1
|
Okamoto Y, Otsuka J, Aoki M, Amano T. Transdermal iontophoretic application of l-NAME is available in sweating research induced by heat stress in young healthy adults. Nitric Oxide 2023; 138-139:96-103. [PMID: 37619814 DOI: 10.1016/j.niox.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Iontophoretic transdermal administration of NG-nitro-l-arginine methyl ester hydrochloride [l-NAME, a nitric oxide synthase (NOS) inhibitor] has been used as a non-invasive evaluation of NOS-dependent mechanisms in human skin. However, the availability has yet to be investigated in sweating research. Prior observations using invasive techniques (e.g., intradermal microdialysis technique) to administer l-NAME have implicated that NOS reduces sweating induced by heat stress but rarely influences the response induced by the administration of cholinergic muscarinic receptor agonists. Therefore, we investigated whether the transdermal iontophoretic administration of l-NAME modulates sweating similar to those prior observations. Twenty young healthy adults (10 males, 10 females) participated in two experimental protocols on separate days. Before each protocol, saline (control) and 1% l-NAME were bilaterally administered to the forearm skin via transdermal iontophoresis. In protocol 1, 0.001% and 1% pilocarpine were iontophoretically administered at l-NAME-treated and untreated sites. In protocol 2, passive heating was applied by immersing the lower limbs in hot water (43 °C) until the rectal temperature increased by 0.8 °C above baseline. The sweat rate was continuously measured throughout both protocols. Pilocarpine-induced sweat rate was not significantly different between the control and l-NAME-treated sites in both pilocarpine concentrations (P ≥ 0.316 for the treatment effect and interaction of treatment and pilocarpine concentration). The sweat rate during passive heating was attenuated at the l-NAME-treated site relative to the control (treatment effect, P = 0.020). Notably, these observations are consistent with prior sweating studies administrating l-NAME into human skin using intradermal microdialysis techniques. Based on the similarity of our results with already known observations, we conclude that transdermal iontophoresis of l-NAME is a valid non-invasive technique for the investigation of the mechanisms of sweating related to NOS during heat stress.
Collapse
Affiliation(s)
- Yumi Okamoto
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Junto Otsuka
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Mao Aoki
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| |
Collapse
|
2
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Daskalaki E, Parkinson A, Brew-Sam N, Hossain MZ, O'Neal D, Nolan CJ, Suominen H. The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey. J Med Internet Res 2022; 24:e28901. [PMID: 35394448 PMCID: PMC9034434 DOI: 10.2196/28901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless, noninvasive, and low-cost monitoring of multiple physiological parameters. Objective The objective of this literature survey is to explore whether some of the physiological parameters that can be monitored with noninvasive, wearable sensors may be used to enhance T1D management. Methods A list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the found relationships in studies working within T1D cohorts. Results On the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%) articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function, and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications, such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction. However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to using more conventional devices. Conclusions Wearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy, removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies to optimize the incorporation of these novel inputs into T1D interventions.
Collapse
Affiliation(s)
- Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Anne Parkinson
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Nicola Brew-Sam
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Md Zakir Hossain
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,School of Biology, College of Science, The Australian National University, Canberra, Australia.,Bioprediction Activity, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Christopher J Nolan
- Australian National University Medical School and John Curtin School of Medical Research, College of Health and Medicine, The Autralian National University, Canberra, Australia.,Department of Diabetes and Endocrinology, The Canberra Hospital, Canberra, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia.,Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Ikegami R, Eshima H, Nakajima T, Toyoda S, Poole DC, Kano Y. Type I diabetes suppresses intracellular calcium ion increase normally evoked by heat stress in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2021; 320:R384-R392. [PMID: 33407019 DOI: 10.1152/ajpregu.00168.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Heat stress, via its effects on muscle intracellular Ca2+ concentrations ([Ca2+]i), has been invoked as a putative therapeutic countermeasure to type 1 diabetes-induced muscle atrophy. Using a circulation- and neurally intact in vivo muscle preparation, we tested the hypothesis that impaired muscle Ca2+ homeostasis in type 1 diabetic rats is due to attenuated heat stress tolerance mediated via transient receptor potential vanilloid 1 (TRPV1). Male Wistar rats were randomly assigned to one of the following four groups: 1) healthy control 30°C (CONT 30°C); 2) CONT 40°C; 3) diabetes 30°C (DIA 30°C); and 4) DIA 40°C. The temperature of 40°C was selected because it exceeds the TRPV1 activation threshold. Spinotrapezius muscles of Wistar rats were exteriorized in vivo and loaded with the fluorescent Ca2+ probe Fura-2 AM. [Ca2+]i was estimated over 20 min using fluorescence microscopy (340/380 nm ratio) in quiescent muscle held at the required temperature, using a calibrated heat source applied to the ventral muscle surface. Western blotting was performed to determine the protein expression levels of TRPV1 in spinotrapezius muscle. After 20 min of heat stress, the CONT 40°C condition induced a 12.3 ± 5% [Ca2+]i (P < 0.05) elevation that was markedly absent in the DIA 40°C or other conditions. Thus, no significant differences were found among DIA 40°C, DIA 30°C, and CONT 30°C. TRPV1 protein expression was decreased by 42.0 ± 9% in DIA compared with CONT (P < 0.05) and, unlike CONT, heat stress did not increase TRPV1 phosphorylation. In conclusion, diabetes suppresses TRPV1 protein expression and function and inhibits the elevated myocyte [Ca2+]i evoked normally by heat stress. These results suggest that capsaicin or other therapeutic strategies to increase Ca2+ accumulation via TRPV1 might be more effective than hyperthermic therapy for type 1 diabetic patients.
Collapse
Affiliation(s)
- Ryo Ikegami
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Department of Health Science, Health Science University, Yamanashi, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University and Heart Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - David C Poole
- Departments of Anatomy, Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
5
|
Lespagnol E, Tagougui S, Fernandez BO, Zerimech F, Matran R, Maboudou P, Berthoin S, Descat A, Kim I, Pawlak-Chaouch M, Boissière J, Boulanger E, Feelisch M, Fontaine P, Heyman E. Circulating biomarkers of nitric oxide bioactivity and impaired muscle vasoreactivity to exercise in adults with uncomplicated type 1 diabetes. Diabetologia 2021; 64:325-338. [PMID: 33219433 DOI: 10.1007/s00125-020-05329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Early compromised endothelial function challenges the ability of individuals with type 1 diabetes to perform normal physical exercise. The exact mechanisms underlying this vascular limitation remain unknown, but may involve either formation or metabolism of nitric oxide (NO), a major vasodilator, whose activity is known to be compromised by oxidative stress. METHODS Muscle microvascular reactivity (near-infrared spectroscopy) to an incremental exhaustive bout of exercise was assessed in 22 adults with uncomplicated type 1 diabetes (HbA1c 64.5 ± 15.7 mmol/mol; 8.0 ± 1.4%) and in 21 healthy individuals (18-40 years of age). NO-related substrates/metabolites were also measured in the blood along with other vasoactive compounds and oxidative stress markers; measurements were taken at rest, at peak exercise and after 15 min of recovery. Demographic characteristics, body composition, smoking status and diet were comparable in both groups. RESULTS Maximal oxygen uptake was impaired in individuals with type 1 diabetes compared with in healthy participants (35.6 ± 7.7 vs 39.6 ± 6.8 ml min-1 kg-1, p < 0.01) despite comparable levels of habitual physical activity (moderate to vigorous physical activity by accelerometery, 234.9 ± 160.0 vs 280.1 ± 114.9 min/week). Compared with non-diabetic participants, individuals with type 1 diabetes also displayed a blunted exercise-induced vasoreactivity (muscle blood volume at peak exercise as reflected by ∆ total haemoglobin, 2.03 ± 5.82 vs 5.33 ± 5.54 μmol/l; interaction 'exercise' × 'group', p < 0.05); this was accompanied by lower K+ concentration (p < 0.05), reduced plasma L-arginine (p < 0.05)-in particular when HbA1c was high (mean estimation: -4.0, p < 0.05)-and lower plasma urate levels (p < 0.01). Nonetheless, exhaustive exercise did not worsen lipid peroxidation or other oxidative stress biomarkers, and erythrocytic enzymatic antioxidant resources were mobilised to a comparable extent in both groups. Nitrite and total nitrosation products, which are potential alternative NO sources, were similarly unaltered. Graphical abstract CONCLUSIONS/INTERPRETATION: Participants with uncomplicated type 1 diabetes displayed reduced availability of L-arginine, the essential substrate for enzymatic nitric oxide synthesis, as well as lower levels of the major plasma antioxidant, urate. Lower urate levels may reflect a defect in the activity of xanthine oxidase, an enzyme capable of producing NO from nitrite under hypoxic conditions. Thus, both canonical and non-canonical NO production may be reduced. However, neither of these changes exacerbated exercise-induced oxidative stress. TRIAL REGISTRATION clinicaltrials.gov NCT02051504.
Collapse
Affiliation(s)
- Elodie Lespagnol
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Sémah Tagougui
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Bernadette O Fernandez
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Farid Zerimech
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Régis Matran
- CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Université Lille, Lille, France
| | - Patrice Maboudou
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Serge Berthoin
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Amandine Descat
- CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, Université Lille, Lille, France
| | - Isabelle Kim
- CHU de Lille, Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Mehdi Pawlak-Chaouch
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Julien Boissière
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Eric Boulanger
- Inserm, CHU Lille, Pasteur Institute of Lille, U1167 - RID-AGE, Université Lille, Lille, France
| | - Martin Feelisch
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Pierre Fontaine
- Department of Diabetology, Lille University Hospital, EA 4489, Lille, France
| | - Elsa Heyman
- ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France.
| |
Collapse
|
6
|
Lespagnol E, Dauchet L, Pawlak-Chaouch M, Balestra C, Berthoin S, Feelisch M, Roustit M, Boissière J, Fontaine P, Heyman E. Early Endothelial Dysfunction in Type 1 Diabetes Is Accompanied by an Impairment of Vascular Smooth Muscle Function: A Meta-Analysis. Front Endocrinol (Lausanne) 2020; 11:203. [PMID: 32362871 PMCID: PMC7180178 DOI: 10.3389/fendo.2020.00203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background: A large yet heterogeneous body of literature exists suggesting that endothelial dysfunction appears early in type 1 diabetes, due to hyperglycemia-induced oxidative stress. The latter may also affect vascular smooth muscles (VSM) function, a layer albeit less frequently considered in that pathology. This meta-analysis aims at evaluating the extent, and the contributing risk factors, of early endothelial dysfunction, and of the possible concomitant VSM dysfunction, in type 1 diabetes. Methods: PubMed, Web of Sciences, Cochrane Library databases were screened from their respective inceptions until October 2019. We included studies comparing vasodilatory capacity depending or not on endothelium (i.e., endothelial function or VSM function, respectively) in patients with uncomplicated type 1 diabetes and healthy controls. Results: Fifty-eight articles studying endothelium-dependent function, among which 21 studies also assessed VSM, were included. Global analyses revealed an impairment of standardized mean difference (SMD) (Cohen's d) of endothelial function: -0.61 (95% CI: -0.79, -0.44) but also of VSM SMD: -0.32 (95% CI: -0.57, -0.07). The type of stimuli used (i.e., exercise, occlusion-reperfusion, pharmacological substances, heat) did not influence the impairment of the vasodilatory capacity. Endothelial dysfunction appeared more pronounced within macrovascular than microvascular beds. The latter was particularly altered in cases of poor glycemic control [HbA1c > 67 mmol/mol (8.3%)]. Conclusions: This meta-analysis not only corroborates the presence of an early impairment of endothelial function, even in response to physiological stimuli like exercise, but also highlights a VSM dysfunction in children and adults with type 1 diabetes. Endothelial dysfunction seems to be more pronounced in large than small vessels, fostering the debate on their relative temporal appearance.
Collapse
Affiliation(s)
- Elodie Lespagnol
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Luc Dauchet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Mehdi Pawlak-Chaouch
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Costantino Balestra
- Environmental and Occupational (Integrative) Physiology Laboratory, Haute École Bruxelles-Brabant HE2B, Brussels, Belgium
| | - Serge Berthoin
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton, United Kingdom
| | - Matthieu Roustit
- Univ. Grenoble Alpes, HP2, Inserm, CHU Grenoble Alpes, Grenoble, France
| | - Julien Boissière
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Pierre Fontaine
- Département d'endocrinologie, Diabète et maladies métaboliques, Hôpital Huriez, Université de Lille, Lille, France
| | - Elsa Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
- *Correspondence: Elsa Heyman
| |
Collapse
|
7
|
Amano T, Fujii N, Kenny GP, Inoue Y, Kondo N. Do nitric oxide synthase and cyclooxygenase contribute to sweating response during passive heating in endurance-trained athletes? Physiol Rep 2017; 5:5/17/e13403. [PMID: 28899912 PMCID: PMC5599863 DOI: 10.14814/phy2.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of our study was to determine if habitual endurance training can influence the relative contribution of nitric oxide synthase (NOS) and cyclooxygenase (COX) in the regulation of sweating during a passive heat stress in young adults. Ten trained athletes and nine untrained counterparts were passively heated until oral temperature (as estimated by sublingual temperature, Tor) increased by 1.5°C above baseline resting. Forearm sweat rate (ventilated capsule) was measured at three skin sites continuously perfused with either lactated Ringer's solution (Control), 10 mmol/L NG -nitro-L-arginine methyl ester (L-NAME, non-selective NOS inhibitor), or 10 mmol/L ketorolac (Ketorolac, non-selective COX inhibitor) via intradermal microdialysis. Sweat rate was averaged for each 0.3°C increase in Tor Sweat rate at the L-NAME site was lower than Control following a 0.9 and 1.2°C increase in Tor in both groups (all P ≤ 0.05). Relative to the Control site, NOS-inhibition reduced sweating similarly between the groups (P = 0.51). Sweat rate at the Ketorolac site was not different from the Control at any levels of Tor in both groups (P > 0.05). Nevertheless, a greater sweat rate was measured at the end of heating in the trained as compared to the untrained individuals (P ≤ 0.05). We show that NOS contributes similarly to sweating in both trained and untrained individuals during a passive heat stress. Further, no effect of COX on sweating was measured for either group. The greater sweat production observed in endurance-trained athletes is likely mediated by factors other than NOS- and COX-dependent mechanisms.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit University of Ottawa, Ottawa, Canada
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research Osaka International University, Osaka, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Fujii N, Meade RD, Akbari P, Louie JC, Alexander LM, Boulay P, Sigal RJ, Kenny GP. No effect of ascorbate on cutaneous vasodilation and sweating in older men and those with type 2 diabetes exercising in the heat. Physiol Rep 2017; 5:e13238. [PMID: 28400505 PMCID: PMC5392524 DOI: 10.14814/phy2.13238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 12/23/2022] Open
Abstract
Aging and chronic disease such as type 2 diabetes (T2D) are associated with impairments in the body's ability to dissipate heat. To reduce the risk of heat-related injuries in these heat vulnerable individuals, it is necessary to identify interventions that can attenuate this impairment. We evaluated the hypothesis that intradermal administration of ascorbate improves cutaneous vasodilation and sweating in older adults via nitric oxide synthase (NOS)-dependent mechanisms during exercise in the heat and whether these improvements, if any, are greater in individuals with T2D. Older males with (n = 12, 61 ± 9 years) and without (n = 12, 64 ± 7 years) T2D performed two 30-min bouts of cycling at a fixed rate of metabolic heat production of 500 W (~70% peak oxygen uptake) in the heat (35°C); each followed by a 20- and 40-min recovery, respectively. Cutaneous vascular conductance (CVC) and sweat rate were measured at four intradermal microdialysis sites treated with either (1) lactated Ringer (Control), (2) 10 mmol/L ascorbate (an antioxidant), (3) 10 mmol/L L-NAME (non-selective NOS inhibitor), or (4) a combination of ascorbate + L-NAME. In both groups, ascorbate did not modulate CVC or sweating during exercise relative to Control (all P > 0.05). In comparison to Control, L-NAME alone or combined with ascorbate attenuated CVC during exercise (all P ≤ 0.05) but had no influence on sweating (all P > 0.05). We show that in both healthy and T2D older adults, intradermal administration of ascorbate does not improve cutaneous vasodilation and sweating during exercise in the heat. However, NOS plays an important role in mediating cutaneous vasodilation.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Pegah Akbari
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey C Louie
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Lacy M Alexander
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, Pennsylvania
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Departments of Medicine, Cardiac Sciences and Community Health Sciences, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|