016; 98:208-217. [PMID: 26912035 PMCID: PMC5006677 DOI: 10.1016/j.freeradbiomed.2016.02.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
Skeletal muscles comprise the largest organ system in the body and play an essential role in body movement, breathing, and glucose homeostasis. Skeletal muscle is also an important endocrine organ that contributes to the health of numerous body organs. Therefore, maintaining healthy skeletal muscles is important to support overall health of the body. Prolonged periods of muscle inactivity (e.g., bed rest or limb immobilization) or chronic inflammatory diseases (i.e., cancer, kidney failure, etc.) result in skeletal muscle atrophy. An excessive loss of muscle mass is associated with a poor prognosis in several diseases and significant muscle weakness impairs the quality of life. The skeletal muscle atrophy that occurs in response to inflammatory diseases or prolonged inactivity is often associated with both oxidative and nitrosative stress. In this report, we critically review the experimental evidence that provides support for a causative link between oxidants and muscle atrophy. More specifically, this review will debate the sources of oxidant production in skeletal muscle undergoing atrophy as well as provide a detailed discussion on how reactive oxygen species and reactive nitrogen species modulate the signaling pathways that regulate both protein synthesis and protein breakdown.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States.
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
31
|
Hord JM, Botchlett R, Lawler JM. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise. Exp Gerontol 2016; 83:148-57. [PMID: 27534381 DOI: 10.1016/j.exger.2016.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, College of Education and Human Development, Texas A&M University, College Station, TX, United States
| | - Rachel Botchlett
- Department of Nutrition & Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - John M Lawler
- Redox Biology & Cell Signaling Laboratory, Department of Health and Kinesiology, College of Education and Human Development, Texas A&M University, College Station, TX, United States; Department of Nutrition & Food Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
32
|
Rebolledo DL, Kim MJ, Whitehead NP, Adams ME, Froehner SC. Sarcolemmal targeting of nNOSμ improves contractile function of mdx muscle. Hum Mol Genet 2015; 25:158-66. [PMID: 26604149 DOI: 10.1093/hmg/ddv466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a key regulator of skeletal muscle function and metabolism, including vasoregulation, mitochondrial function, glucose uptake, fatigue and excitation-contraction coupling. The main generator of NO in skeletal muscle is the muscle-specific form of neuronal nitric oxide synthase (nNOSμ) produced by the NOS1 gene. Skeletal muscle nNOSμ is predominantly localized at the sarcolemma by interaction with the dystrophin protein complex (DPC). In Duchenne muscular dystrophy (DMD), loss of dystrophin leads to the mislocalization of nNOSμ from the sarcolemma to the cytosol. This perturbation has been shown to impair contractile function and cause muscle fatigue in dystrophic (mdx) mice. Here, we investigated the effect of restoring sarcolemmal nNOSμ on muscle contractile function in mdx mice. To achieve this, we designed a modified form of nNOSμ (NOS-M) that is targeted to the sarcolemma by palmitoylation, even in the absence of the DPC. When expressed specifically in mdx skeletal muscle, NOS-M significantly attenuates force loss owing to damaging eccentric contractions and repetitive isometric contractions (fatigue), while also improving force recovery after fatigue. Expression of unmodified nNOSμ at similar levels does not lead to sarcolemmal association and fails to improve muscle function. Aside from the benefits of sarcolemmal-localized NO production, NOS-M also increased the surface membrane levels of utrophin and other DPC proteins, including β-dystroglycan, α-syntrophin and α-dystrobrevin in mdx muscle. These results suggest that the expression of NOS-M in skeletal muscle may be therapeutically beneficial in DMD and other muscle diseases characterized by the loss of nNOSμ from the sarcolemma.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Min Jeong Kim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Nicholas P Whitehead
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA and
| |
Collapse
|
33
|
Salaun E, Lefeuvre-Orfila L, Cavey T, Martin B, Turlin B, Ropert M, Loreal O, Derbré F. Myriocin prevents muscle ceramide accumulation but not muscle fiber atrophy during short-term mechanical unloading. J Appl Physiol (1985) 2015; 120:178-87. [PMID: 26542521 DOI: 10.1152/japplphysiol.00720.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/04/2015] [Indexed: 01/24/2023] Open
Abstract
Bedridden patients in intensive care unit or after surgery intervention commonly develop skeletal muscle weakness. The latter is promoted by a variety of prolonged hospitalization-associated conditions. Muscle disuse is the most ubiquitous and contributes to rapid skeletal muscle atrophy and progressive functional strength reduction. Disuse causes a reduction in fatty acid oxidation, leading to its accumulation in skeletal muscle. We hypothesized that muscle fatty acid accumulation could stimulate ceramide synthesis and promote skeletal muscle weakness. Therefore, the present study was designed to determine the effects of sphingolipid metabolism on skeletal muscle atrophy induced by 7 days of disuse. For this purpose, male Wistar rats were treated with myriocin, an inhibitor of de novo synthesis of ceramides, and subjected to hindlimb unloading (HU) for 7 days. Soleus muscles were assayed for fiber diameter, ceramide levels, protein degradation, and apoptosis signaling. Serum and liver were removed to evaluate the potential hepatoxicity of myriocin treatment. We found that HU increases content of saturated C16:0 and C18:0 ceramides and decreases soleus muscle weight and fiber diameter. HU increased the level of polyubiquitinated proteins and induced apoptosis in skeletal muscle. Despite a prevention of C16:0 and C18:0 muscle accumulation, myriocin treatment did not prevent skeletal muscle atrophy and concomitant induction of apoptosis and proteolysis. Moreover, myriocin treatment increased serum transaminases and induced hepatocyte necrosis. These data highlight that inhibition of de novo synthesis of ceramides during immobilization is not an efficient strategy to prevent skeletal muscle atrophy and exerts adverse effects like hepatotoxicity.
Collapse
Affiliation(s)
- Erwann Salaun
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Thibault Cavey
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Brice Martin
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France
| | - Bruno Turlin
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Department of Pathology, University Hospital Pontchaillou, Rennes, France
| | - Martine Ropert
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France; Laboratory of Biochemistry, University Hospital Pontchaillou, Rennes, France
| | - Olivier Loreal
- INSERM UMR 991, Iron and the Liver Team Rennes, Faculty of Medicine, University of Rennes 1, Rennes, France
| | - Frédéric Derbré
- Laboratory "Movement Sport and Health Sciences," University Rennes 2-ENS Rennes, Bruz, France;
| |
Collapse
|
34
|
Shenkman BS, Nemirovskaya TL, Lomonosova YN. No-dependent signaling pathways in unloaded skeletal muscle. Front Physiol 2015; 6:298. [PMID: 26582991 PMCID: PMC4628111 DOI: 10.3389/fphys.2015.00298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/09/2015] [Indexed: 01/22/2023] Open
Abstract
The main focus of the current review is the nitric oxide (NO)-mediated signaling mechanism in unloaded skeletal. Review of the published data describing muscles during physical activity and inactivity demonstrates that NO is an essential trigger of signaling processes, which leads to structural and metabolic changes of the muscle fibers. The experiments with modulation of NO-synthase (NOS) activity during muscle unloading demonstrate the ability of an activated enzyme to stabilize degradation processes and prevent development of muscle atrophy. Various forms of muscle mechanical activity, i.e., plantar afferent stimulation, resistive exercise and passive chronic stretch increase the content of neural NOS (nNOS) and thus may facilitate an increase in NO production. Recent studies demonstrate that NO-synthase participates in the regulation of protein and energy metabolism in skeletal muscle by fine-tuning and stabilizing complex signaling systems which regulate protein synthesis and degradation in the fibers of inactive muscle.
Collapse
Affiliation(s)
- Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Fundamental Medicine, Lomonosov Moscow State University Moscow, Russia
| | - Yulia N Lomonosova
- Institute of Biomedical Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
35
|
Yamada T, Abe M, Lee J, Tatebayashi D, Himori K, Kanzaki K, Wada M, Bruton JD, Westerblad H, Lanner JT. Muscle dysfunction associated with adjuvant-induced arthritis is prevented by antioxidant treatment. Skelet Muscle 2015; 5:20. [PMID: 26161253 PMCID: PMC4496877 DOI: 10.1186/s13395-015-0045-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background In addition to the primary symptoms arising from inflamed joints, muscle weakness is prominent and frequent in patients with rheumatoid arthritis (RA). Here, we investigated the mechanisms of arthritis-induced muscle dysfunction in rats with adjuvant-induced arthritis (AIA). Methods AIA was induced in the knees of rats by injection of complete Freund’s adjuvant and was allowed to develop for 21 days. Muscle contractile function was assessed in isolated extensor digitorum longus (EDL) muscles. To assess mechanisms underlying contractile dysfunction, we measured redox modifications, redox enzymes and inflammatory mediators, and activity of actomyosin ATPase and sarcoplasmic reticulum (SR) Ca2+-ATPase. Results EDL muscles from AIA rats showed decreased tetanic force per cross-sectional area and slowed twitch contraction and relaxation. These contractile dysfunctions in AIA muscles were accompanied by marked decreases in actomyosin ATPase and SR Ca2+-ATPase activities. Actin aggregates were observed in AIA muscles, and these contained high levels of 3-nitrotyrosine and malondialdehyde-protein adducts. AIA muscles showed increased protein expression of NADPH oxidase 2/gp91phox, neuronal nitric oxide synthase, tumor necrosis factor α (TNF-α), and high-mobility group box 1 (HMGB1). Treatment of AIA rats with EUK-134 (3 mg/kg/day), a superoxide dismutase/catalase mimetic, prevented both the decrease in tetanic force and the formation of actin aggregates in EDL muscles without having any beneficial effect on the arthritis development. Conclusions Antioxidant treatment prevented the development of oxidant-induced actin aggregates and contractile dysfunction in the skeletal muscle of AIA rats. This implies that antioxidant treatment can be used to effectively counteract muscle weakness in inflammatory conditions.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Masami Abe
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Jaesik Lee
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, South 1 West 17, Chuo-ku, 060-8556, Sapporo Japan
| | - Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1, Higashi, Hiroshima Japan
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
36
|
Dyakova EY, Kapilevich LV, Shylko VG, Popov SV, Anfinogenova Y. Physical exercise associated with NO production: signaling pathways and significance in health and disease. Front Cell Dev Biol 2015; 3:19. [PMID: 25883934 PMCID: PMC4382985 DOI: 10.3389/fcell.2015.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/07/2015] [Indexed: 12/20/2022] Open
Abstract
Here we review available data on nitric oxide (NO)-mediated signaling in skeletal muscle during physical exercise. Nitric oxide modulates skeletal myocyte function, hormone regulation, and local microcirculation. Nitric oxide underlies the therapeutic effects of physical activity whereas the pharmacological modulators of NO-mediated signaling are the promising therapeutic agents in different diseases. Nitric oxide production increases in skeletal muscle in response to physical activity. This molecule can alter energy supply in skeletal muscle through hormonal modulation. Mitochondria in skeletal muscle tissue are highly abundant and play a pivotal role in metabolism. Considering NO a plausible regulator of mitochondrial biogenesis that directly affects cellular respiration, we discuss the mechanisms of NO-induced mitochondrial biogenesis in the skeletal muscle cells. We also review available data on myokines, the molecules that are expressed and released by the muscle fibers and exert autocrine, paracrine and/or endocrine effects. The article suggests the presence of putative interplay between NO-mediated signaling and myokines in skeletal muscle. Data demonstrate an important role of NO in various diseases and suggest that physical training may improve health of patients with diabetes, chronic heart failure, and even degenerative muscle diseases. We conclude that NO-associated signaling represents a promising target for the treatment of various diseases and for the achievement of better athletic performance.
Collapse
Affiliation(s)
- Elena Y Dyakova
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia
| | - Leonid V Kapilevich
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia ; Institute of Physics and Technology, National Research Tomsk Polytechnic University Tomsk, Russia
| | - Victor G Shylko
- Department of Sporting Health Tourism, Physiology, and Medicine, National Research Tomsk State University Tomsk, Russia
| | - Sergey V Popov
- Federal State Budgetary Scientific Institution "Research Institute for Cardiology," Tomsk, Russia
| | - Yana Anfinogenova
- Institute of Physics and Technology, National Research Tomsk Polytechnic University Tomsk, Russia ; Federal State Budgetary Scientific Institution "Research Institute for Cardiology," Tomsk, Russia
| |
Collapse
|
37
|
Preservation of renal blood flow by the antioxidant EUK-134 in LPS-treated pigs. Int J Mol Sci 2015; 16:6801-17. [PMID: 25815596 PMCID: PMC4424988 DOI: 10.3390/ijms16046801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
Sepsis is associated with an increase in reactive oxygen species (ROS), however, the precise role of ROS in the septic process remains unknown. We hypothesized that treatment with EUK-134 (manganese-3-methoxy N,N'-bis(salicyclidene)ethylene-diamine chloride), a compound with superoxide dismutase and catalase activity, attenuates the vascular manifestations of sepsis in vivo. Pigs were instrumented to measure cardiac output and blood flow in renal, superior mesenteric and femoral arteries, and portal vein. Animals were treated with saline (control), lipopolysaccharide (LPS; 10 µg·kg-1·h-1), EUK-134, or EUK-134 plus LPS. Results show that an LPS-induced increase in pulmonary artery pressure (PAP) as well as a trend towards lower blood pressure (BP) were both attenuated by EUK-134. Renal blood flow decreased with LPS whereas superior mesenteric, portal and femoral flows did not change. Importantly, EUK-134 decreased the LPS-induced fall in renal blood flow and this was associated with a corresponding decrease in LPS-induced protein nitrotyrosinylation in the kidney. PO2, pH, base excess and systemic vascular resistance fell with LPS and were unaltered by EUK-134. EUK-134 also had no effect on LPS-associated increase in CO. Interestingly, EUK-134 alone resulted in higher CO, BP, PAP, mean circulatory filling pressure, and portal flow than controls. Taken together, these data support a protective role for EUK-134 in the renal circulation in sepsis.
Collapse
|
38
|
Kim DS, Cha HN, Jo HJ, Song IH, Baek SH, Dan JM, Kim YW, Kim JY, Lee IK, Seo JS, Park SY. TLR2 deficiency attenuates skeletal muscle atrophy in mice. Biochem Biophys Res Commun 2015; 459:534-40. [PMID: 25749338 DOI: 10.1016/j.bbrc.2015.02.144] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 12/25/2022]
Abstract
Oxidative stress and inflammation are associated with skeletal muscle atrophy. Because the activation of toll-like receptor (TLR) 2 induces oxidative stress and inflammation, TLR2 may be directly linked to skeletal muscle atrophy. This study examined the role of TLR2 in skeletal muscle atrophy in wild-type (WT) and TLR2 knockout (KO) mice. Immobilization for 2 weeks increased the expression of cytokine genes and the levels of carbonylated proteins and nitrotyrosine in the skeletal muscle, but these increases were lower in the TLR2 KO mice. Muscle weight loss and a reduction in treadmill running times induced by immobilization were also attenuated in TLR2 KO mice. Furthermore, immobilization increased the protein levels of forkhead box O 1/3, atrogin-1 and muscle ring finger 1 in the WT mice, which was attenuated in TLR2 KO mice. In addition, immobilization-associated increases in ubiquitinated protein levels were lower in the TLR2 KO mice. Immobilization increased the phosphorylation of Akt and p70S6K similarly in WT and KO mice. Furthermore, cardiotoxin injection into the skeletal muscle increased the protein levels of atrogin-1, interleukin-6, and nitrotyrosine and increased the levels of ubiquitinated proteins, although these levels were increased to a lesser extent in TLR2 KO mice. These results suggest that TLR2 is involved in skeletal muscle atrophy, and the inhibition of TLR2 offers a potential target for preventing skeletal muscle atrophy.
Collapse
Affiliation(s)
- Dae-Sung Kim
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Hye Jun Jo
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Jin-Myoung Dan
- Department of Orthopedic Surgery, Gumi CHA University Hospital, Gumi 730-728, South Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University, Daegu 700-721, South Korea
| | - Jae-Sung Seo
- Department of Orthopedic Surgery, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, South Korea.
| |
Collapse
|