1
|
Nakamura K. Central Mechanisms of Thermoregulation and Fever in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:141-159. [PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermoregulation is a fundamental homeostatic function in mammals mediated by the central nervous system. The framework of the central circuitry for thermoregulation lies in the hypothalamus and brainstem. The preoptic area (POA) of the hypothalamus integrates cutaneous and central thermosensory information into efferent control signals that regulate excitatory descending pathways through the dorsomedial hypothalamus (DMH) and rostral medullary raphe region (rMR). The cutaneous thermosensory feedforward signals are delivered to the POA by afferent pathways through the lateral parabrachial nucleus, while the central monitoring of body core temperature is primarily mediated by warm-sensitive neurons in the POA for negative feedback regulation. Prostaglandin E2, a pyrogenic mediator produced in response to infection, acts on the POA to trigger fever. Recent studies have revealed that this circuitry also functions for physiological responses to psychological stress and starvation. Master psychological stress signaling from the medial prefrontal cortex to the DMH has been discovered to drive a variety of physiological responses for stress coping, including hyperthermia. During starvation, hunger signaling from the hypothalamus was found to activate medullary reticular neurons, which then suppress thermogenic sympathetic outflows from the rMR for energy saving. This thermoregulatory circuit represents a fundamental mechanism of the central regulation for homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
2
|
McAllen RM, McKinley MJ, Martelli D. Reflex regulation of systemic inflammation by the autonomic nervous system. Auton Neurosci 2021; 237:102926. [PMID: 34906897 DOI: 10.1016/j.autneu.2021.102926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
This short review focusses on the inflammatory reflex, which acts in negative feedback manner to moderate the inflammatory consequences of systemic microbial challenge. The historical development of the inflammatory reflex concept is reviewed, along with evidence that the endogenous reflex response to systemic inflammation is mediated by the splanchnic sympathetic nerves rather than by the vagi. We describe the coordinated nature of this reflex anti-inflammatory action: suppression of pro-inflammatory cytokines coupled with enhanced levels of the anti-inflammatory cytokine, interleukin 10. The limited information on the afferent and central pathways of the reflex is noted. We describe that the efferent anti-inflammatory action of the reflex is distributed among the abdominal viscera: several organs, including the spleen, can be removed without disabling the reflex. Understanding of the effector mechanism is incomplete, but it probably involves a very local action of neurally released noradrenaline on beta2 adrenoceptors on the surface of tissue resident macrophages and other innate immune cells. Finally we speculate on the biological and clinical significance of the reflex, citing evidence of its power to influence the resolution of experimental bacteraemia.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davide Martelli
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
4
|
Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021; 11:1591-1604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Each of the wake-sleep states is characterized by specific changes in autonomic activity and bodily functions. The goal of such changes is not always clear. During non-rapid eye movement (NREM) sleep, the autonomic outflow and the activity of the endocrine system, the respiratory system, the cardiovascular system, and the thermoregulatory system seem to be directed at increasing energy saving. During rapid eye movement (REM) sleep, the goal of the specific autonomic and regulatory changes is unclear, since a large instability of autonomic activity and cardiorespiratory function is observed in concomitance with thermoregulatory changes, which are apparently non-functional to thermal homeostasis. Reciprocally, the activation of thermoregulatory responses under thermal challenges interferes with sleep occurrence. Such a double-edged and reciprocal interaction between sleep and thermoregulation may be favored by the fact that the central network controlling sleep overlaps in several parts with the central network controlling thermoregulation. The understanding of the central mechanism behind the interaction between sleep and thermoregulation may help to understand the functionality of thermoregulatory sleep-related changes and, ultimately, the function(s) of sleep. © 2021 American Physiological Society. Compr Physiol 11:1591-1604, 2021.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences - Physiology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever. J Neurosci 2020; 40:2573-2588. [PMID: 32079648 DOI: 10.1523/jneurosci.2887-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Fever is a common phenomenon during infection or inflammatory conditions. This stereotypic rise in body temperature (Tb) in response to inflammatory stimuli is a result of autonomic responses triggered by prostaglandin E2 action on EP3 receptors expressed by neurons in the median preoptic nucleus (MnPOEP3R neurons). To investigate the identity of MnPOEP3R neurons, we first used in situ hybridization to show coexpression of EP3R and the VGluT2 transporter in MnPO neurons. Retrograde tracing showed extensive direct projections from MnPOVGluT2 but few from MnPOVgat neurons to a key site for fever production, the raphe pallidus. Ablation of MnPOVGluT2 but not MnPOVgat neurons abolished fever responses but not changes in Tb induced by behavioral stress or thermal challenges. Finally, we crossed EP3R conditional knock-out mice with either VGluT2-IRES-cre or Vgat-IRES-cre mice and used both male and female mice to confirm that the neurons that express EP3R and mediate fever are glutamatergic, not GABAergic. This finding will require rethinking current concepts concerning the central thermoregulatory pathways based on the MnPOEP3R neurons being GABAergic.SIGNIFICANCE STATEMENT Body temperature is regulated by the CNS. The rise of the body temperature, or fever, is an important brain-orchestrated mechanism for fighting against infectious or inflammatory disease, and is tightly regulated by the neurons located in the median preoptic nucleus (MnPO). Here we demonstrate that excitatory MnPO neurons mediate fever and examine a potential central circuit underlying the development of fever responses.
Collapse
|
6
|
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron 2019; 98:31-48. [PMID: 29621489 DOI: 10.1016/j.neuron.2018.02.022] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158.
| |
Collapse
|
7
|
Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019; 17:e3000172. [PMID: 30893297 PMCID: PMC6426208 DOI: 10.1371/journal.pbio.3000172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Sleep and wakefulness are greatly influenced by various physiological and psychological factors, but the neuronal elements responsible for organizing sleep-wake behavior in response to these factors are largely unknown. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to acute psychological and physiological challenges or stressors. We show that selective activation of NtsLH neurons with chemogenetic or optogenetic methods elicits rapid transitions from non-rapid eye movement (NREM) sleep to wakefulness and produces sustained arousal, higher locomotor activity (LMA), and hyperthermia, which are commonly observed after acute stress exposure. On the other hand, selective chemogenetic inhibition of NtsLH neurons attenuates the arousal, LMA, and body temperature (Tb) responses to a psychological stress (a novel environment) and augments the responses to a physiological stress (fasting). A neurotensin-producing subset of neurons in the lateral hypothalamus promote arousal and thermogenesis; these neurons are necessary for appropriate sleep-wake and body temperature responses to various stressors. Adjusting sleep-wake behavior in response to environmental and physiological challenges may not only be of protective value, but can also be vital for the survival of the organism. For example, while it is crucial to increase wake to explore a novel environment to search for potential threats and food sources, it is also necessary to decrease wake and reduce energy expenditure during prolonged absence of food. In this study, we report that a subset of neurons in the lateral hypothalamic area (LH) expressing the neuropeptide neurotensin (Nts) is critical for orchestrating sleep-wake responses to such challenges. We show that brief activation of NtsLH neurons in mice evokes immediate arousals from sleep, while their sustained activation increases wake, locomotor activity, and body temperature for several hours. In contrast, when NtsLH neurons are inhibited, mice are neither able to sustain wake in a novel environment nor able to reduce wake during food deprivation. These data suggest that NtsLH neurons may be necessary for generating appropriate sleep-wake responses to a wide variety of environmental and physiological challenges.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sathyajit S. Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joseph C. Madara
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Efferent thermoregulatory pathways regulating cutaneous blood flow and sweating. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:305-316. [PMID: 30454597 DOI: 10.1016/b978-0-444-63912-7.00018-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cutaneous vasoconstrictor nerves regulate heat retention, and are activated by falls in skin or core temperature. The efferent pathways controlling this process originate within the preoptic area. A descending GABAergic pathway, activated by warm skin or core, indirectly inhibits sympathetic premotor neurons in the medullary raphé. Those premotor neurons drive cutaneous vasoconstriction via excitatory glutamatergic and serotonergic connections to spinal preganglionic neurons. Cold skin and/or cold core temperatures activate a direct preoptic-to-raphé excitatory pathway. The balance of inhibitory and excitatory influences reaching the medullary raphé determines cutaneous blood flow. During fever, prostaglandin E2 inhibits preoptic GABAergic neurons, resulting in disinhibition of the excitatory preoptic-to-raphé pathway, and hence, cutaneous vasoconstriction. A weaker, parallel source of descending excitatory drive reaches cutaneous preganglionic neurons from the rostral ventrolateral medulla. Sweating follows local heating of the preoptic area in cats and monkeys, and heated humans show sweating-related activation of this same region in functional magnetic resonance imaging (fMRI) studies. A descending pathway that drives sweating has been traced in cats from the hypothalamus to putative premotor neurons in the parafacial region at the pontomedullary junction. The homologous parafacial region in humans also shows sweating-related activation in fMRI studies. The central pathways that drive active vasodilatation in human nonacral skin remain unknown.
Collapse
|
9
|
Abbott SBG, Saper CB. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J Physiol 2017; 595:6569-6583. [PMID: 28786483 PMCID: PMC5638873 DOI: 10.1113/jp274667] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/28/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Glutamatergic neurons in the median preoptic area were stimulated using genetically targeted Channelrhodopsin 2 in transgenic mice. Stimulation of glutamatergic median preoptic area neurons produced a profound hypothermia due to cutaneous vasodilatation. Stimulation also produced drinking behaviour that was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. ABSTRACT The median preoptic nucleus (MnPO) serves an important role in the integration of water/electrolyte homeostasis and thermoregulation, but we have a limited understanding these functions at a cellular level. Using Cre-Lox genetic targeting of Channelrhodospin 2 in VGluT2 transgenic mice, we examined the effect of glutamatergic MnPO neuron stimulation in freely behaving mice while monitoring drinking behaviour and core temperature. Stimulation produced a strong hypothermic response in 62% (13/21) of mice (core temperature: -4.6 ± 0.5°C, P = 0.001 vs. controls) caused by cutaneous vasodilatation. Stimulating glutamatergic MnPO neurons also produced robust drinking behaviour in 82% (18/22) of mice. Mice that drank during stimulation consumed 912 ± 163 μl (n = 8) during a 20 min trial in the dark phase, but markedly less during the light phase (421 ± 83 μl, P = 0.0025). Also, drinking during stimulation was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Both hypothermia and drinking during stimulation occurred in 50% of mice tested. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. Thus, activation of separate but overlapping populations of glutamatergic MnPO neurons produces effects on drinking and autonomic thermoregulatory mechanisms, providing a structural basis for their frequently being coordinated (e.g. during hyperthermia).
Collapse
Affiliation(s)
- Stephen B. G. Abbott
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
- The Heart Research InstituteSydneyAustralia
| | - Clifford B. Saper
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
10
|
Arginine vasopressin antagonizes the effects of prostaglandin E 2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats. Neurosci Lett 2017; 662:59-64. [PMID: 28988972 DOI: 10.1016/j.neulet.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E2 (PGE2) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE2 on warm-sensitive neurons, and reversed the excitatory effect of PGE2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V1a receptor antagonist, suggesting that V1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE2-induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE2-induced increase in that in low-slope temperature-insensitive neurons through the V1a receptor. Together, these data indicated that AVP antagonized the PGE2-induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE2-induced change in the prepotential of these neurons in a V1a receptor-dependent manner.
Collapse
|
11
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
12
|
Abstract
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 2016; 196:14-24. [PMID: 26924538 DOI: 10.1016/j.autneu.2016.02.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, Unites States.
| |
Collapse
|
14
|
Salman IM. Current Approaches to Quantifying Tonic and Reflex Autonomic Outflows Controlling Cardiovascular Function in Humans and Experimental Animals. Curr Hypertens Rep 2016; 17:84. [PMID: 26363932 DOI: 10.1007/s11906-015-0597-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of the autonomic nervous system in the pathophysiology of human and experimental models of cardiovascular disease is well established. In the recent years, there have been some rapid developments in the diagnostic approaches used to assess and monitor autonomic functions. Although most of these methods are devoted for research purposes in laboratory animals, many have still found their way to routine clinical practice. To name a few, direct long-term telemetry recording of sympathetic nerve activity (SNA) in rodents, single-unit SNA recording using microneurography in human subjects and spectral analysis of blood pressure and heart rate in both humans and animals have recently received an overwhelming attention. In this article, we therefore provide an overview of the methods and techniques used to assess tonic and reflex autonomic functions in humans and experimental animals, highlighting current advances available and procedure description, limitations and usefulness for diagnostic purposes.
Collapse
Affiliation(s)
- Ibrahim M Salman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
15
|
Ootsuka Y, Tanaka M. Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2015; 2:392-405. [PMID: 27227053 PMCID: PMC4843916 DOI: 10.1080/23328940.2015.1069437] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Centre for Neuroscience; Department of Human Physiology; School of Medicine; Flinders University; Bedford Park; South Australia, Australia
- Department of Physiology; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima, Japan
| | - Mutsumi Tanaka
- Health Effects Research Group; Energy and Environment Research Division; Japan Automobile Research Institute; Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Cerri M, Del Vecchio F, Mastrotto M, Luppi M, Martelli D, Perez E, Tupone D, Zamboni G, Amici R. Enhanced slow-wave EEG activity and thermoregulatory impairment following the inhibition of the lateral hypothalamus in the rat. PLoS One 2014; 9:e112849. [PMID: 25398141 PMCID: PMC4232523 DOI: 10.1371/journal.pone.0112849] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022] Open
Abstract
Neurons within the lateral hypothalamus (LH) are thought to be able to evoke behavioural responses that are coordinated with an adequate level of autonomic activity. Recently, the acute pharmacological inhibition of LH has been shown to depress wakefulness and promote NREM sleep, while suppressing REM sleep. These effects have been suggested to be the consequence of the inhibition of specific neuronal populations within the LH, i.e. the orexin and the MCH neurons, respectively. However, the interpretation of these results is limited by the lack of quantitative analysis of the electroencephalographic (EEG) activity that is critical for the assessment of NREM sleep quality and the presence of aborted NREM-to-REM sleep transitions. Furthermore, the lack of evaluation of the autonomic and thermoregulatory effects of the treatment does not exclude the possibility that the wake-sleep changes are merely the consequence of the autonomic, in particular thermoregulatory, changes that may follow the inhibition of LH neurons. In the present study, the EEG and autonomic/thermoregulatory effects of a prolonged LH inhibition provoked by the repeated local delivery of the GABAA agonist muscimol were studied in rats kept at thermoneutral (24°C) and at a low (10°C) ambient temperature (Ta), a condition which is known to depress sleep occurrence. Here we show that: 1) at both Tas, LH inhibition promoted a peculiar and sustained bout of NREM sleep characterized by an enhancement of slow-wave activity with no NREM-to-REM sleep transitions; 2) LH inhibition caused a marked transitory decrease in brain temperature at Ta 10°C, but not at Ta 24°C, suggesting that sleep changes induced by LH inhibition at thermoneutrality are not caused by a thermoregulatory impairment. These changes are far different from those observed after the short-term selective inhibition of either orexin or MCH neurons, suggesting that other LH neurons are involved in sleep-wake modulation.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Flavia Del Vecchio
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Mastrotto
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Emanuele Perez
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanni Zamboni
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Hypoxia-induced hypothermia mediated by GABA in the rostral parapyramidal area of the medulla oblongata. Neuroscience 2014; 267:46-56. [PMID: 24607346 DOI: 10.1016/j.neuroscience.2014.02.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/04/2014] [Accepted: 02/22/2014] [Indexed: 11/20/2022]
Abstract
Hypoxia evokes a regulated decrease in the body core temperature (Tc) in a variety of animals. The neuronal mechanisms of this response include, at least in part, glutamatergic activation in the lateral preoptic area (LPO) of the hypothalamus. As the sympathetic premotor neurons in the medulla oblongata constitute a cardinal relay station in the descending neuronal pathway from the hypothalamus for thermoregulation, their inhibition can also be critically involved in the mechanisms of the hypoxia-induced hypothermia. Here, I examined the hypothesis that hypoxia-induced hypothermia is mediated by glutamate-responsive neurons in the LPO that activate GABAergic transmission in the rostral raphe pallidus (rRPa) and neighboring parapyramidal region (PPy) of the medulla oblongata in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. Unilateral microinjection of GABA (15nmol) into the rRPa and PPy regions elicited a prompt increase in tail skin temperature (Ts) and decreases in Tc, oxygen consumption rate (VO2), and heart rate. Next, when the GABAA receptor blocker bicuculline methiodide (bicuculline methiodide (BMI), 10pmol) alone was microinjected into the rRPa, it elicited unexpected contradictory responses: simultaneous increases in Ts, VO2 and heart rate and a decrease in Tc. Then, when BMI was microinjected bilaterally into the PPy, no direct effect on Ts was seen; and thermogenic and tachycardic responses were slight. However, pretreatment of the PPy with BMI, but not vehicle saline, greatly attenuated the hypothermic responses evoked by hypoxic (10%O2-90%N2, 5min) ventilation or bilateral microinjections of glutamate (5nmol, each side) into the LPO. The results suggest that hypoxia-induced hypothermia was mediated, at least in part, by the activation of GABAA receptors in the PPy.
Collapse
|