1
|
Dahl K, Andersen M, Henriksen TB. Association between auditory system pathology and sudden infant death syndrome (SIDS): a systematic review. BMJ Open 2021; 11:e055318. [PMID: 34911724 PMCID: PMC8679124 DOI: 10.1136/bmjopen-2021-055318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE A theory has emerged, suggesting that abnormalities in the auditory system may be associated with sudden infant death syndrome (SIDS). However, current clinical evidence has never been systematically reviewed. DESIGN A systematic review was conducted according to the guideline of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. DATA SOURCES PubMed, Embase and Web of Science were systematically searched through 7 September 2020. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Only human studies with a reference group were included. Studies were eligible for inclusion if they examined infants exposed to otoacoustic emissions (OAEs), auditory brainstem response (ABR) or had autopsies with brainstem histology of the auditory system. SIDS was the primary outcome, while the secondary outcome was near-miss sudden infant death syndrome episodes. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data and assessed risk of bias, and the quality of evidence. Due to high heterogeneity, a narrative synthesis was conducted. Risk of bias and quality of evidence was assessed using the Newcastle-Ottawa Scale and Grading of Recommendations Assessment, Development and Evaluation. RESULTS Twelve case-control studies were included. Seven studies on OAEs or ABR had a high degree of inconsistency. Contrarily, four out of five studies reporting on brainstem histology found that auditory brainstem abnormalities were more prevalent in SIDS cases than in controls. However, the quality of evidence across all studies was very low. CONCLUSION This systematic review found no clear association between auditory system pathology and SIDS. The higher prevalence of histological abnormalities in the auditory system of SIDS may indicate an association. However, further studies of higher quality and larger study populations are needed to determine whether these findings are valid. PROSPERO REGISTRATION NUMBER CRD42020208045.
Collapse
Affiliation(s)
- Katrine Dahl
- Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Mads Andersen
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Brink Henriksen
- Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Kuldavletova O, Marie S, Denise P, Normand H. Influence of graviceptor stimulation initiated by off-vertical axis rotation on ventilation. Exp Physiol 2018; 103:1010-1019. [PMID: 29738611 DOI: 10.1113/ep087035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is known that respiration is affected by graviceptors, but it remains unclear to what extent labyrinthine and non-labyrinthine graviceptors are involved in this process. What is the main finding and its importance? Our results suggest that the modulation of respiration is not a result of a simple reflex arc, but that it involves a higher integration of different types of receptors with variable contributions of either type of graviceptor among subjects. ABSTRACT It has been suggested that the otolith system is involved in the physiological response to changes in body orientation with respect to gravity. In studies on animals, an otolith-respiratory reflex has been observed, but data on humans are scarce and inconclusive, mainly because pure otolithic stimulation is difficult to produce in humans. To assess the otolithic-respiratory reflex in humans, we used an off-vertical axis rotation (OVAR) that produces periodic and pure stimulation of graviceptors. The inspiratory flow was measured during earth vertical axis rotation (EVAR, control conditions) and OVAR in 21 subjects. To distinguish the effects of the labyrinthine and non-labyrinthine graviceptors on ventilation, these measurements were repeated with two different static head positions: head turned leftward and rightward in yaw. The velocity of rotation was individually selected to match spontaneous breathing rate (mean 11.4 cycles min-1 , 0.19 Hz). Average ventilatory flow was higher in OVAR than in EVAR, as was tidal volume. In OVAR, the transition between inspiration and expiration occurred mainly in the forward pitch position. The phase of this transition in most subjects was driven mostly by the body position rather than by the head position, suggesting that respiratory modifications during OVAR mainly involved non-labyrinthine receptors. However, the study demonstrated a high intersubject variability both in the ability of OVAR to synchronize breathing and in the influence of labyrinthine stimulation. We conclude that the respiratory response to changes in orientation of the body with respect to the vertical involves labyrinthine and non-labyrinthine stimulation, with the gain of each signal varying individually.
Collapse
Affiliation(s)
- O Kuldavletova
- UNICAEN, INSERM, COMETE, Normandie Université, Caen, France
| | - S Marie
- UNICAEN, INSERM, COMETE, Normandie Université, Caen, France
| | - P Denise
- UNICAEN, INSERM, COMETE, Normandie Université, Caen, France.,CHU de Caen Normandie, Caen, France
| | - H Normand
- UNICAEN, INSERM, COMETE, Normandie Université, Caen, France.,CHU de Caen Normandie, Caen, France
| |
Collapse
|
3
|
Bolton PS, Hammam E, Macefield VG. Neck movement but not neck position modulates skin sympathetic nerve activity supplying the lower limbs of humans. J Neurophysiol 2018; 119:1283-1290. [PMID: 29357457 DOI: 10.1152/jn.00043.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that dynamic, but not static, neck displacement modulates muscle sympathetic nerve activity (MSNA) to lower limbs of humans. However, it is not known whether dynamic neck displacement modulates skin sympathetic nerve activity (SSNA). Tungsten microelectrodes inserted into the common peroneal nerve were used to record SSNA in 5 female and 4 male subjects lying supine on a table that fixed their head in space but allowed trapezoidal ramp (8.1 ± 1.2°/s) and hold (17.5° for 53 s) or sinusoidal (35° peak to peak at 0.33-0.46 Hz) horizontal displacement of the body about the head. SSNA recordings were made before, during, and after trapezoidal and sinusoidal displacements of the body. Spike frequency analysis of trapezoidal displacements and cross-correlation analysis during sinusoidal displacements revealed that SSNA was not changed by trapezoid body-only displacement but was cyclically modulated during sinusoidal angular displacements (median, 95% CI: 27.9%, 19.6-48.0%). The magnitude of this modulation was not statistically ( P > 0.05) different from that of cardiac and respiratory modulation at rest (47.1%, 18.7-56.3% and 48.6%, 28.4-59.3%, respectively) or during sinusoidal displacement (10.3%, 6.2-32.1% and 26.9%, 13.6-43.3%, respectively). Respiratory frequency was entrained above its resting rate (0.26 Hz, 0.2-0.29 Hz) during sinusoidal neck displacement; there was no significant difference ( P > 0.05) between respiratory frequency (0.38 Hz, 0.25-0.49 Hz) and sinusoidal displacement frequency (0.39 Hz, 0.35-0.42 Hz). This study provides evidence that SSNA is modulated during neck movement, raising the possibility that neck mechanoreceptors may contribute to the cutaneous vasoconstriction and sweat release associated with motion sickness. NEW & NOTEWORTHY This study demonstrates that dynamic, but not static, stretching of the neck modulates skin sympathetic nerve activity in the lower limbs.
Collapse
Affiliation(s)
- Philip S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute, Callaghan, Australia
| | - Elie Hammam
- School of Medicine, Western Sydney University , Sydney , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University , Sydney , Australia.,Neuroscience Research Australia, Sydney , Australia
| |
Collapse
|
4
|
Spinelli J, Byard RW, Van Den Heuvel C, Collins-Praino LE. Medullary Astrogliosis in Sudden Infant Death Syndrome Varies With Sleeping Environment: Evidence for Different Mechanisms of Death in Alone Versus Co-sleepers? J Child Neurol 2018; 33:269-274. [PMID: 29357731 DOI: 10.1177/0883073817750498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sudden infant death syndrome remains the leading cause of death in infants under 1 year, and underlying pathophysiological mechanisms are poorly understood. The current study investigated the hypothesis that co-sleepers die more rapidly from causes such as suffocation from overlaying by comparing levels of reactive astrogliosis in the medulla of infants who died sleeping alone to those who died co-sleeping. The amount of glial fibrillary acidic protein (GFAP) staining in alone sleepers was significantly higher than shared sleepers in 3 specific areas of the medulla, the inferior vestibular nucleus, the medial vestibular nucleus and the cochlear nucleus. Given that glial fibrillary acidic protein elevations follow a delayed time course, this suggests that death in co-sleepers was more rapid, not allowing for reactive gliosis to occur. This provides evidence of pathological differences in mechanisms of death in infants who are classified as having died from sudden infant death syndrome, suggesting potential need for refinement of categorization of these cases.
Collapse
Affiliation(s)
- Jade Spinelli
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Roger W Byard
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Corinna Van Den Heuvel
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- 1 Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Sarnat HB, Flores-Sarnat L. Synaptogenesis and Myelination in the Nucleus/Tractus Solitarius: Potential Role in Apnea of Prematurity, Congenital Central Hypoventilation, and Sudden Infant Death Syndrome. J Child Neurol 2016; 31:722-32. [PMID: 26661483 DOI: 10.1177/0883073815615227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/26/2015] [Indexed: 12/14/2022]
Abstract
Fetuses as early as 15 weeks' gestation exhibit rhythmical respiratory movements shown by real-time ultrasonography. The nucleus/tractus solitarius is the principal brainstem respiratory center; other medullary nuclei also participate. The purpose was to determine temporal maturation of synaptogenesis. Delayed synaptic maturation may explain neurogenic apnea or hypoventilation of prematurity and some cases of sudden infant death syndrome. Sections of medulla oblongata were studied from 30 human fetal and neonatal brains 9 to 41 weeks' gestation. Synaptophysin demonstrated the immunocytochemical sequence of synaptogenesis. Other neuronal markers and myelin stain also were applied. The nucleus/tractus solitarius was similarly studied in fetuses with chromosomopathies, metabolic encephalopathies, and brain malformations. Synapse formation in the nucleus solitarius begins at about 12 weeks' gestation and matures by 15 weeks; myelination initiated at 33 weeks. Synaptogenesis was delayed in 3 fetuses with different conditions, but was not specific for only nucleus solitarius. Delayed synaptogenesis or myelination in the nucleus solitarius may play a role in neonatal hypoventilation, especially in preterm infants and in some sudden infant death syndrome cases.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary and Alberta Children's Hospital Research Institute, Calgary Alberta, Canada
| | - Laura Flores-Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary and Alberta Children's Hospital Research Institute, Calgary Alberta, Canada
| |
Collapse
|
6
|
Omlin X, Crivelli F, Heinicke L, Zaunseder S, Achermann P, Riener R. Effect of Rocking Movements on Respiration. PLoS One 2016; 11:e0150581. [PMID: 26954500 PMCID: PMC4783003 DOI: 10.1371/journal.pone.0150581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022] Open
Abstract
For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not feasible to influence respiration in a manner that might be considered beneficial for relaxation.
Collapse
Affiliation(s)
- Ximena Omlin
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland
- * E-mail:
| | | | | | | | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland
- Medical Faculty, University of Zurich, Zurich, Switzerland
- Neuroscience Center, University and ETH Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Crivelli F, Omlin X, Rauter G, von Zitzewitz J, Achermann P, Riener R. Somnomat: a novel actuated bed to investigate the effect of vestibular stimulation. Med Biol Eng Comput 2015; 54:877-89. [PMID: 26706035 DOI: 10.1007/s11517-015-1423-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
Rocking movements are known to affect human sleep. Previous studies have demonstrated that the transition from wake to sleep can be facilitated by rocking movements, which might be related to relaxation. However, it is not yet known which movements would have the greatest effect. Thus, a 6-degree-of-freedom tendon-based robotic bed was developed, for systematic evaluation of vestibular stimuli. The applicability of the device was evaluated with 25 subjects. Six movement axes were tested and analyzed for differences in promoting relaxation. Relaxation was assessed by electroencephalogram, electrocardiogram, respiration and a questionnaire. The developed device fulfilled all needed requirements proving the applicability of this technology. Movements had no significant effects on the electroencephalogram and electrocardiogram. Respiration frequency was significantly lower for baseline measurements without movement (median 0.183-0.233 Hz) compared to movement conditions (median 0.283-0.300 Hz). Questionnaire ratings showed a trend (p = 0.057) toward higher relaxation for movements along the vertical axis (z-axis) (median 4.67; confidence interval 4.33-5.67) compared to the roll-axis (median 4.33; confidence interval 3.67-5.00). Movements along the vertical axis (z-axis), therefore, appear most promising in promoting relaxation, though no effects were found in electroencephalogram and electrocardiogram variables. This lack of effect might be attributed to the short exposure to the movements and the large inter-individual variability and individual preferences among subjects.
Collapse
Affiliation(s)
| | - Ximena Omlin
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.
| | - Georg Rauter
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.,Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Joachim von Zitzewitz
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.,International Paraplegic Foundation Chair in Spinal Cord Repair, Center for Neuroprosthetics and Brain-Mind Institute, EPFL, Lausanne, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, ETH Zurich, Zurich, Switzerland.,Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Caterini JE, Duffin J, Wells GD. Limb movement frequency is a significant modulator of the ventilatory response during submaximal cycling exercise in humans. Respir Physiol Neurobiol 2015; 220:10-6. [PMID: 26369445 DOI: 10.1016/j.resp.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/16/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
Human experimentation investigating the contribution of limb movement frequency in determining the fast exercise drive to breathe has produced controversial findings. To evaluate the role of limb movement frequency in determining the fast exercise drive to breathe, endurance runners and recreationally-active controls performed two sinusoidal exercise protocols on a cycle ergometer. One protocol was performed at constant workload with sinusoidal pedaling cadence, and a second with sinusoidal workload at constant cadence. Metabolic rate (VO2) increases and means were matched between these two experiments. The ventilatory response was significantly faster when limb movement speed was varied, compared to when pedal loading was varied (18.49 ± 15.6s vs. 50.5 ± 14.5s, p<0.05). Ventilation response amplitudes were significantly higher during pedal cadence variation versus pedal loading variation (3.99 ± 0.25 vs. 2.58 ± 0.17 L/min, p<0.05). Similar findings were obtained for endurance athletes, with significantly attenuated ventilation responses to exercise versus control subjects. We conclude that fast changes in limb movement frequency are a potent stimulus for ventilation at submaximal workloads, and that this response is susceptible to attenuation through training.
Collapse
Affiliation(s)
- Jessica E Caterini
- Graduate Department of Exercise Sciences, University of Toronto, 100 Devonshire Place, Toronto, Ontario M5S 2C9, Canada; Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Anaesthesia, University of Toronto Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4 Canada
| | - Gregory D Wells
- Physiology and Experimental Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, Ontario M5S2C9, Canada.
| |
Collapse
|
9
|
Lavezzi AM, Ottaviani G, Matturri L. Developmental alterations of the auditory brainstem centers--pathogenetic implications in Sudden Infant Death Syndrome. J Neurol Sci 2015; 357:257-63. [PMID: 26254624 DOI: 10.1016/j.jns.2015.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
Sudden Infant Death Syndrome (SIDS), despite the success of campaigns to reduce its risks, is the leading cause of infant death in the Western world. Even though the pathogenesis remains unexplained, brainstem abnormalities of the neuronal network that mediates breathing and protective responses to asphyxia, particularly in the arousal phase from sleep, are believed to play a fundamental role. This is the first study to identify, in SIDS, developmental defects of specific brainstem centers involved in hearing pathways, particularly in the cochlear and vestibular nuclei, in the superior olivary complex and in the inferior colliculus, suggesting a possible influence of the acoustic system on respiratory activity. In 49 SIDS cases and 20 controls an in-depth anatomopathological examination of the autonomic nervous system was performed, with the main aim of detecting developmental alterations of brainstem structures controlling both the respiratory and auditory activities. Overall, a significantly higher incidence of cytoarchitectural alterations of both the auditory and respiratory network components were observed in SIDS victims compared with matched controls. Even if there is not sufficient evidence to presume that developmental defects of brainstem auditory structures can affect breathing, our findings, showing that developmental deficit in the control respiratory areas are frequently accompanied by alterations of auditory structures, highlight an additional important element for the understanding the pathogenetic mechanism of SIDS.
Collapse
Affiliation(s)
- Anna M Lavezzi
- "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS - Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy.
| | - Giulia Ottaviani
- "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS - Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Luigi Matturri
- "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS - Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| |
Collapse
|
10
|
Bolton PS, Hammam E, Macefield VG. Neck proprioceptors contribute to the modulation of muscle sympathetic nerve activity to the lower limbs of humans. Exp Brain Res 2014; 232:2263-71. [PMID: 24691758 DOI: 10.1007/s00221-014-3917-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Several different strategies have now been used to demonstrate that the vestibular system can modulate muscle sympathetic nerve activity (MSNA) in humans and thereby contribute to the regulation of blood pressure during changes in posture. However, it remains to be determined how the brain differentiates between head-only movements that do not require changes in vasomotor tone in the lower limbs from body movements that do require vasomotor changes. We tested the hypothesis that neck movements modulate MSNA in the lower limbs of humans. MSNA was recorded in 10 supine young adult subjects, at rest, during sinusoidal stretching of neck muscles (100 cycles, 35° peak to peak at 0.37 ± 0.02 Hz) and during a ramp-and-hold (17.5° for 54 ± 9 s) static neck muscle stretch, while their heads were held fixed in space. Cross-correlation analysis revealed cyclical modulation of MSNA during sinusoidal neck muscle stretch (modulation index 45.4 ± 5.3 %), which was significantly less than the cardiac modulation of MSNA at rest (78.7 ± 4.2 %). Interestingly, cardiac modulation decreased significantly during sinusoidal neck displacement (63.0 ± 9.3 %). By contrast, there was no significant difference in MSNA activity during static ramp-and-hold displacements of the neck to the right or left compared with that with the head and neck aligned. These data suggest that dynamic, but not static, neck movements can modulate MSNA, presumably via projections of muscle spindle afferents to the vestibular nuclei, and may thus contribute to the regulation of blood pressure during orthostatic challenges.
Collapse
Affiliation(s)
- P S Bolton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia,
| | | | | |
Collapse
|
11
|
Abstract
Many articles in this section of Comprehensive Physiology are concerned with the development and function of a central pattern generator (CPG) for the control of breathing in vertebrate animals. The action of the respiratory CPG is extensively modified by cortical and other descending influences as well as by feedback from peripheral sensory systems. The central nervous system also incorporates other CPGs, which orchestrate a wide variety of discrete and repetitive, voluntary and involuntary movements. The coordination of breathing with these other activities requires interaction and coordination between the respiratory CPG and those governing the nonrespiratory activities. Most of these interactions are complex and poorly understood. They seem to involve both conventional synaptic crosstalk between groups of neurons and fluid identity of neurons as belonging to one CPG or another: neurons that normally participate in breathing may be temporarily borrowed or hijacked by a competing or interrupting activity. This review explores the control of breathing as it is influenced by many activities that are generally considered to be nonrespiratory. The mechanistic detail varies greatly among topics, reflecting the wide variety of pertinent experiments.
Collapse
Affiliation(s)
- Donald Bartlett
- Department of Physiology & Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, USA.
| | | |
Collapse
|
12
|
Allen T, Garcia Iii AJ, Tang J, Ramirez JM, Rubens DD. Inner ear insult ablates the arousal response to hypoxia and hypercarbia. Neuroscience 2013; 253:283-91. [PMID: 24021919 DOI: 10.1016/j.neuroscience.2013.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Sudden Infant Death Syndrome (SIDS) remains the leading cause of infant mortality in Western societies. A prior study identified an association between hearing suppression on the newborn hearing test and subsequent death from SIDS. This is the first finding of an abnormality in SIDS cases prior to death. A following study identified that inner ear dysfunction precipitates a marked suppression of the hypercapnic ventilatory response (HCVR). Failure of arousal has been proposed to be a key component in SIDS. The objective of the present study was to assess whether inner ear dysfunction not only weakens the hypercapnic response, but also plays a role in suppressing the arousal response to suffocating gas mixtures. METHODS Wild-type mice (n=28) received intra-tympanic gentamicin (IT-Gent) injections bilaterally or unilaterally to precipitate inner ear hair cell dysfunction. Three control groups (n=22) received intra-tympanic saline (IT-Saline) bilaterally or unilaterally (right or left), or intra-peritoneal gentamicin (IP-Gent). The body movement arousal responses to severe hypoxia-hypercarbia combined (5% CO2 in nitrogen) were tested under light anesthesia 8 days following the administration of gentamicin or saline. RESULTS After injections, the bilateral and unilateral IT-Gent-treated animals behaved similarly to controls, however the HCVR as well as the arousal movements in response to severe hypoxia-hypercarbia were suppressed in IT-Gent-treated animals compared to control animals (P<0.05). Thus the HCVR was significantly decreased in the bilateral (n=9) and unilateral IT-Gent-treated mice (n=19) compared to bilateral (n=7) and unilateral IT-Saline (n=9) control groups (p<0.05). Arousal movements were suppressed in the bilateral IT-Gent group (n=9) compared to bilateral IT-Saline controls (n=7, P<0.0001) and in the unilateral IT-Gent group (n=19) compared to unilateral IT-Saline controls (n=10, P<0.0001). DISCUSSION The findings support the theory that inner ear dysfunction could be relevant in the pathophysiology of SIDS. The inner ear appears to play a key role in arousal from suffocating gas mixtures that has not been previously identified.
Collapse
Affiliation(s)
- T Allen
- Department of Anesthesia, Seattle Children's Hospital, 4800 Sandpoint Way NE, Seattle, WA 98115, United States.
| | | | | | | | | |
Collapse
|
13
|
The physiological determinants of sudden infant death syndrome. Respir Physiol Neurobiol 2013; 189:288-300. [PMID: 23735486 DOI: 10.1016/j.resp.2013.05.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/19/2013] [Accepted: 05/27/2013] [Indexed: 01/08/2023]
Abstract
It is well-established that environmental and biological risk factors contribute to Sudden Infant Death Syndrome (SIDS). There is also growing consensus that SIDS requires the intersection of multiple risk factors that result in the failure of an infant to overcome cardio-respiratory challenges. Thus, the critical next steps in understanding SIDS are to unravel the physiological determinants that actually cause the sudden death, to synthesize how these determinants are affected by the known risk factors, and to develop novel ideas for SIDS prevention. In this review, we will examine current and emerging perspectives related to cardio-respiratory dysfunctions in SIDS. Specifically, we will review: (1) the role of the preBötzinger complex (preBötC) as a multi-functional network that is critically involved in the failure to adequately respond to hypoxic and hypercapnic challenges; (2) the potential involvement of the preBötC in the gender and age distributions that are characteristic for SIDS; (3) the link between SIDS and prematurity; and (4) the potential relationship between SIDS, auditory function, and central chemosensitivity. Each section underscores the importance of marrying the epidemiological and pathological data to experimental data in order to understand the physiological determinants of this syndrome. We hope that a better understanding will lead to novel ways to reduce the risk to succumb to SIDS.
Collapse
|
14
|
Rubens D, Sarnat HB. Sudden infant death syndrome: an update and new perspectives of etiology. HANDBOOK OF CLINICAL NEUROLOGY 2013; 112:867-74. [PMID: 23622296 DOI: 10.1016/b978-0-444-52910-7.00008-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sudden infant death syndrome (SIDS) is a condition in which an infant, usually in the early postnatal period and nearly always before 6 months of age, dies during sleep for unexplained reasons and the standard autopsy fails to disclose an etiology. Various physiological explanations of risk factors include the prone sleeping position, overheating by excessive bundling, viral upper respiratory tract infections, parental smoking at home, and birthing injury resulting in an insult to the inner ear and central chemoreceptor zone, an immaturity that involves CO2 chemoreceptors that regulate respiratory control. Neuropathological studies and theories implicate: (1) hypoplasia or defective transmitter function in the medullary arcuate nucleus, a derivative of the rhombencephalic lip of His; (2) synaptic or receptor immaturity of the nucleus of the fasciculus solitarius, the "pneumotaxic center"; and (3) functional impairment of the serotonergic raphé nuclei of the pontine and medullary ventral median septum and other serotonergic neurons of the brainstem. Additional neurological risk factors for SIDS include perinatal neuromuscular diseases, infantile epilepsies or status epilepticus, and genetic metabolic encephalopathies.
Collapse
Affiliation(s)
- Daniel Rubens
- Department of Anesthesia, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | | |
Collapse
|
15
|
Yamaguchi K, Yamada T. Influence of the Vestibulorespiratory and Peripheral Reflexes on Ventilation when Balancing on One Leg. J Phys Ther Sci 2011. [DOI: 10.1589/jpts.23.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Takumi Yamada
- Division of Physical Therapy, Tokyo Metropolitan University
| |
Collapse
|
16
|
Allen T, Juric-Sekhar G, Campbell S, Mussar KE, Seidel K, Tan J, Zyphur M, Villagracia L, Stephanian D, Koch H, Ramirez JM, Rubens DD. Inner ear insult suppresses the respiratory response to carbon dioxide. Neuroscience 2010; 175:262-72. [PMID: 21130842 DOI: 10.1016/j.neuroscience.2010.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 10/18/2010] [Accepted: 11/16/2010] [Indexed: 12/13/2022]
Abstract
Compensated respiratory acidosis has been observed in a significant number of patients with active vestibular disease. We therefore hypothesized that the inner ear may play an unrecognized integral role in respiratory control. To test this premise, we investigated whether mice with induced inner ear injury demonstrated any alteration in their respiratory response to inhaled carbon dioxide (CO(2)). Experimental mice and control mice were included in two separate experiments. Intra-tympanic gentamycin injections were administered to induce inner ear damage in experimental animals. Hearing loss and vestibular dysfunction were tested 1-week after injections to confirm presence of inner ear insult, following which the animal's respiratory response to inhalation of 8% CO(2) was examined. Mice with inner ear injury (n=60) displayed a significantly diminished hypercapnic ventilatory response (HCVR). This contrasted with the normal HCVR seen in control mice that had not undergone tympanic injections (n=30), controls that received tympanic injections with saline (n=5), and controls that had gentamicin administered systemically (n=5). In response to inspired CO(2), the mean respiratory frequency of control mice increased by an average of 50% over their baseline values for both parts of the experiment. In contrast, the ear-damaged experimental group mean values increased by only three breaths per minute (bpm) (2%) in the first experiment and by 28 bpm (11%) in the second experiment. Inner ear damage significantly reduces the respiratory response to CO(2) inhalation. In addition to the established role of the inner ear organ in hearing and balance, this alludes to an unidentified function of the inner ear and its interconnecting neuronal pathways in respiratory regulation. This finding may offer valuable new clues for disease states with abnormal respiratory control where inner ear dysfunction may be present.
Collapse
Affiliation(s)
- T Allen
- Department of Anesthesia, Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ogata H, Nakahara M, Sato T, Hoshikawa S, Ogata T, Nakazawa K. Hyperventilation during orthostatic challenge in spinal cord-injured humans. Clin Auton Res 2009; 19:327-34. [DOI: 10.1007/s10286-009-0023-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
|
18
|
Adaptation of ventilation to ‘buffeting’ in vehicles. Clin Auton Res 2008; 18:346-51. [DOI: 10.1007/s10286-008-0491-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
|
19
|
Rubens DD, Vohr BR, Tucker R, O'Neil CA, Chung W. Newborn oto-acoustic emission hearing screening tests: preliminary evidence for a marker of susceptibility to SIDS. Early Hum Dev 2008; 84:225-9. [PMID: 17614220 DOI: 10.1016/j.earlhumdev.2007.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the newborn transient evoked otoacoustic emission (TEOAE) hearing screening tests of infants later diagnosed with the sudden infant death syndrome (SIDS). STUDY DESIGN In a case-controlled study, the newborn TEOAE hearing screens of 31 infants who subsequently died of SIDS were retrospectively compared to those of 31 newborn infants that survived the first year of life. SIDS cases were individually matched to surviving controls based on gender, term versus preterm age and NICU versus well baby nursery. RESULTS The TEOAE screens of SIDS infants demonstrated significantly decreased signal to noise ratios at 2000, 3000, and 4000 Hz (p<0.05) on the right side compared to healthy control infants. CONCLUSION Newborns at risk for SIDS are currently indistinguishable from other newborns and are only identified following a later fatal event. A unilateral difference in cochlear function is a unique finding that may offer the opportunity to identify infants at risk of SIDS during the early postnatal period with a simple non invasive hearing screen test. The ability to implement preventative measures well in advance of a potential critical incident would be an important breakthrough.
Collapse
Affiliation(s)
- Daniel D Rubens
- Department of Anesthesia, Children's Hospital & Regional Medical Center, 4800 Sandpoint Way NE, Seattle, WA 98105, USA.
| | | | | | | | | |
Collapse
|
20
|
Arshian M, Holtje RJ, Cotter LA, Rice CD, Cass SP, Yates BJ. Consequences of postural changes and removal of vestibular inputs on the movement of air in and out of the lungs of conscious felines. J Appl Physiol (1985) 2007; 103:347-52. [PMID: 17431091 DOI: 10.1152/japplphysiol.00211.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A variety of experimental approaches in human subjects and animal models established that the vestibular system contributes to regulation of respiration. In cats, the surgical elimination of labyrinthine signals produced changes in the spontaneous activity and posturally related responses of a number of respiratory muscles. However, these effects were complex and sometimes varied between muscle compartments, such that the physiological role of vestibulo-respiratory responses is unclear. The present study determined the functional significance of vestibulo-respiratory influences by examining the consequences of a bilateral labyrinthectomy on breathing rate and the pressure, volume, and flow rate of air exchanged during inspiration and expiration as body orientation with respect to gravity was altered. Data were collected from conscious adult cats acclimated to breathing through a facemask connected to a pneuomotach during 60 degrees head-up pitch and ear-down roll body rotations. Removal of vestibular inputs resulted in a 15% reduction in breathing rate, a 13% decrease in minute ventilation, a 16% decrease in maximal inspiratory airflow rate, and a 14% decrease in the maximal expiratory airflow rate measured when the animals were in the prone position. However, the lesions did not appreciably affect phasic changes in airflow parameters related to alterations in posture. These results suggest that the role of the vestibular system in the control of breathing is to modify baseline respiratory parameters in proportion to the general intensity of ongoing movements, and not to rapidly alter ventilation in accordance with body position.
Collapse
Affiliation(s)
- M Arshian
- Department of Otolaryngology, University of Pittsburgh, Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
21
|
Green DA, Bray A, Golding JF, Bronstein AM, Gresty MA. Tachypnea and hypocapnia are induced by ‘buffeting’ in vehicles. Clin Auton Res 2006; 16:281-5. [PMID: 16832596 DOI: 10.1007/s10286-006-0360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Normal physiological responses to vehicular buffeting were studied during a 5 minute mild 'off road' exposure in a motion simulator. The ride provoked an initial increase in heart rate and blood pressure and a significant hypocapnia of P(ET) CO(2) 34 mm Hg caused by tachypnea, which took 5 minutes to recover. Motion induced hypocapnia could be a source of distress for vulnerable subjects and patients when travelling.
Collapse
Affiliation(s)
- David Andrew Green
- Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Hospital Campus, Hammersmith, London, UK.
| | | | | | | | | |
Collapse
|
22
|
Hernandez JP, Xu F, Frazier DT. Medial vestibular nucleus mediates the cardiorespiratory responses to fastigial nuclear activation and hypercapnia. J Appl Physiol (1985) 2005; 97:835-42. [PMID: 15333625 DOI: 10.1152/japplphysiol.00134.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Electrical stimulation of the cerebellar fastigial nucleus (FN) evokes hyperventilation and hypertension responses that are similar to those induced by stimulation of the medial region of the vestibular nucleus (VNM). Because there are mutual projections between these two nuclei morphologically, we hypothesized that the FN-mediated cardiorespiratory responses were related to the integrity of the VNM. Experiments were conducted on 21 anesthetized, tracheotomized, and spontaneously breathing rats. Electrical stimulation (approximately 10 s) of the FN was used to evoke cardiorespiratory responses, and the same stimulus was repeated 30-45 min after bilateral lesions of the VNM by local microinjection of ibotenic acid (100 mM, 100 nl). We found that FN stimulation-induced hyperventilation and hypertension were attenuated significantly by the lesions. The role of the VNM in the ventilatory responses to chemical challenges was subsequently defined. The animals were exposed to hypercapnia (10% CO2) and hypoxia (10% O2) for 1-2 min randomly before and after VNM lesions. The results showed that VNM lesions significantly attenuated the cardiorespiratory responses to hypercapnia but not to hypoxia, with little effect on baseline respiratory variables. These findings suggest that the VNM is required for full expression of the cardiorespiratory responses to electrical stimulation of the FN as well as to hypercapnia. However, neurons within the VNM do not appear to be critical for maintaining eupneic breathing and the cardiorespiratory responses to hypoxia.
Collapse
Affiliation(s)
- Joseph P Hernandez
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | |
Collapse
|
23
|
Kita I, Imanaka K, Arita H. Effects of practice on cardiorespiratory responses during postural control. Exp Brain Res 2004; 161:512-8. [PMID: 15517214 DOI: 10.1007/s00221-004-2095-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/10/2004] [Indexed: 02/04/2023]
Abstract
The present study examined the effects of practice of a balance test on cardiorespiratory changes in response to a 1-min balance test performed by standing on one leg with eyes closed (SOLEC) in 30 females (n=15, 21+/-4 years, mean+/-SD, for the experimental group; n=15, 22+/-4 years for the control group). Blood pressure (BP), heart rate (HR), minute ventilation (VE), respiratory rate (RR), tidal volume (VT), expiratory duration (Te), inspiratory duration (Ti), and oxygen uptake (VO(2)) were measured during the balance test before and after 2 wk of daily practice. The experimental group was given a daily 15-min practice session for the balance test. In contrast, the control group was instructed not to do any special practice for the balance test. In both the experimental and control groups, SOLEC induced significant increases in BP, HR, VE, RR, and VO(2), and decreases in Te and Ti. Following the practice sessions, the balance time increased significantly in the experimental group (P<0.01). In addition, 2 wk of practice reduced the increases in BP (P<0.01), VE (P<0.05), and RR (P<0.01), and prolonged Te (P<0.01) during the SOLEC test. These results suggest that practice of a postural task affects cardiorespiratory responses to the balance test in addition to postural control.
Collapse
Affiliation(s)
- Ichiro Kita
- Department of Kinesiology, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, 192-0397 Tokyo, Japan.
| | | | | |
Collapse
|
24
|
Wilkinson KA, Maurer AP, Sadacca BF, Yates BJ. Responses of feline medial medullary reticular formation neurons with projections to the C5–C6 ventral horn to vestibular stimulation. Brain Res 2004; 1018:247-56. [PMID: 15276885 DOI: 10.1016/j.brainres.2004.05.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 10/26/2022]
Abstract
Prior studies have shown that the vestibular system contributes to adjusting respiratory muscle activity during changes in posture, and have suggested that portions of the medial medullary reticular formation (MRF) participate in generating vestibulo-respiratory responses. However, there was previously no direct evidence to demonstrate that cells in the MRF relay vestibular signals monosynaptically to respiratory motoneurons. The present study tested the hypothesis that the firing of MRF neurons whose axons could be antidromically activated from the vicinity of diaphragm motoneurons was modulated by whole-body rotations in vertical planes that stimulated vestibular receptors, as well as by electrical current pulses delivered to the vestibular nerve. In total, 171 MRF neurons that projected to the C5-C6 ventral horn were studied; they had a conduction velocity of 34+/-15 (standard deviation) m/sec. Most (135/171 or 79%) of these MRF neurons lacked spontaneous firing. Of the subpopulation of units with spontaneous discharges, only 3 of 20 cells responded to vertical rotations up to 10 degrees in amplitude, whereas the activity of 8 of 14 neurons was affected by electrical stimulation of the vestibular nerve. These data support the hypothesis that the MRF participates in generating vestibulo-respiratory responses, but also suggest that some neurons in this region have other functions.
Collapse
Affiliation(s)
- K A Wilkinson
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
25
|
Wilson TE, Kuipers NT, McHugh EA, Ray CA. Vestibular activation does not influence skin sympathetic nerve responses during whole body heating. J Appl Physiol (1985) 2004; 97:540-4. [PMID: 15075298 DOI: 10.1152/japplphysiol.00174.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cutaneous vasculature and eccrine sweat glands are modified by both thermal and nonthermal factors. To determine the effect of thermal stress on the vestibulosympathetic reflex, skin sympathetic nerve activity (SSNA) and cutaneous end-organ responses were measured in 10 subjects during static head-down rotation (HDR) and dynamic yaw and pitch (30 cycles/min) to activate the otolith organs and semicircular canals. SSNA (microneurography of peroneal nerve), cutaneous vascular conductance (CVC; laser-Doppler flux/mean arterial pressure), sweat rate (capacitance hygrometry), and body temperature were collected during normothermia and after whole body heating. Body temperature was controlled by perfusing neutral (34-35 degrees C) or warm (44-46 degrees C) water through a tube-lined suit. During normothermia, HDR did not alter SSNA (-0.4 +/- 4.4% change), CVC (4.2 +/- 6.9% change), or sweat rate (-2.7 +/- 1.2% change) within the innervated area of skin. Dynamic yaw and pitch also did not elicit significant changes in SSNA, CVC, or sweat rate during normothermia. Whole body heating significantly increased internal temperature (0.8 +/- 0.1 degrees C), mean skin temperature (4.1 +/- 0.2 degrees C), CVC (322 +/- 109% control), and sweat rate (0.35 +/- 0.08 mg.cm(-2).min(-1)). After whole body heating, HDR did not significantly alter SSNA (3.2 +/- 7.6% change), CVC (-7.3 +/- 3.9% change), or sweat rate (-3.3 +/- 1.9% change). Dynamic yaw and pitch also did not produce significant changes in SSNA, CVC, or sweat rate after whole body heating. These data suggest that vestibular activation by head movements is not a nonthermal factor affecting SSNA and cutaneous end-organ responses in humans.
Collapse
Affiliation(s)
- Thad E Wilson
- Division of Cardiology, Department of Medicine, Pennsylvania State College of Medicine, H047, 500 University Dr., Hershey, PA 17033-2390, USA
| | | | | | | |
Collapse
|
26
|
LeMarbre G, Stauber S, Khayat RN, Puleo DS, Skatrud JB, Morgan BJ. Baroreflex-induced sympathetic activation does not alter cerebrovascular CO2 responsiveness in humans. J Physiol 2003; 551:609-16. [PMID: 12844511 PMCID: PMC2343219 DOI: 10.1113/jphysiol.2003.046987] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the effect of baroreflex-induced sympathetic activation, produced by lower body negative pressure (LBNP) at -40 mmHg, on cerebrovascular responsiveness to hyper- and hypocapnia in healthy humans. Transcranial Doppler ultrasound was used to measure blood flow velocity (CFV) in the middle cerebral artery during variations in end-tidal carbon dioxide pressure (PET,CO2) of +10, +5, 0, -5, and -10 mmHg relative to eupnoea. The slopes of the linear relationships between PET,CO2 and CFV were computed separately for hyper- and hypocapnia during the LBNP and no-LBNP conditions. LBNP decreased pulse pressure, but did not change mean arterial pressure. LBNP evoked an increase in ventilation that resulted in a 9 +/- 2 mmHg decrease in PET,CO2, which was corrected by CO2 supplementation of the inspired air. LBNP did not affect cerebrovascular CO2 response slopes during steady-state hypercapnia (3.14 +/- 0.24 vs. 2.96 +/- 0.26 cm s-1 mmHg-1) or hypocapnia (1.31 +/- 0.18 vs. 1.32 +/- 0.19 cm s-1 mmHg-1), or the CFV responses to voluntary apnoea (+51 +/- 19 vs. +50 +/- 18 %). Thus, cerebrovascular CO2 responsiveness was not altered by baroreflex-induced sympathetic activation. Our data challenge the concept that sympathetic activation restrains cerebrovascular responses to alterations in CO2 pressure.
Collapse
Affiliation(s)
- Gabrielle LeMarbre
- Department of Medicine, University of Wisconsin-Madison and the Middleton Veterans Affairs Administration Hospital, 53705, USA
| | | | | | | | | | | |
Collapse
|
27
|
Thurrell A, Jáuregui-Renaud K, Gresty MA, Bronstein AM. Vestibular influence on the cardiorespiratory responses to whole-body oscillation after standing. Exp Brain Res 2003; 150:325-31. [PMID: 12690420 DOI: 10.1007/s00221-003-1422-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Accepted: 01/22/2003] [Indexed: 10/20/2022]
Abstract
We assessed the influence of vestibular stimulation by whole-body oscillation in the yaw plane on the cardiorespiratory responses after a change of posture from sitting to standing. Eighteen healthy subjects (21-70 years old) and six patients with bilateral vestibular loss (46-59 years old) were tested. For comparison, a subgroup, age matched to the patients, was created from the healthy group. After a 10-min rest, subjects who were sitting, back unsupported, stood on a platform affording en bloc head and body support. The platform was either static or oscillated at 0.1 Hz and 0.5 Hz (20 degrees amplitude) for 2 min. Presentation of the three conditions was counterbalanced. Respiration, ECG, blood pressure and head position were recorded. During oscillation at 0.5 Hz, the respiratory responses were different between groups; healthy subjects showed a significant increase of the respiratory frequency (1.75+/-2.1 breaths/min), which was not observed in the patients (0.16+/-0.7 breaths/min) ( p<0.05, ANOVA). Absolute changes of heart rate and blood pressure were similar for the three conditions in all the subjects. However, healthy subjects showed a decrease of power spectrum density of the high-frequency ('respiratory') component of heart rate variability on standing during all three conditions. This response was variable among the patients and the age-matched group. The study shows that semicircular canal activation influences the respiratory rhythm during movements in the yaw plane in standing subjects. In addition, we observed that changes of the respiratory influence on heart rate variability during orthostatic stress are not affected by yaw oscillation or chronic vestibular loss, but may be affected by factors related to age.
Collapse
Affiliation(s)
- A Thurrell
- Academic Department of Neuro-otology, Division of Neurosciences and Psychological Medicine, Imperial College, London, UK
| | | | | | | |
Collapse
|
28
|
Abstract
Activation of the vestibular system changes ventilation in humans. The purpose of the present study was to investigate whether aging alters the vestibulorespiratory reflex in humans. Because aging attenuates the vestibulosympathetic reflex, it was hypothesized that aging would attenuate the vestibulorespiratory reflex. Changes in ventilation during engagement of the semicircular canals and/or the otolith organs were measured in fourteen young (26 +/- 1 years) and twelve older subjects (66 +/- 1 years). In young subjects, natural engagement of the semicircular canals and the otolith organs by head rotation increased breathing frequency during dynamic upright pitch at 0.25 Hz (15 cycles min-1) and 0.5 Hz (30 cycles min-1) (delta2 +/- 1 and delta4 +/- 1 breaths min-1, respectively; P < 0.05) and during dynamic upright roll (delta2 +/- 1 and delta4 +/- 1, respectively; P < 0.05). In older subjects, the only significant changes in breathing frequency occurred during dynamic pitch and roll at 0.5 Hz (delta2 +/- 1 and delta2 +/- 1 for pitch and roll, respectively). Stimulation of the horizontal semicircular canals by yaw rotation increased minute ventilation in young but not older subjects. Selective engagement of the otolith organs during static head-down rotation did not alter breathing frequency in either the young or older subjects. The results of this study indicate that the vestibulorespiratory reflex is attenuated in older humans, with greater vestibular stimulation needed to activate the reflex.
Collapse
Affiliation(s)
- Nathan T Kuipers
- Department of Medicine (Cardiology), General Clinical Research Center, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
29
|
Abstract
AIM The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.
Collapse
Affiliation(s)
- C A Ray
- Department of Medicine (Cardiology), General Clinical Research Center, Pennsylvania State University College of Medicine, Hershey, PA 17033-2390, USA
| | | |
Collapse
|
30
|
Xu F, Zhuang J, Zhou TR, Gibson T, Frazier DT. Activation of different vestibular subnuclei evokes differential respiratory and pressor responses in the rat. J Physiol 2002; 544:211-23. [PMID: 12356893 PMCID: PMC2290581 DOI: 10.1113/jphysiol.2002.022368] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Accepted: 06/10/2002] [Indexed: 11/08/2022] Open
Abstract
Activation of the vestibular system can either increase or decrease ventilation. The objectives of the present study were to clarify whether these different responses are the result of activating different vestibular subnuclei, by addressing three questions. Do neurones within the medial, lateral and spinal vestibular nuclei (VN(M), VN(L) and VN(S), respectively) function differently in respiratory modulation? Is the ventral medullary nucleus gigantocellularis (NGC) required to fully express the VN-mediated respiratory responses? Is glutamate, by acting on N-methyl-D-aspartic acid (NMDA) receptors in the vestibular subnuclei, capable of modulating respiration? In anaesthetized, tracheotomized and spontaneously breathing rats, electrical stimuli (< 10 s) applied in the VN(L) and VN(S) significantly elevated ventilation by 35 % and 30 % (P < 0.05), respectively. However, VN(M) stimulation produced statistically significant (P < 0.05) changes that differed depending upon the stimulation site: either ventilatory inhibition (by 40 % in 57 % of the trials) or excitation (by 55 % in 43 % of trials), and which were often accompanied by a pressor response. These electrical-stimulation-evoked cardiorespiratory responses were almost eliminated following microinjection of ibotenic acid into the stimulation sites (P < 0.05) or bilaterally into the NGC (P < 0.05). As compared to vehicle, microinjection of NMDA into the unilateral VN(M), VN(L) and VN(S) significantly increased ventilation to 74 %, 58 % and 60 % (P < 0.05), respectively, with no effect on arterial blood pressure. These data suggest that neurones within the vestibular subnuclei play different roles in cardiorespiratory modulation, and that the integrity of the NGC is essential for the full expression of these VN-mediated responses. The evoked respiratory excitatory responses are probably mediated by glutamate acting on NMDA receptors, whereas the neurotransmitters involved in VN(M)-mediated respiratory inhibition and hypertension remain unknown.
Collapse
Affiliation(s)
- Fadi Xu
- Department of Physiology, University of Kentucky, Lexington 40536, USA.
| | | | | | | | | |
Collapse
|