1
|
Grove JCR, Knight ZA. The neurobiology of thirst and salt appetite. Neuron 2024; 112:3999-4016. [PMID: 39610247 DOI: 10.1016/j.neuron.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
The first act of life was the capture of water within a cell membrane,1 and maintaining fluid homeostasis is critical for the survival of most organisms. In this review, we discuss the neural mechanisms that drive animals to seek out and consume water and salt. We discuss the cellular and molecular mechanisms for sensing imbalances in blood osmolality, volume, and sodium content; how this information is integrated in the brain to produce thirst and salt appetite; and how these motivational drives are rapidly quenched by the ingestion of water and salt. We also highlight some of the gaps in our current understanding of the fluid homeostasis system, including the molecular identity of the key sensors that detect many fluid imbalances, as well as the mechanisms that control drinking in the absence of physiologic deficit, such as during meals.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Yang G, Jia M, Li G, Zang YY, Chen YY, Wang YY, Zhan SY, Peng SX, Wan G, Li W, Yang JJ, Shi YS. TMEM63B channel is the osmosensor required for thirst drive of interoceptive neurons. Cell Discov 2024; 10:1. [PMID: 38172113 PMCID: PMC10764952 DOI: 10.1038/s41421-023-00628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024] Open
Abstract
Thirst plays a vital role in the regulation of body fluid homeostasis and if deregulated can be life-threatening. Interoceptive neurons in the subfornical organ (SFO) are intrinsically osmosensitive and their activation by hyperosmolarity is necessary and sufficient for generating thirst. However, the primary molecules sensing systemic osmolarity in these neurons remain elusive. Here we show that the mechanosensitive TMEM63B cation channel is the osmosensor required for the interoceptive neurons to drive thirst. TMEM63B channel is highly expressed in the excitatory SFO thirst neurons. TMEM63B deletion in these neurons impaired hyperosmolarity-induced drinking behavior, while re-expressing TMEM63B in SFO restored water appetite in TMEM63B-deficient mice. Remarkably, hyperosmolarity activates TMEM63B channels, leading to depolarization and increased firing rate of the interoceptive neurons, which drives drinking behavior. Furthermore, TMEM63B deletion did not affect sensitivities of the SFO neurons to angiotensin II or hypoosmolarity, suggesting that TMEM63B plays a specialized role in detecting hyperosmolarity in SFO neurons. Thus, our results reveal a critical osmosensor molecule for the generation of thirst perception.
Collapse
Affiliation(s)
- Guolin Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guizhou Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yang-Yang Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Yue-Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Shi-Yu Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China
| | - Shi-Xiao Peng
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Guoqiang Wan
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurosurgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China.
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, China.
| |
Collapse
|
3
|
Anselmi L, Ducrocq GP, Ruiz-Velasco V, Stocker SD, Higgins SP, Kaufman MP. Functional knockout of the TRPV1 channel has no effect on the exercise pressor reflex in rats. J Physiol 2023; 601:5241-5256. [PMID: 37878364 DOI: 10.1113/jp285267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
The role played by the transient receptor potential vanilloid 1 (TRPV1) channel on the thin fibre afferents evoking the exercise pressor reflex is controversial. To shed light on this controversy, we compared the exercise pressor reflex between newly developed TRPV1+/+ , TRPV1+/- and TRPV1-/- rats. Carotid arterial injection of capsaicin (0.5 μg), evoked significant pressor responses in TRPV1+/+ and TRPV1+/- rats, but not in TRPV1-/- rats. In acutely isolated dorsal root ganglion neurons innervating the gastrocnemius muscles, capsaicin evoked inward currents in neurons isolated from TRPV1+/+ and TRPV1+/- rats but not in neurons isolated from TRPV1-/- rats. The reflex was evoked by stimulating the tibial nerve in decerebrated rats whose femoral artery was either freely perfused or occluded. We found no difference between the reflex in the three groups of rats regardless of the patency of the femoral artery. For example, the peak pressor responses to contraction in TRPV1+/+ , TRPV1+/- and TRPV1-/- rats with patent femoral arteries averaged 17.1 ± 7.2, 18.9 ± 12.4 and 18.4 ± 8.6 mmHg, respectively. Stimulation of the tibial nerve after paralysis with pancuronium had no effect on arterial pressure, findings which indicated that the pressor responses to contraction were not caused by electrical stimulation of afferent tibial nerve axons. We also found that expression levels of acid-sensing ion channel 1 and endoperoxide 4 receptor in the L4 and 5 dorsal root ganglia were not upregulated in the TRPV1-/- rats. We conclude that TRPV1 is not needed to evoke the exercise pressor reflex in rats whose contracting muscles have either a patent or an occluded arterial blood supply. KEY POINTS: A reflex arising in contracting skeletal muscle contributes to the increases in arterial blood pressure, cardiac output and breathing evoked by exercise. The sensory arm of the reflex comprises both mechanoreceptors and metaboreceptors, of which the latter signals that blood flow to exercising muscle is not meeting its metabolic demand. The nature of the channel on the metaboreceptor sensing a mismatch between supply and demand is controversial; some believe that it is the transient receptor potential vanilloid 1 (TRPV1) channel. Using genetically engineered rats in which the TRPV1 channel is rendered non-functional, we have shown that it is not needed to evoke the metaboreflex.
Collapse
Affiliation(s)
- Laura Anselmi
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| | - Guillaume P Ducrocq
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Victor Ruiz-Velasco
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Sean D Stocker
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon P Higgins
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| | - Marc P Kaufman
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ, Lien CC, Huang CL. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J Clin Invest 2023; 133:e164222. [PMID: 37071482 PMCID: PMC10231991 DOI: 10.1172/jci164222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Collapse
Affiliation(s)
- Xin Jin
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jen-Chi Chen
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cheng-Chang Lien
- Institute of Neuroscience and
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
6
|
Renal water transport in health and disease. Pflugers Arch 2022; 474:841-852. [PMID: 35678906 PMCID: PMC9338902 DOI: 10.1007/s00424-022-02712-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022]
Abstract
Saving body water by optimal reabsorption of water filtered by the kidney leading to excretion of urine with concentrations of solutes largely above that of plasma allowed vertebrate species to leave the aquatic environment to live on solid ground. Filtered water is reabsorbed for 70% and 20% by proximal tubules and thin descending limbs of Henle, respectively. These two nephron segments express the water channel aquaporin-1 located along both apical and basolateral membranes. In the proximal tubule, the paracellular pathway accounts for at least 30% of water reabsorption, and the tight-junction core protein claudin-2 plays a key role in this permeability. The ascending limb of Henle and the distal convoluted tubule are impermeant to water and are responsible for urine dilution. The water balance is adjusted along the collecting system, i.e. connecting tubule and the collecting duct, under the control of arginine-vasopressin (AVP). AVP is synthesized by the hypothalamus and released in response to an increase in extracellular osmolality or stimulation of baroreceptors by decreased blood pressure. In response to AVP, aquaporin-2 water channels stored in subapical intracellular vesicles are translocated to the apical plasma membrane and raise the water permeability of the collecting system. The basolateral step of water reabsorption is mediated by aquaporin-3 and -4, which are constitutively expressed. Drugs targeting water transport include classical diuretics, which primarily inhibit sodium transport; the new class of SGLT2 inhibitors, which promotes osmotic diuresis and the non-peptidic antagonists of the V2 receptor, which are pure aquaretic drugs. Disturbed water balance includes diabetes insipidus and hyponatremias. Diabetes insipidus is characterized by polyuria and polydipsia. It is either related to a deficit in AVP secretion called central diabetes insipidus that can be treated by AVP analogs or to a peripheral defect in AVP response called nephrogenic diabetes insipidus. Diabetes insipidus can be either of genetic origin or acquired. Hyponatremia is a common disorder most often related to free water excess relying on overstimulated or inappropriate AVP secretion. The assessment of blood volume is key for the diagnosis and treatment of hyponatremia, which can be classified as hypo-, eu-, or hypervolemic.
Collapse
|
7
|
Mecawi AS, Varanda WA, da Silva MP. Osmoregulation and the Hypothalamic Supraoptic Nucleus: From Genes to Functions. Front Physiol 2022; 13:887779. [PMID: 35685279 PMCID: PMC9171026 DOI: 10.3389/fphys.2022.887779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the relatively high permeability to water of the plasma membrane, water tends to equilibrate its chemical potential gradient between the intra and extracellular compartments. Because of this, changes in osmolality of the extracellular fluid are accompanied by changes in the cell volume. Therefore, osmoregulatory mechanisms have evolved to keep the tonicity of the extracellular compartment within strict limits. This review focuses on the following aspects of osmoregulation: 1) the general problems in adjusting the "milieu interieur" to challenges imposed by water imbalance, with emphasis on conceptual aspects of osmosis and cell volume regulation; 2) osmosensation and the hypothalamic supraoptic nucleus (SON), starting with analysis of the electrophysiological responses of the magnocellular neurosecretory cells (MNCs) involved in the osmoreception phenomenon; 3) transcriptomic plasticity of SON during sustained hyperosmolality, to pinpoint the genes coding membrane channels and transporters already shown to participate in the osmosensation and new candidates that may have their role further investigated in this process, with emphasis on those expressed in the MNCs, discussing the relationships of hydration state, gene expression, and MNCs electrical activity; and 4) somatodendritic release of neuropeptides in relation to osmoregulation. Finally, we expect that by stressing the relationship between gene expression and the electrical activity of MNCs, studies about the newly discovered plastic-regulated genes that code channels and transporters in the SON may emerge.
Collapse
Affiliation(s)
- André Souza Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Wamberto Antonio Varanda
- Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Melina Pires da Silva
- Laboratory of Cellular Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
9
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
10
|
Pati D, Harden SW, Sheng W, Kelly KB, de Kloet AD, Krause EG, Frazier CJ. Endogenous oxytocin inhibits hypothalamic corticotrophin-releasing hormone neurones following acute hypernatraemia. J Neuroendocrinol 2020; 32:e12839. [PMID: 32133707 PMCID: PMC7384450 DOI: 10.1111/jne.12839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety-like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin-mediated stress reduction is via inhibition of corticotrophin-releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic-pituitary-adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L-1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)-dependent inhibitory tone develops on a subset of parvocellular neurones and stress-mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH-reporter mice to selectively target PVN CRH neurones for whole-cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr-dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP-β-S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt-loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor-mediated signalling modulates the function of CRH neurones in the PVN.
Collapse
Affiliation(s)
- Dipanwita Pati
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Scott W. Harden
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | | | - Kyle B. Kelly
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Annette D. de Kloet
- Department of Physiology and Functional Genomics, College
of Medicine, University of Florida
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
| | - Charles J. Frazier
- Department of Pharmacodynamics, College of Pharmacy,
University of Florida
- Department of Neuroscience, College of Medicine, University
of Florida
- Corresponding author: Charles J.
Frazier, Ph.D., Associate Professor and University of Florida Term Professor,
Department of Pharmacodynamics, College of Pharmacy, University of Florida,
JHMHC Box 100487, Room P1-20, 1345 Center Drive, Gainesville, FL 32610, USA,
| |
Collapse
|
11
|
Porcari CY, Debarba LK, Amigone JL, Caeiro XE, Reis LC, Cunha TM, Mecawi AS, Elias LL, Antunes-Rodrigues J, Vivas L, Godino A. Brain osmo-sodium sensitive channels and the onset of sodium appetite. Horm Behav 2020; 118:104658. [PMID: 31874139 DOI: 10.1016/j.yhbeh.2019.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023]
Abstract
The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo‑sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.
Collapse
Affiliation(s)
- C Y Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L K Debarba
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - T M Cunha
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - A S Mecawi
- Laboratory of Molecular Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - L L Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
12
|
Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst. J Neurosci 2020; 40:2069-2079. [PMID: 32005766 DOI: 10.1523/jneurosci.2208-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The organum vasculosum of the lamina terminalis (OVLT) contains NaCl-sensitive neurons to regulate thirst, neuroendocrine function, and autonomic outflow. The OVLT also expresses the angiotensin II (AngII) type1 receptor, and AngII increases Fos expression in OVLT neurons. The present study tested whether individual OVLT neurons sensed both NaCl and AngII to regulate thirst and body fluid homeostasis. A multifaceted approach, including in vitro whole-cell patch recordings, in vivo single-unit recordings, and optogenetic manipulation of OVLT neurons, was used in adult, male Sprague Dawley rats. First, acute intravenous infusion of hypertonic NaCl or AngII produced anatomically distinct patterns of Fos-positive nuclei in the OVLT largely restricted to the dorsal cap versus vascular core, respectively. However, in vitro patch-clamp recordings indicate 66% (23 of 35) of OVLT neurons were excited by bath application of both hypertonic NaCl and AngII. Similarly, in vivo single-unit recordings revealed that 52% (23 of 44) of OVLT neurons displayed an increased discharge to intracarotid injection of both hypertonic NaCl and AngII. In marked contrast to Fos immunoreactivity, neuroanatomical mapping of Neurobiotin-filled cells from both in vitro and in vivo recordings revealed that NaCl- and AngII-responsive neurons were distributed throughout the OVLT. Next, optogenetic excitation of OVLT neurons stimulated thirst but not salt appetite. Conversely, optogenetic inhibition of OVLT neurons attenuated thirst stimulated by hypernatremia or elevated AngII but not hypovolemia. Collectively, these findings provide the first identification of individual OVLT neurons that respond to both elevated NaCl and AngII concentrations to regulate thirst and body fluid homeostasis.SIGNIFICANCE STATEMENT Body fluid homeostasis requires the integration of neurohumoral signals to coordinate behavior, neuroendocrine function, and autonomic function. Extracellular NaCl concentrations and the peptide hormone angiotensin II (AngII) are two major neurohumoral signals that regulate body fluid homeostasis. Herein, we present the first compelling evidence that individual neurons located in the organum vasculosum of the lamina terminalis detect both NaCl and AngII. Furthermore, optogenetic interrogations demonstrate that these neurons play a pivotal role in the regulation of thirst stimulated by NaCl and AngII. These novel observations lay the foundation for future investigations for how such inputs as well as others converge onto unique organum vasculosum of the lamina terminalis neurons to coordinate body fluid homeostasis and contribute to disorders of fluid balance.
Collapse
|
13
|
Mazloum M, Jouffroy J, Brazier F, Legendre C, Neuraz A, Garcelon N, Prié D, Anglicheau D, Bienaimé F. Osmoregulation Performance and Kidney Transplant Outcome. J Am Soc Nephrol 2019; 30:1282-1293. [PMID: 31217325 PMCID: PMC6622417 DOI: 10.1681/asn.2018121269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kidney transplant recipients have an impaired ability to dilute urine but seldom develop baseline hyponatremia before ESRD. Although hyponatremia is a risk factor for adverse events in CKD and in kidney transplant recipients, it remains unclear whether subtler alterations in osmoregulation performance are associated with outcome. METHODS We studied a single-center prospective cohort of 1258 kidney transplant recipients who underwent a water-loading test 3 months after transplant to determine osmoregulation performance. Measured GFR (mGFR) was performed at the same visit. A group of 164 healthy candidates for kidney donation served as controls. We further evaluated the association of osmoregulation performance with transplantation outcomes and subsequent kidney function. RESULTS Unlike controls, most kidney transplant recipients failed to maintain plasma sodium during water loading (plasma sodium slope of -0.6±0.4 mmol/L per hour in transplant recipients versus -0.12±0.3 mmol/L per hour in controls; P<0.001). Steeper plasma sodium reduction during the test independently associated with the composite outcome of all-cause mortality and allograft loss (hazard ratio [HR], 1.73 per 1 mmol/L per hour decrease in plasma sodium; 95% confidence interval [95% CI], 1.23 to 2.45; P=0.002) and allograft loss alone (HR, 2.04 per 1 mmol/L per hour decrease in plasma sodium; 95% CI, 1.19 to 3.51; P=0.01). The association remained significant in a prespecified sensitivity analysis excluding patients with hyperglycemia. In addition, a steeper plasma sodium slope 3 months after transplantation independently correlated with lower mGFR at 12 months (β=1.93; 95% CI, 0.46 to 3.41; P=0.01). CONCLUSIONS Reduced osmoregulation performance occurs frequently in kidney transplant recipients and is an independent predictor of renal outcome.
Collapse
Affiliation(s)
- Manal Mazloum
- Service de Department of Nephrology and Kidney Transplantation
- Medical Faculty, Paris University, Paris, France
| | - Jordan Jouffroy
- Medical Faculty, Paris University, Paris, France
- Department of Medical Informatics, and
| | - François Brazier
- Medical Faculty, Paris University, Paris, France
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Necker Enfants-Malades Research Institute, INSERM U1151, Paris, France; and
| | - Christophe Legendre
- Service de Department of Nephrology and Kidney Transplantation
- Medical Faculty, Paris University, Paris, France
- Necker Enfants-Malades Research Institute, INSERM U1151, Paris, France; and
| | - Antoine Neuraz
- Medical Faculty, Paris University, Paris, France
- Department of Medical Informatics, and
| | | | - Dominique Prié
- Medical Faculty, Paris University, Paris, France
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Necker Enfants-Malades Research Institute, INSERM U1151, Paris, France; and
| | - Dany Anglicheau
- Service de Department of Nephrology and Kidney Transplantation
- Medical Faculty, Paris University, Paris, France
- Necker Enfants-Malades Research Institute, INSERM U1151, Paris, France; and
| | - Frank Bienaimé
- Medical Faculty, Paris University, Paris, France;
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Necker Enfants-Malades Research Institute, INSERM U1151, Paris, France; and
| |
Collapse
|
14
|
Leng G, Russell JA. The osmoresponsiveness of oxytocin and vasopressin neurones: Mechanisms, allostasis and evolution. J Neuroendocrinol 2019; 31:e12662. [PMID: 30451331 DOI: 10.1111/jne.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
In the rat supraoptic nucleus, every oxytocin cell projects to the posterior pituitary, and is involved both in reflex milk ejection during lactation and in regulating uterine contractions during parturition. All are also osmosensitive, regulating natriuresis. All are also regulated by signals that control appetite, including the neural and hormonal signals that arise from the gut after food intake and from the sites of energy storage. All are also involved in sexual behaviour, anxiety-related behaviours and social behaviours. The challenge is to understand how a single population of neurones can coherently regulate such a diverse set of functions and adapt to changing physiological states. Their multiple functions arise from complex intrinsic properties that confer sensitivity to a wide range of internal and environmental signals. Many of these properties have a distant evolutionary origin in multifunctional, multisensory neurones of Urbilateria, the hypothesised common ancestor of vertebrates, insects and worms. Their properties allow different patterns of oxytocin release into the circulation from their axon terminals in the posterior pituitary into other brain areas from axonal projections, as well as independent release from their dendrites.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - John A Russell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets. RECENT FINDINGS Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin. Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.
Collapse
|
16
|
Mast TG, Breza JM, Contreras RJ. Thirst Increases Chorda Tympani Responses to Sodium Chloride. Chem Senses 2017; 42:675-681. [PMID: 28981824 DOI: 10.1093/chemse/bjx052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, water is present as a low-salt solution, thus we hypothesized that thirst would increase taste responses to low-salt solutions. We investigated the effect of thirst on the 2 different salt detection mechanisms present in the rat chorda tympani (CT) nerve. The first mechanism is dependent upon the epithelial sodium channel (ENaC), is blocked by benzamil, and is specific to the cation sodium. The second mechanism, while undefined, is independent of ENaC, and detects multiple cations. We expected thirst to increase benzamil-sensitive sodium responses due to mechanistically increasing the benzamil-sensitive ENaC. We recorded CT whole-nerve electrophysiological responses to lingual application of NaCl, KCl (30, 75, 150, 300, 500, and 600 mM), and imitation rainwater in both control and 24-h water-restricted male rats. NaCl solutions were presented in artificial saliva before and after lingual application of 5µM benzamil. Water restriction significantly increased the integrated CT responses to NaCl but not to KCl or imitation rainwater. Consistent with our hypothesis, only the benzamil-sensitive, and not the benzamil-insensitive, CT sodium response significantly increased. Additionally, CT responses to salt were recorded following induction of either osmotic or volemic thirst. Both thirsts significantly enhanced the integrated CT responses to NaCl and KCl, but not imitation rainwater. Interestingly, osmotic and volemic thirsts increased CT responses by increasing both the benzamil-sensitive and benzamil-insensitive CT sodium responses. We propose that thirst increases the sensitivity of the CT nerve to sodium.
Collapse
Affiliation(s)
- Thomas G Mast
- Department of Biology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA.,Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| | - Joseph M Breza
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA.,Department of Psychology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Robert J Contreras
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| |
Collapse
|
17
|
Prager-Khoutorsky M, Choe KY, Levi DI, Bourque CW. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Curr Hypertens Rep 2017; 19:42. [PMID: 28451854 DOI: 10.1007/s11906-017-0741-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Dietary salt intake increases both plasma sodium and osmolality and therefore increases vasopressin (VP) release from the neurohypophysis. Although this effect could increase blood pressure by inducing fluid reabsorption and vasoconstriction, acute activation of arterial baroreceptors inhibits VP neurons via GABAA receptors to oppose high blood pressure. Here we review recent findings demonstrating that this protective mechanism fails during chronic high salt intake in rats. RECENT FINDINGS Two recent studies showed that chronic high sodium intake causes an increase in intracellular chloride concentration in VP neurons. This effect causes GABAA receptors to become excitatory and leads to the emergence of VP-dependent hypertension. One study showed that the increase in intracellular chloride was provoked by a decrease in the expression of the chloride exporter KCC2 mediated by local secretion of brain-derived neurotrophic factor and activation of TrkB receptors. Prolonged high dietary salt intake can cause pathological plasticity in a central homeostatic circuit that controls VP secretion and thereby contribute to peripheral vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Department of Physiology, McGill University, McIntyre Medical Sciences Bldg., 3655 Promenade Sir-William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Katrina Y Choe
- 2309 Gonda Neuroscience and Genetics Research Center, UCLA Department of Neurology, 695 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - David I Levi
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
18
|
Kinsman BJ, Browning KN, Stocker SD. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure. J Physiol 2017; 595:6187-6201. [PMID: 28678348 DOI: 10.1113/jp274537] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. ABSTRACT Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l-1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function.
Collapse
Affiliation(s)
- Brian J Kinsman
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.,Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Sean D Stocker
- Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
19
|
Abstract
Thirst motivates animals to find and consume water. More than 40 years ago, a set of interconnected brain structures known as the lamina terminalis was shown to govern thirst. However, owing to the anatomical complexity of these brain regions, the structure and dynamics of their underlying neural circuitry have remained obscure. Recently, the emergence of new tools for neural recording and manipulation has reinvigorated the study of this circuit and prompted re-examination of longstanding questions about the neural origins of thirst. Here, we review these advances, discuss what they teach us about the control of drinking behaviour and outline the key questions that remain unanswered.
Collapse
Affiliation(s)
- Christopher A Zimmerman
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - David E Leib
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - Zachary A Knight
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|