1
|
Falkner B, Alexander BT, Nuyt AM, South AM, Ingelfinger J. Cardiovascular Health Starts in the Womb. Hypertension 2024; 81:2016-2026. [PMID: 39069922 PMCID: PMC11410535 DOI: 10.1161/hypertensionaha.124.21359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Hypertension has largely been viewed as a disorder of adulthood. Historically, blood pressure (BP) was not routinely measured in children because hypertension was considered uncommon in childhood. It was not until the 1970s that it was apparent that in childhood BP levels were normally lower compared with those in adults, were related to age and growth, and that abnormal BP in children needed different definitions. Based on the distribution of BP levels in available child cohorts, the 95th percentile of BP levels became the definition of hypertension in children and adolescents-an epidemiological definition. Subsequent clinical and epidemiological research identified associated risk factors in childhood that linked abnormal BP in youth with hypertension in adulthood. In the 1980s, the Barker hypothesis, based on observations that low birth weight could be linked to cardiovascular disease in adulthood, promoted further research spanning epidemiological, clinical, and basic science on the childhood origins of hypertension. This review focuses on recent findings from both longitudinal maternal-child cohorts and experimental models that examine both maternal and offspring conditions associated with risks of subsequent cardiovascular disease.
Collapse
Affiliation(s)
- Bonita Falkner
- Departments of Medicine (B.F.), Sydney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA
- Pediatrics (B.F.), Sydney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Barbara T Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson (B.T.A.)
| | - Anne-Monique Nuyt
- Department of Pediatrics, CHU Sainte Justine, Faculté de Médecine, Université de Montréal, QC (A.-M.N.)
| | - Andrew M South
- Department of Pediatrics, Section of Nephrology, Wake Forest University School of Medicine, Winston Salem, NC (A.M.S.)
| | - Julie Ingelfinger
- Pediatric Nephrology Unit, MassGeneral Hospital for Children at MassGeneral, Boston, MA (J.I.)
| |
Collapse
|
2
|
Graton ME, Spaans F, He R, Chatterjee P, Kirschenman R, Quon A, Phillips TJ, Case CP, Davidge ST. Sex-specific differences in the mechanisms for enhanced thromboxane A 2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia. Biol Sex Differ 2024; 15:52. [PMID: 38898532 PMCID: PMC11188502 DOI: 10.1186/s13293-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.
Collapse
Affiliation(s)
- Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Rose He
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Paulami Chatterjee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tom J Phillips
- UK Dementia Research Institute, Cardiff University, Cardiff, W1T 7NF, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS8 1QU, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
3
|
Joó JG, Sulyok E, Bódis J, Kornya L. Disrupted Balance of the Oxidant-Antioxidant System in the Pathophysiology of Female Reproduction: Oxidative Stress and Adverse Pregnancy Outcomes. Curr Issues Mol Biol 2023; 45:8091-8111. [PMID: 37886954 PMCID: PMC10605220 DOI: 10.3390/cimb45100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The significance of oxidative stress in the pathophysiology of male reproductive processes has been closely studied in the last two decades. Recently, it has become clear that oxidative stress can lead to numerous pathological conditions during female reproductive processes as well, contributing to the development of endometriosis, polycystic ovary syndrome and various forms of infertility. During pregnancy, physiological generation of reactive oxygen species (ROS) occurs in association with several developmental processes including oocyte maturation and implantation. An overproduction of ROS can lead to disturbances in fetal development and increases the risk for missed abortion, intrauterine growth restriction, pre-eclampsia, premature delivery and gestational diabetes. Our review focuses on the etiological role of the disrupted oxidant-antioxidant system during human gestation as it relates to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- József Gábor Joó
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary
| | - Endre Sulyok
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - József Bódis
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - László Kornya
- Central Hospital of South Pest National Institute of Hematology and Infectious Diseases, 1476 Budapest, Hungary
| |
Collapse
|
4
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
5
|
Abstract
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development, and Neuroscience; The Barcroft Centre; Cambridge Cardiovascular British Heart Foundation Centre for Research Excellence; and Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, UK
| |
Collapse
|
6
|
Fourman LT, Mueller SB, Boutin A, Zheng I, Pan CS, Gerard ME, Stanley TL, Roberts DJ. Placental Vascular Abnormalities in Association With Prenatal and Long-Term Health Characteristics Among HIV-Exposed Uninfected Adolescents and Young Adults. J Acquir Immune Defic Syndr 2021; 88:103-109. [PMID: 34034303 PMCID: PMC8373807 DOI: 10.1097/qai.0000000000002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-exposed uninfected (HEU) individuals are predisposed to adverse health outcomes, which in part may stem from the influence of an altered intrauterine milieu on fetal programming. The placenta serves as a readout for the effects of the maternal environment on the developing fetus and may itself contribute to the pathogenesis of disease. SETTING US academic health system. METHODS We leveraged a previously established registry-based cohort of HEU adolescents and young adults to identify 26 subjects for whom placental histopathology was available. We further obtained placental tissue from 29 HIV-unexposed pregnancies for comparison. We examined differences in placental histopathology between the groups and related villous vascularity in the HEU group to prenatal maternal characteristics and long-term health outcomes. RESULTS Placentas from HEU pregnancies demonstrated a higher blood vessel count per villus as compared with controls (5.9 ± 1.0 vs. 5.4 ± 0.8; P = 0.05), which was independent of maternal prenatal age, race, body mass index, smoking status, hemoglobin, and gestational age. Furthermore, within the HEU group, lower CD4+ T-cell count during pregnancy was associated with greater placental vascularity (r = -0.44; P = 0.03). No significant relationships were observed between placental blood vessel count per villus and body mass index z-score or reactive airway disease among HEU individuals later in life. CONCLUSIONS Placentas from HEU pregnancies demonstrated increased villous vascularity compared with HIV-unexposed controls in proportion to the severity of maternal immune dysfunction. Further studies are needed to examine intrauterine exposure to hypoxia as a potential mechanism of fetal programming in HIV.
Collapse
Affiliation(s)
- Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sarah B. Mueller
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Autumn Boutin
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isabel Zheng
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Chelsea S. Pan
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Marisa E. Gerard
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Takara L. Stanley
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Endocrinology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Selivanova EK, Shvetsova AA, Shilova LD, Tarasova OS, Gaynullina DK. Intrauterine growth restriction weakens anticontractile influence of NO in coronary arteries of adult rats. Sci Rep 2021; 11:14475. [PMID: 34262070 PMCID: PMC8280217 DOI: 10.1038/s41598-021-93491-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is one of the most common pathologies of pregnancy. The cardiovascular consequences of IUGR do not disappear in adulthood and can manifest themselves in pathological alterations of vasomotor control. The hypothesis was tested that IUGR weakens anticontractile influence of NO and augments procontractile influence of Rho-kinase in arteries of adult offspring. To model IUGR in the rat, dams were 50% food restricted starting from the gestational day 11 till delivery. Mesenteric and coronary arteries of male offspring were studied at the age of 3 months using wire myography, qPCR, and Western blotting. Contractile responses of mesenteric arteries to α1-adrenoceptor agonist methoxamine as well as influences of NO and Rho-kinase did not differ between control and IUGR rats. However, coronary arteries of IUGR rats demonstrated elevated contraction to thromboxane A2 receptor agonist U46619 due to weakened anticontractile influence of NO and enhanced role of Rho-kinase in the endothelium. This was accompanied by reduced abundance of SODI protein and elevated content of RhoA protein in coronary arteries of IUGR rats. IUGR considerably changes the regulation of coronary vascular tone in adulthood and, therefore, can serve as a risk factor for the development of cardiac disorders.
Collapse
Affiliation(s)
- Ekaterina K Selivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Lyubov D Shilova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K Gaynullina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia.
- Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
8
|
Developmental programming of cardiovascular function: a translational perspective. Clin Sci (Lond) 2021; 134:3023-3046. [PMID: 33231619 DOI: 10.1042/cs20191210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.
Collapse
|
9
|
da Silva TFG, de Bem GF, da Costa CA, Santos IB, Soares RDA, Ognibene DT, Rito-Costa F, Cavalheira MA, da Conceição SP, Ferraz MR, Resende AC. Prenatal hypoxia predisposes vascular functional and structural changes associated with oxidative stress damage and depressive behavior in adult offspring male rats. Physiol Behav 2020; 230:113293. [PMID: 33338483 DOI: 10.1016/j.physbeh.2020.113293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/05/2023]
Abstract
Intrauterine hypoxia-ischemia (HI) provides a strong stimulus for a developmental origin of both the central nervous system and cardiovascular diseases. This study aimed to investigate vascular functional and structural changes, oxidative stress damage, and behavioral alterations in adult male offspring submitted to HI during pregnancy. The pregnant Wistar rats had a uterine artery clamped for 45 min on the 18th gestational day, submitting the offspring to hypoxic-ischemic conditions. The Sham group passed to the same surgical procedure as the HI rats, without occlusion of the maternal uterine artery, and the controls consisted of non-manipulated healthy animals. After weaning, the male pups were divided into three groups: control, sham, and HI, according to the maternal procedure. At postnatal day 90 (P90), the adult male offspring performed the open field and forced swim tests. In P119, the rats had their blood pressure checked and were euthanized. Prenatal HI induced a depressive behavior in adult male offspring associated with a reduced vasodilator response to acetylcholine in perfused mesenteric arterial bed, and reduced superoxide dismutase and glutathione peroxidase activities in the aorta compared to control and sham groups. Prenatal HI also increased the vasoconstrictor response to norepinephrine, the media thickness, collagen deposition, and the oxidative damage in the aorta from adult male offspring compared to control and sham groups. Our results suggest an association among prenatal HI and adult vascular structural and functional changes, oxidative stress damage, and depressive behavior.
Collapse
Affiliation(s)
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fernanda Rito-Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Mariana Alencar Cavalheira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Marcos Rochedo Ferraz
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Kitase Y, Sato Y, Arai S, Onoda A, Ueda K, Go S, Mimatsu H, Jabary M, Suzuki T, Ito M, Saito A, Hirakawa A, Mukai T, Nagamura-Inoue T, Takahashi Y, Tsuji M, Hayakawa M. Establishment of a Novel Fetal Growth Restriction Model and Development of a Stem-Cell Therapy Using Umbilical Cord-Derived Mesenchymal Stromal Cells. Front Cell Neurosci 2020; 14:212. [PMID: 32848614 PMCID: PMC7401876 DOI: 10.3389/fncel.2020.00212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major complication of prenatal ischemic/hypoxic exposure and affects 5%-10% of pregnancies. It causes various disorders, including neurodevelopmental disabilities due to chronic hypoxia, circulatory failure, and malnutrition via the placenta, and there is no established treatment. Therefore, the development of treatments is an urgent task. We aimed to develop a new FGR rat model with a gradual restrictive load of uterus/placental blood flow and to evaluate the treatment effect of the administration of umbilical cord-derived mesenchymal stromal cells (UC-MSCs). To create the FGR rat model, we used ameroid constrictors that had titanium on the outer wall and were composed of C-shaped casein with a notch and center hole inside that gradually narrowed upon absorbing water. The ameroid constrictors were attached to bilateral ovarian/uterine arteries on the 17th day of pregnancy to induce chronic mild ischemia, which led to FGR with over 20% bodyweight reduction. After the intravenous administration of 1 × 105 UC-MSCs, we confirmed a significant improvement in the UC-MSC group in a negative geotaxis test at 1 week after birth and a rotarod treadmill test at 5 months old. In the immunobiological evaluation, the total number of neurons counted via the stereological counting method was significantly higher in the UC-MSC group than in the vehicle-treated group. These results indicate that the UC-MSCs exerted a treatment effect for neurological impairment in the FGR rats.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Sakiko Arai
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuto Onoda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Shoji Go
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Haruka Mimatsu
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mahboba Jabary
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Miharu Ito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akiko Saito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akihiro Hirakawa
- Clinical Research Center, Division of Biostatistics and Data Science, Medical and Dental University, Tokyo, Japan
| | - Takeo Mukai
- Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Tsuji
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women's University, Kyoto, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
11
|
Zhang W, Feng X, Zhang Y, Sun M, Li L, Gao Q, Tang J, Zhang P, Lv J, Zhou X, Xu Z. Prenatal hypoxia inhibited propionate-evoked BK channels of mesenteric artery smooth muscle cells in offspring. J Cell Mol Med 2020; 24:3192-3202. [PMID: 31975557 PMCID: PMC7077603 DOI: 10.1111/jcmm.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
As a common complication of pregnancy, gestational hypoxia has been shown to predispose offspring to vascular dysfunction. Propionate, one of short‐chain fatty acids, exerts cardioprotective effects via reducing blood pressure. This study examined whether prenatal hypoxia impaired propionate‐stimulated large‐conductance Ca2+‐activated K+ (BK) channel activities in vascular smooth muscle cells (VSMCs) of offspring. Pregnant rats were exposed to hypoxia (10.5% oxygen) and normoxia (21% oxygen) from gestational day 7‐21. At 6 weeks of age, VSMCs in mesenteric arteries of offspring were analysed for BK channel functions and gene expressions. It was shown firstly that propionate could open significantly BK single channel in VSMCs in a concentration‐dependent manner. Antagonists of G protein βγ subunits and inositol trisphosphate receptor could completely suppress the activation of BK by propionate, respectively. Gαi/o and ryanodine receptor were found to participate in the stimulation on BK. Compared to the control, vasodilation and increments of BK NPo (the open probability) evoked by propionate were weakened in the offspring by prenatal hypoxia with down‐regulated Gβγ and PLCβ. It was indicated that prenatal hypoxia inhibited propionate‐stimulated BK activities in mesenteric VSMCs of offspring via reducing expressions of Gβγ and PLCβ, in which endoplasmic reticulum calcium release might be involved.
Collapse
Affiliation(s)
- Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Kumar P, Morton JS, Shah A, Do V, Sergi C, Serrano‐Lomelin J, Davidge ST, Beker D, Levasseur J, Hornberger LK. Intrauterine exposure to chronic hypoxia in the rat leads to progressive diastolic function and increased aortic stiffness from early postnatal developmental stages. Physiol Rep 2020; 8:e14327. [PMID: 31960611 PMCID: PMC6971413 DOI: 10.14814/phy2.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM We sought to explore whether fetal hypoxia exposure, an insult of placental insufficiency, is associated with left ventricular dysfunction and increased aortic stiffness at early postnatal ages. METHODS Pregnant Sprague Dawley rats were exposed to hypoxic conditions (11.5% FiO2 ) from embryonic day E15-21 or normoxic conditions (controls). After delivery, left ventricular function and aortic pulse wave velocity (measure of aortic stiffness) were assessed longitudinally by echocardiography from day 1 through week 8. A mixed ANOVA with repeated measures was performed to compare findings between groups across time. Myocardial hematoxylin and eosin and picro-sirius staining were performed to evaluate myocyte nuclear shape and collagen fiber characteristics, respectively. RESULTS Systolic function parameters transiently increased following hypoxia exposure primarily at week 2 (p < .008). In contrast, diastolic dysfunction progressed following fetal hypoxia exposure beginning weeks 1-2 with lower early inflow Doppler velocities, and less of an increase in early to late inflow velocity ratios and annular and septal E'/A' tissue velocities compared to controls (p < .008). As further evidence of altered diastolic function, isovolumetric relaxation time was significantly shorter relative to the cardiac cycle following hypoxia exposure from week 1 onward (p < .008). Aortic stiffness was greater following hypoxia from day 1 through week 8 (p < .008, except week 4). Hypoxia exposure was also associated with altered nuclear shape at week 2 and increased collagen fiber thickness at week 4. CONCLUSION Chronic fetal hypoxia is associated with progressive LV diastolic dysfunction, which corresponds with changes in nuclear shape and collagen fiber thickness, and increased aortic stiffness from early postnatal stages.
Collapse
Affiliation(s)
- Praveen Kumar
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Jude S. Morton
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Amin Shah
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Victor Do
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Consolato Sergi
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABCanada
| | - Jesus Serrano‐Lomelin
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
| | - Sandra T. Davidge
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Donna Beker
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Jody Levasseur
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Lisa K. Hornberger
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
13
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
14
|
Kovtun OP, Tsyvian PB. Pre-eclampsia in a mother and programming of the child’s cardiovascular health. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2019. [DOI: 10.21508/1027-4065-2019-64-4-19-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The authors present a review of the literature devoted to the problem of programming the formation of the cardiovascular system structure and function in children born from mothers with preeclampsia. These children are at high risk of developing cardiovascular diseases. Pre-eclampsia is caused by the endothelium dysfunction, deregulation of the immune and inflammatory factors during pregnancy. Experimental studies identify these factors as key epigenetic factors programming the condition of the cardiovascular system of the offspring. The modern concept of intrauterine programming, describing this phenomenon, focuses on three main areas of research: experimental models simulating the intrauterine environment with preeclampsia; research of the pathological phenotype formation under the influence of these factors; epigenetic studies of the influence of preeclampsia on the cardiovascular system functioning. The article discusses the perspectives of epigenetic programming prevention.
Collapse
Affiliation(s)
| | - P. B. Tsyvian
- Ural State Medical University;
Mother and Child Care Research Institute
| |
Collapse
|
15
|
Woodman AG, Noble RMN, Panahi S, Gragasin FS, Bourque SL. Perinatal iron deficiency combined with a high salt diet in adulthood causes sex-dependent vascular dysfunction in rats. J Physiol 2019; 597:4715-4728. [PMID: 31368136 DOI: 10.1113/jp278223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Perinatal iron deficiency causes changes in offspring mesenteric artery function in adulthood, particularly in males, which can be exacerbated by chronic intake of a high salt diet. Perinatal iron deficient male offspring exhibit enhanced conversion of big endothelin-1 to active endothelin-1, coinciding with decreased nitric oxide levels. Perinatal iron deficient male offspring have reduced nitric oxide-mediated endothelial-dependent vasodilatation coincident with increased vascular superoxide levels following consumption of a high salt diet. Perinatal iron deficiency has no apparent effects on vascular function in female offspring, even when fed a high salt diet. These results help us better understand underlying vascular mechanisms contributing to increased cardiovascular risk from perinatal stressors such as iron deficiency. ABSTRACT Pre- and immediate postnatal stressors, such as iron deficiency, can alter developmental trajectories and predispose offspring to long-term cardiovascular dysfunction. Here, we investigated the impact of perinatal iron deficiency on vascular function in the adult offspring, and whether these long-term effects were exacerbated by prolonged consumption of a high salt diet in adulthood. Female Sprague Dawley rats were fed either an iron-restricted or -replete diet prior to and throughout pregnancy. Six weeks prior to experimentation at 6 months of age, adult offspring were fed either a normal or high salt diet. Mesenteric artery responses to vasodilators and vasoconstrictors were assessed ex vivo by wire myography. Male perinatal iron deficient offspring exhibited decreased reliance on nitric oxide with methacholine-induced vasodilatation (interaction P = 0.03), coincident with increased superoxide levels when fed the high salt diet (P = 0.01). Male perinatal iron deficient offspring exhibit enhanced big endothelin-1 conversion to active endothelin-1 (P = 0.02) concomitant with decreased nitric oxide levels (P = 0.005). Female offspring vascular function was unaffected by perinatal iron deficiency, albeit the high salt diet was associated with impaired vasodilation and decreased nitric oxide production (P = 0.02), particularly in the perinatal iron deficient offspring. These findings implicate vascular dysfunction in the sex-specific programming of cardiovascular dysfunction in the offspring by perinatal iron deficiency.
Collapse
Affiliation(s)
- Andrew G Woodman
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Ronan M N Noble
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Sareh Panahi
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Ferrante S Gragasin
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Stephane L Bourque
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Canada.,Department of Pharmacology, University of Alberta, Edmonton, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Paz AA, Arenas GA, Castillo-Galán S, Peñaloza E, Cáceres-Rojas G, Suazo J, Herrera EA, Krause BJ. Premature Vascular Aging in Guinea Pigs Affected by Fetal Growth Restriction. Int J Mol Sci 2019; 20:ijms20143474. [PMID: 31311132 PMCID: PMC6678381 DOI: 10.3390/ijms20143474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular risk associated with fetal growth restriction (FGR) could result from an early impaired vascular function. However, whether this effect results in premature vascular aging has not been addressed. We studied the ex vivo reactivity of carotid and femoral arteries in fetal (near term), adults (eight months-old) and aged (16 months-old) guinea pigs in normal (control) and FGR offspring. Additionally, an epigenetic marker of vascular aging (i.e., LINE-1 DNA methylation) was evaluated in human umbilical artery endothelial cells (HUAEC) from control and FGR subjects. Control guinea pig arteries showed an increased contractile response (KCl-induced) and a progressive impairment of NO-mediated relaxing responses as animals get older. FGR was associated with an initial preserved carotid artery reactivity as well as a later significant impairment in NO-mediated responses. Femoral arteries from FGR fetuses showed an increased contractility but a decreased relaxing response compared with control fetuses, and both responses were impaired in FGR-adults. Finally, FGR-HUAEC showed decreased LINE-1 DNA methylation compared with control-HUAEC. These data suggest that the aging of vascular function occurs by changes in NO-mediated responses, with limited alterations in contractile capacity. Further, these effects are accelerated and imposed at early stages of development in subjects exposed to a suboptimal intrauterine environment.
Collapse
Affiliation(s)
- Adolfo A Paz
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
| | - German A Arenas
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
- Programa de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8330024, Santiago, Chile
| | - Sebastián Castillo-Galán
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
- Programa de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8330024, Santiago, Chile
| | - Estefanía Peñaloza
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile
| | - Gabriela Cáceres-Rojas
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Independencia 8380492, Santiago, Chile
| | - José Suazo
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Independencia 8380492, Santiago, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Salvador 486, Providencia 7500922, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano s/n, Putre, Chile
| | - Bernardo J Krause
- Department of Neonatology, Division of Paediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago 8330024, Santiago, Chile.
| |
Collapse
|
17
|
Liao W, Fan H, Davidge ST, Wu J. Egg White-Derived Antihypertensive Peptide IRW (Ile-Arg-Trp) Reduces Blood Pressure in Spontaneously Hypertensive Rats via the ACE2/Ang (1-7)/Mas Receptor Axis. Mol Nutr Food Res 2019; 63:e1900063. [PMID: 30913349 PMCID: PMC6594022 DOI: 10.1002/mnfr.201900063] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Scope It is found in the previous study that egg‐white‐derived antihypertensive peptide Ile‐Arg‐Trp (IRW) upregulated angiotensin converting enzyme 2 (ACE2) in spontaneously hypertensive rats (SHRs). The objective of this study is to evaluate the contribution of ACE2 activation by IRW to blood‐pressure‐lowering activity in vivo. Methods and results Adult male SHRs (13–15 week old) are assigned into four groups: 1) untreated with saline infusion; 2) IRW administration (15 mg per kg body weight) with saline infusion; 3) Mas receptor (MasR) antagonist A779 (48 µg per kg body weight per h) infusion; 4) A779 infusion and IRW. Animals are implanted with telemetry transmitter first, and then an osmotic pump filled with saline or A779 is implanted. A779/saline is infused for 7 days, continued with an additional 7 days of treatments. Results indicate that blocking MasR abolished the blood‐pressure‐lowering effect of IRW. Akt/eNOS signaling in aorta is upregulated by IRW treatment but deactivated by A779 infusion. Circulating levels of interleukin 6 and monocyte chemoattractant protein 1, along with cyclooxygenase 2 in aorta are reduced by IRW but restored by A779 infusion. Conclusion IRW reduces blood pressure of SHR via the ACE2/Ang (1‐7)/MasR axis. Mechanisms pertaining to IRW as an ACE2 activator in vivo include enhanced endothelium‐dependent vasorelaxation and reduced vascular inflammation.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Hongbing Fan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Sandra T Davidge
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Obstetrics & Gynecology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Department of Physiology, University of Alberta, Edmonton, AB, Canada, T6G 2R7.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.,Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
18
|
Sosedova LM, Vokina VA, Kapustina EA. Contribution of Fetal Programming in the Formation of Cognitive Impairments Induced by Lead Poisoning in White Rats. Bull Exp Biol Med 2019; 166:617-621. [PMID: 30903499 DOI: 10.1007/s10517-019-04404-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/26/2022]
Abstract
The contribution of prenatal hypoxic damage to the CNS to the formation of high sensitivity of the body to lead acetate was studied. Prenatal fetal hypoxia was modeled by the administration of sodium nitrite in doses of 5, 25, and 50 mg/kg to pregnant female rats. Cognitive capacities of mature offspring were evaluated in the radial maze test and Morris water maze test. After attaining learning criterion in the radial maze, lead acetate in a dose of 80 mg/kg was added to the drinking water of all animals over 2 weeks. Testing was performed during the exposure to the agent until disruption of the conditioned behavior. It was found that severe prenatal hypoxia (induced by the administration of 50 mg/kg sodium nitrite) impaired spatial memory, increased latency of funding the platform in Morris water maze test, and serves as a factor contributing to earlier manifestations of the neurotoxic effects of lead acetate.
Collapse
Affiliation(s)
- L M Sosedova
- East Siberian Institute of Medical and Ecological Research, Angarsk, Russia.
| | - V A Vokina
- East Siberian Institute of Medical and Ecological Research, Angarsk, Russia
| | - E A Kapustina
- East Siberian Institute of Medical and Ecological Research, Angarsk, Russia
| |
Collapse
|
19
|
Chaudhari S, Cushen SC, Osikoya O, Jaini PA, Posey R, Mathis KW, Goulopoulou S. Mechanisms of Sex Disparities in Cardiovascular Function and Remodeling. Compr Physiol 2018; 9:375-411. [PMID: 30549017 DOI: 10.1002/cphy.c180003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies demonstrate disparities between men and women in cardiovascular disease prevalence, clinical symptoms, treatments, and outcomes. Enrollment of women in clinical trials is lower than men, and experimental studies investigating molecular mechanisms and efficacy of certain therapeutics in cardiovascular disease have been primarily conducted in male animals. These practices bias data interpretation and limit the implication of research findings in female clinical populations. This review will focus on the biological origins of sex differences in cardiovascular physiology, health, and disease, with an emphasis on the sex hormones, estrogen and testosterone. First, we will briefly discuss epidemiological evidence of sex disparities in cardiovascular disease prevalence and clinical manifestation. Second, we will describe studies suggesting sexual dimorphism in normal cardiovascular function from fetal life to older age. Third, we will summarize and critically discuss the current literature regarding the molecular mechanisms underlying the effects of estrogens and androgens on cardiac and vascular physiology and the contribution of these hormones to sex differences in cardiovascular disease. Fourth, we will present cardiovascular disease risk factors that are positively associated with the female sex, and thus, contributing to increased cardiovascular risk in women. We conclude that inclusion of both men and women in the investigation of the role of estrogens and androgens in cardiovascular physiology will advance our understanding of the mechanisms underlying sex differences in cardiovascular disease. In addition, investigating the role of sex-specific factors in the development of cardiovascular disease will reduce sex and gender disparities in the treatment and diagnosis of cardiovascular disease. © 2019 American Physiological Society. Compr Physiol 9:375-411, 2019.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Paresh A Jaini
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rachel Posey
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
20
|
He Q, Liu X, Zhong Y, Xu SS, Zhang ZM, Tang LL, Zhang LY, Du LZ. Arginine bioavailability and endothelin-1 system in the regulation of vascular function of umbilical vein endothelial cells from intrauterine growth restricted newborns. Nutr Metab Cardiovasc Dis 2018; 28:1285-1295. [PMID: 30392707 DOI: 10.1016/j.numecd.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Intrauterine growth restriction (IUGR) is a major risk factor for perinatal morbidity and mortality, leading to long-term adverse cardiovascular outcomes. The present study aimed to investigate the potential mechanisms in IUGR-associated vascular endothelial dysfunction. METHODS AND RESULTS Human umbilical vein endothelial cells (HUVECs) were derived from IUGR or normal newborns. We found that the proliferation of IUGR-derived HUVECs was accelerated compared to those from normal subjects. Gene profiles related to vascular function including vasomotion, oxidative stress, and angiogenesis were dysregulated in IUGR-HUVECs. Compared with HUVECs from normal newborns, nitric oxide (NO) production was reduced, with imbalance between endothelial nitric oxide synthase (eNOS) and arginase-2 (Arg-2) in IUGR. Meanwhile, intracellular asymmetric dimethylarginine (ADMA) level was elevated with diminished dimethylarginine dimethylaminohydrolase 1 (DDAH1) expression in IUGR-HUVECs. Furthermore, endothelin-1 (ET-1) and hypoxia-inducible factor 1α (HIF-1α) expression were increased, and endothelin receptor type-B (ETBR) was reduced in the IUGR group. IUGR-HUVECs exposed to hypoxia increased the ratio of ADMA to l-arginine, HIF-1α and protein arginine methyltransferase 1 (PRMT1) expression compared to controls. CONCLUSIONS The present study demonstrated that the reduction of NO bioavailability and release results from elevated Arg-2, accumulation of intracellular ADMA, and imbalance of ET-1 and ETBR, further leading to IUGR-associated vascular endothelial dysfunction. Our study provides novel evidence on the mechanism underlying fetal programming associated with IUGR, which will serve as potential therapeutic targets in the prevention of adverse cardiovascular consequences in adulthood.
Collapse
Affiliation(s)
- Q He
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - X Liu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - Y Zhong
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - S S Xu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - Z M Zhang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China
| | - L L Tang
- Department of Neonatology, Shanghai Children's Medical Center, Shanghai, 200127, China
| | - L Y Zhang
- Fujian University of Medicine, NICU, Fuzhou Children's Hospital of Fujian Province, Fuzhou, 350005, Fujian Province, China
| | - L Z Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
21
|
Brennan LJ, Goulopoulou S, Bourque SL. Prenatal therapeutics and programming of cardiovascular function. Pharmacol Res 2018; 139:261-272. [PMID: 30458216 DOI: 10.1016/j.phrs.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVD) are a leading cause of mortality worldwide. Despite recognizing the importance of risk factors in dictating CVD susceptibility and onset, patient treatment remains a challenging endeavor. Increasingly, the benefits of prevention and mitigation of risk factors earlier in life are being acknowledged. The developmental origins of health and disease posits that insults during specific periods of development can influence long-term health outcomes; this occurs because the developing organism is highly plastic, and hence vulnerable to environmental perturbations. By extension, targeted therapeutics instituted during critical periods of development may confer long-term protection, and thus reduce the risk of CVD in later life. This review provides a brief overview of models of developmental programming, and then discusses the impact of perinatal therapeutic interventions on long-term cardiovascular function in the offspring. The discussion focuses on bioactive food components, as well as pharmacological agents currently approved for use in pregnancy; in short, those agents most likely to be used in pregnancy and early childhood.
Collapse
Affiliation(s)
- Lesley J Brennan
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, United States.
| | - Stephane L Bourque
- Department of Anesthesiology & Pain Medicine, Pharmacology, and Pediatrics, Women and Children's Health Research Institute, University of Alberta, Canada.
| |
Collapse
|
22
|
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to One's Heart: The Intimate Relationship Between the Placenta and Fetal Heart. Front Physiol 2018; 9:629. [PMID: 29997513 PMCID: PMC6029139 DOI: 10.3389/fphys.2018.00629] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
The development of the fetal heart is exquisitely controlled by a multitude of factors, ranging from humoral to mechanical forces. The gatekeeper regulating many of these factors is the placenta, an external fetal organ. As such, resistance within the placental vascular bed has a direct influence on the fetal circulation and therefore, the developing heart. In addition, the placenta serves as the interface between the mother and fetus, controlling substrate exchange and release of hormones into both circulations. The intricate relationship between the placenta and fetal heart is appreciated in instances of clinical placental pathology. Abnormal umbilical cord insertion is associated with congenital heart defects. Likewise, twin-to-twin transfusion syndrome, where monochorionic twins have unequal sharing of their placenta due to inter-twin vascular anastomoses, can result in cardiac remodeling and dysfunction in both fetuses. Moreover, epidemiological studies have suggested a link between placental phenotypic traits and increased risk of cardiovascular disease in adult life. To date, the mechanistic basis of the relationships between the placenta, fetal heart development and later risk of cardiac dysfunction have not been fully elucidated. However, studies using environmental exposures and gene manipulations in experimental animals are providing insights into the pathways involved. Likewise, surgical instrumentation of the maternal and fetal circulations in large animal species has enabled the manipulation of specific humoral and mechanical factors to investigate their roles in fetal cardiac development. This review will focus on such studies and what is known to date about the link between the placenta and heart development.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Cooke CLM, Shah A, Kirschenman RD, Quon AL, Morton JS, Care AS, Davidge ST. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age. J Physiol 2018; 596:5807-5821. [PMID: 29882308 DOI: 10.1113/jp275472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation. ABSTRACT Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔEmax : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔEmax : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by ∼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Lois Hole Hospital for Women, Edmonton, Alberta, Canada
| | - Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Raven D Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Anita L Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Aljunaidy MM, Morton JS, Kirschenman R, Phillips T, Case CP, Cooke CLM, Davidge ST. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia. Pharmacol Res 2018; 134:332-342. [PMID: 29778808 DOI: 10.1016/j.phrs.2018.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
Abstract
Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O2) or hypoxia (11% O2) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental-targeted MitoQ treatment in utero has beneficial sex- and age-dependent effects on adult offspring cardiovascular function.
Collapse
Affiliation(s)
- Mais M Aljunaidy
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Tom Phillips
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS10 5NB, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS10 5NB, UK
| | - Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada
| | - Sandra T Davidge
- Department of Physiology, University of Alberta, Edmonton, T6G 2S2, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, T6G 2S2, Canada; Women and Children's Health Research Institute and the Cardiovascular Research Centre, Edmonton, T6G 2S2, Canada.
| |
Collapse
|
25
|
Grandvuillemin I, Buffat C, Boubred F, Lamy E, Fromonot J, Charpiot P, Simoncini S, Sabatier F, Dignat-George F, Peyter AC, Simeoni U, Yzydorczyk C. Arginase upregulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2018; 315:R509-R520. [PMID: 29741931 DOI: 10.1152/ajpregu.00354.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the l-arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LPD, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-wk-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, endothelial NO synthase (eNOS) protein content, arginase activity, and superoxide anion production. SBP was not different at 5 wk but significantly increased in 8-wk-old offspring of maternal LPD (LP) versus CTRL offspring. In 5-wk-old LP versus CTRL males, endothelium-dependent vasorelaxation was significantly impaired but restored by preincubation with l-arginine or the arginase inhibitor S-(2-boronoethyl)-l-cysteine; NO production was significantly reduced but restored by l-arginine pretreatment; total eNOS protein, dimer-to-monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced but normalized by pretreatment with the NO synthase inhibitor Nω-nitro-l-arginine. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase upregulation and eNOS uncoupling, which precedes the development of HTN.
Collapse
Affiliation(s)
- Isabelle Grandvuillemin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France.,Department of Neonatology, Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) La Conception, Marseille, France
| | - Christophe Buffat
- Unité de Recherche sur les Maladies Infectieuses Tropicales, Emergentes, Laboratory of Biochimical and Molecular Biology, Centre National de la Recherche Scientifique (CNRS), APHM, CHU la Conception, Aix Marseille University, Marseille, France
| | - Farid Boubred
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France.,Department of Neonatology, Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalier Universitaire (CHU) La Conception, Marseille, France
| | - Edouard Lamy
- CNRS, Inst Movement Sci (ISM); Service Central de la Qualité et de l'Information Pharmaceutiques, APHM, Aix-Marseille University, Marseille, France
| | - Julien Fromonot
- UMR MD2 and Institute of Biological Research French Defense Ministry (IRBA), Aix-Marseille University, Marseille, France
| | - Philippe Charpiot
- CNRS, Inst Movement Sci (ISM); Service Central de la Qualité et de l'Information Pharmaceutiques, APHM, Aix-Marseille University, Marseille, France
| | - Stephanie Simoncini
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Florence Sabatier
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Françoise Dignat-George
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Centre de Recherche en Cardiovasculaire et Nutrition (C2VN), Aix Marseille University, Marseille, France
| | - Anne-Christine Peyter
- Neonatal Research Laboratory, Clinic of Neonatology, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Umberto Simeoni
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Catherine Yzydorczyk
- Developmental Origins of Health and Disease (DOHaD) Laboratory, Division of Pediatrics, Department Woman-Mother-Child, CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Kadlec AO, Barnes C, Durand MJ, Gutterman DD. Microvascular Adaptations to Exercise: Protective Effect of PGC-1 Alpha. Am J Hypertens 2018; 31:240-246. [PMID: 29140431 DOI: 10.1093/ajh/hpx162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sedentary behavior and obesity are major risk factors for cardiovascular disease. Regular physical activity has independent protective effects on the cardiovascular system, but the mechanisms responsible remain elusive. Recent studies suggest that the protein peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) participates in the response to exercise training. We hypothesized that the arterioles of athletes maintain dilation to flow despite combined inhibition of multiple vasodilators, but loss of PGC-1α renders these vessels susceptible to inhibition of a single vasodilator pathway. In addition, arterioles from overweight and obese individuals will display an an exercise-like phenotype when PGC-1α is activated. METHODS Isolated arterioles from exercise-trained (ET) and from mildly overweight or obese subjects (body mass index >25) were cannulated, and changes in lumen diameter in response to graded increases in flow were recorded in the absence and presence of compounds that inhibit various endothelium-dependent vasodilators. RESULTS Microvessels of ET subjects displayed robust dilation that could not be inhibited through targeting the combination of nitric oxide, prostaglandins, and hydrogen peroxide, but were inhibited via interference with membrane hyperpolarization. Loss of PGC-1α (siRNA) in the microcirculation of ET subjects eliminates this vasodilatory robustness rendering vessels susceptible to blockade of H2O2 alone. Pharmacological activation of PGC-1α with alpha-lipoic acid in isolated microvessels from sedentary, overweight, and obese subjects increases arteriolar resistance to vasodilator blockade and protects against acute increases in intraluminal pressure. CONCLUSIONS These findings suggest that the microvascular adaptations to exercise training, and the exercise-induced protection against acute vascular stress in overweight/obese subjects, are mediated by PGC-1α.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Chad Barnes
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew J Durand
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Wang X, Wan L, Weng X, Xie J, Zhang A, Liu Y, Dong M. Alteration in methylation level at differential methylated regions of MEST and DLK1 in fetus of preeclampsia. Hypertens Pregnancy 2017; 37:1-8. [PMID: 29157033 DOI: 10.1080/10641955.2017.1397689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Offspring born to preeclamptic women are at high risk for metabolic diseases in later life, but the mechanisms are not known. The purposes of the current investigation were to clarify the changes in DNA methylation at MEST and DLK1 DMRs in fetus of preeclampsia and to explore the possible mechanisms behind the high risk of adult diseases in the offspring of preeclampsia. METHODS Fetal lymphocytes were isolated from umbilical cord blood of 78 women with preeclampsia and 95 women with normal pregnancy. Genomic DNA was extracted and then DNA methylation levels of MEST and DLK1 DMRs were determined by MassARRAY quantitative methylation analysis. RESULTS The methylation levels were detected in 20 CpG sites of MEST DMR and 16 sites of DLK1 DMR. Methylation changes were significantly different at CPG1, 3, 4, 7.8, 15, 18.19, and 20 of MEST between preeclampsia and normal pregnancy (P = 0.014, 0.001, <0.001, <0.001, = 0.001, = 0.005, and = 0.003, respectively). Significant differences were also observed at CPG 3 and 9 of DLK1 (P = 0.002 and 0.027, respectively). However, overall methylation at these DMRs were not affected. CONCLUSION We conclude methylation changes at some CpG sites of MEST and DLK DMRs in preeclamptic group. This may be among the mechanisms behind the high risk of adult diseases in the later life of offspring born to preeclamptic pregnancies. ABBREVIATIONS DMR: Differentially Methylated Region; MEST: Mesoderm Specific Transcript.
Collapse
Affiliation(s)
- Xiaoqing Wang
- a Women's Hospital, School of Medicine , Zhejiang University.,b Ningbo Women and Children's Hospital , Ningbo , China
| | - Liuxia Wan
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Xiaoling Weng
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Jiamin Xie
- a Women's Hospital, School of Medicine , Zhejiang University
| | - Aiping Zhang
- c Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University , Shanghai , China
| | - Yun Liu
- d Department of Biochemistry and Molecular Biology , Fudan University Shanghai Medical College , Shanghai , China.,e Department of Biochemistry and Molecular Biology , Key Laboratory of Molecular Medicine, The Ministry of Education, Fudan University Shanghai Medical College
| | - Minyue Dong
- a Women's Hospital, School of Medicine , Zhejiang University
| |
Collapse
|
28
|
Abstract
Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increased blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood, in addition to exposure to adverse influences during fetal life, contributes to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life and later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex has an impact on the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low-birth weight men and women. Fewer still assess the impact of ageing on sex differences in programmed cardiovascular risk. Thus, the aim of the present review is to highlight current data about sex differences in the developmental programming of blood pressure and cardiovascular disease.
Collapse
|
29
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
30
|
Stead R, Musa MG, Bryant CL, Lanham SA, Johnston DA, Reynolds R, Torrens C, Fraser PA, Clough GF. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation. J Hypertens 2016; 34:452-63; discussion 463. [PMID: 26682783 PMCID: PMC4732175 DOI: 10.1097/hjh.0000000000000833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/20/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. METHODS Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. RESULTS EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. CONCLUSION This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.
Collapse
Affiliation(s)
- Rebecca Stead
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | - Moji G. Musa
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | | | - Stuart A. Lanham
- Bone and Joint Research Group, Institute of Developmental Sciences
| | - David A. Johnston
- Faculty of Medicine, Biomedical Imaging Unit, University of Southampton, Southampton
| | | | | | - Paul A. Fraser
- Cardiovascular Division, BHF Centre of Research Excellence, School of Medicine, King's College London, London, United Kingdom
| | | |
Collapse
|
31
|
Allison BJ, Kaandorp JJ, Kane AD, Camm EJ, Lusby C, Cross CM, Nevin-Dolan R, Thakor AS, Derks JB, Tarry-Adkins JL, Ozanne SE, Giussani DA. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J 2016; 30:1968-75. [PMID: 26932929 PMCID: PMC5036970 DOI: 10.1096/fj.201500057] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2–1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.—Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease.
Collapse
Affiliation(s)
- Beth J Allison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joepe J Kaandorp
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Andrew D Kane
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Emily J Camm
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ciara Lusby
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Christine M Cross
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rhianon Nevin-Dolan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Avnesh S Thakor
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jan B Derks
- Perinatology, University Medical Center, Utrecht, The Netherlands; and
| | - Jane L Tarry-Adkins
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E Ozanne
- Metabolic Research Laboratories and Medical Reseach Council (MRC) Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
32
|
Care AS, Sung MM, Panahi S, Gragasin FS, Dyck JRB, Davidge ST, Bourque SL. Perinatal Resveratrol Supplementation to Spontaneously Hypertensive Rat Dams Mitigates the Development of Hypertension in Adult Offspring. Hypertension 2016; 67:1038-44. [PMID: 26928803 DOI: 10.1161/hypertensionaha.115.06793] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/05/2016] [Indexed: 11/16/2022]
Abstract
This study was undertaken to determine whether perinatal maternal resveratrol (Resv)--a phytoalexin known to confer cardiovascular protection--could prevent the development of hypertension and improve vascular function in adult spontaneously hypertensive rat offspring. Dams were fed either a control or Resv-supplemented diet (4 g/kg diet) from gestational day 0.5 until postnatal day 21. Indwelling catheters were used to assess blood pressure and vascular function in vivo; wire myography was used to assess vascular reactivity ex vivo. Perinatal Resv supplementation in dams had no effect on fetal body weights, albeit continued maternal treatment postnatally resulted in growth restriction in offspring by postnatal day 21; growth restriction was no longer evident after 5 weeks of age. Maternal perinatal Resv supplementation prevented the onset of hypertension in adult offspring (-18 mm Hg; P=0.007), and nitric oxide synthase inhibition (with L-NG-nitroarginine methyl ester) normalized these blood pressure differences, suggesting improved nitric oxide bioavailability underlies the hemodynamic alterations in the Resv-treated offspring. In vivo and ex vivo, vascular responses to methylcholine were not different between treatment groups, but prior treatment with L-NG-nitroarginine methyl ester attenuated the vasodilation in untreated, but not Resv-treated adult offspring, suggesting a shift toward nitric oxide-independent vascular control mechanisms in the treated group. Finally, bioconversion of the inactive precursor big endothelin-1 to active endothelin-1 in isolated mesenteric arteries was reduced in Resv-treated offspring (-28%; P<0.05), and this difference could be normalized by L-NG-nitroarginine methyl ester treatment. In conclusion, perinatal maternal Resv supplementation mitigated the development of hypertension and causes persistent alterations in vascular responsiveness in spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Alison S Care
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Miranda M Sung
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Sareh Panahi
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Ferrante S Gragasin
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Jason R B Dyck
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Sandra T Davidge
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.)
| | - Stephane L Bourque
- From the Department of Obstetrics and Gynecology (A.S.C., S.T.D.), Department of Pediatrics (M.M.S., J.R.B.D.), Department of Anesthesiology and Pain Medicine (S.P., F.S.G., S.L.B.), Department of Pharmacology (J.R.B.D., S.L.B.), Cardiovascular Research Centre (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), Women and Children's Health Research Institute (A.S.C., M.M.S., F.S.G., J.R.B.D., S.T.D., S.L.B.), University of Alberta, Edmonton, Alberta, Canada; and Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia (A.S.C.).
| |
Collapse
|
33
|
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Giussani DA. Induction of controlled hypoxic pregnancy in large mammalian species. Physiol Rep 2015; 3:3/12/e12614. [PMID: 26660546 PMCID: PMC4760453 DOI: 10.14814/phy2.12614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Progress in the study of pregnancy complicated by chronic hypoxia in large mammals has been held back by the inability to measure long-term significant reductions in fetal oxygenation at values similar to those measured in human pregnancy complicated by fetal growth restriction. Here, we introduce a technique for physiological research able to maintain chronically instrumented maternal and fetal sheep for prolonged periods of gestation under significant and controlled isolated chronic hypoxia beyond levels that can be achieved by habitable high altitude. This model of chronic hypoxia permits measurement of materno-fetal blood gases as the challenge is actually occurring. Chronic hypoxia of this magnitude and duration using this model recapitulates the significant asymmetric growth restriction, the pronounced cardiomyopathy, and the loss of endothelial function measured in offspring of high-risk pregnancy in humans, opening a new window of therapeutic research.
Collapse
Affiliation(s)
- Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Reyes LM, Kirschenman R, Quon A, Morton JS, Shah A, Davidge ST. Aerobic exercise training reduces cardiac function in adult male offspring exposed to prenatal hypoxia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R489-98. [DOI: 10.1152/ajpregu.00201.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
Intrauterine growth restriction (IUGR) has been associated with increased susceptibility to myocardial ischemia-reperfusion (I/R) injury. Exercise is an effective preventive intervention for cardiovascular diseases; however, it may be detrimental in conditions of compromised health. The aim of this study was to determine whether exercise training can improve cardiac performance after I/R injury in IUGR offspring. We used a hypoxia-induced IUGR model by exposing pregnant Sprague-Dawley rats to 21% oxygen (control) or hypoxic (11% oxygen; IUGR) conditions from gestational day 15 to 21. At 10 wk of age, offspring were randomized to a sedentary group or to a 6-wk exercise protocol. Transthoracic echocardiography assessments were performed after 6 wk. Twenty-four hours after the last bout of exercise, ex vivo cardiac function was determined using a working heart preparation. With exercise training, there was improved baseline cardiac performance in male control offspring but a reduced baseline cardiac performance in male IUGR exercised offspring ( P < 0.05). In male offspring, exercise decreased superoxide generation in control offspring, while in IUGR offspring, it had the polar opposite effect (interaction P ≤ 0.05). There was no effect of IUGR or exercise on cardiac function in female offspring. In conclusion, in male IUGR offspring, exercise may be a secondary stressor on cardiac function. A reduction in cardiac performance along with an increase in superoxide production in response to exercise was observed in this susceptible group.
Collapse
Affiliation(s)
- Laura M. Reyes
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S. Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; and
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Jang EA, Longo LD, Goyal R. Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents. Front Physiol 2015; 6:176. [PMID: 26106333 PMCID: PMC4458570 DOI: 10.3389/fphys.2015.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/25/2015] [Indexed: 12/24/2022] Open
Abstract
Rodents are a useful model for life science research. Accumulating evidence suggests that the offspring of mice and rats suffer from similar disorders as humans when exposed to hypoxia during pregnancy. Importantly, with antenatal hypoxic exposure, human neonates demonstrate low birth weight or growth restriction. Similarly, with antenatal hypoxic exposure rodents also demonstrate the fetal growth restriction (FGR). Surprisingly, there is no consensus on the minimum duration or degree of hypoxic exposure required to cause FGR in rodents. Thus, we have reviewed the available literature in an attempt to answer these questions. Based on studies in rats, birth weight reduction of 31% corresponded to 10th percentile reduction in birth weight curve. With the similar criterion (10th percentile), in mice 3 days or more and in rats 7 days or more of 14% or lower hypoxia administration was required to produce statistically significant FGR.
Collapse
Affiliation(s)
- Eeun Amy Jang
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA
| | - Lawrence D Longo
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA ; Epigenuity LLC Loma Linda, CA, USA
| | - Ravi Goyal
- Department of Basic Sciences, Center for Perinatal Biology, School of Medicine, Loma Linda University Loma Linda, CA, USA ; Epigenuity LLC Loma Linda, CA, USA
| |
Collapse
|
36
|
Bassareo PP, Fanos V, Mercuro G. Response to 'In adolescence, extreme prematurity is associated with significant changes in the microvasculature, elevated blood pressure and increased carotid intima-media thickness'. Arch Dis Child 2015; 100:508-9. [PMID: 25653223 DOI: 10.1136/archdischild-2014-308155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/03/2022]
Affiliation(s)
- P P Bassareo
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - V Fanos
- Department of Surgery, Section of Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, University of Cagliari, Cagliari, Italy
| | - G Mercuro
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| |
Collapse
|
37
|
Reyes LM, Morton JS, Kirschenman R, DeLorey DS, Davidge ST. Vascular effects of aerobic exercise training in rat adult offspring exposed to hypoxia-induced intrauterine growth restriction. J Physiol 2015; 593:1913-29. [PMID: 25616117 DOI: 10.1113/jphysiol.2014.288449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Prenatal hypoxia, one of the most common consequences of complicated pregnancies, leads to intrauterine growth restriction (IUGR) and impairs later-life endothelium-dependent vascular function. Early interventions are needed to ultimately reduce later-life risk for cardiovascular disease. Aerobic exercise training has been shown to prevent cardiovascular diseases. Whether exercise can be used as an intervention to reverse the vascular phenotype of this susceptible population is unknown. Aerobic exercise training enhanced endothelium-derived hyperpolarization-mediated vasodilatation in gastrocnemius muscle arteries in male IUGR offspring, and did not improve nitric oxide-mediated vasodilatation in IUGR offspring. Understanding the mechanisms by which exercise impacts the cardiovascular system in a susceptible population and the consideration of sexual dimorphism is essential to define whether exercise could be used as a preventive strategy in this population. ABSTRACT Hypoxia in utero is a critical insult causing intrauterine growth restriction (IUGR). Adult offspring born with hypoxia-induced IUGR have impaired endothelium-dependent vascular function. We tested whether aerobic exercise improves IUGR-induced endothelial dysfunction. Pregnant Sprague-Dawley rats were exposed to control (21% oxygen) or hypoxic (11% oxygen) conditions from gestational day 15 to 21. Male and female offspring from normoxic and hypoxic (IUGR) pregnancies were randomized at 10 weeks of age to either an exercise-trained or sedentary group. Exercise-trained rats ran on a treadmill for 30 min at 20 m min(-1) , 5 deg gradient, 5 days week(-1) , for 6 weeks. Concentration-response curves to phenylephrine and methylcholine were performed in second order mesenteric and gastrocnemius muscle arteries, in the presence or absence of l-NAME (100 μm), MnTBAP (peroxynitrite scavenger; 10 μm), apamin (0.1 μm) and TRAM-34 (an intermediate-conductance calcium-activated potassium channel blocker; 10 μm), or indomethacin (5 μm). In adult male IUGR offspring, prenatal hypoxia had no effect on total vasodilator responses in either vascular bed. Aerobic exercise training in IUGR males, however, improved endothelium-derived hyperpolarization (EDH)-mediated vasodilatation in gastrocnemius muscle arteries. Female IUGR offspring had reduced NO-mediated vasodilatation in both vascular beds, along with decreased total vasodilator responses and increased prostaglandin-mediated vasoconstriction in gastrocnemius muscle arteries. In contrast to males, aerobic exercise training in IUGR female offspring had no effect on either vascular bed. Exercise may not prove to be a beneficial therapy for specific vascular pathways affected by prenatal hypoxia, particularly in female offspring.
Collapse
Affiliation(s)
- Laura M Reyes
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Thompson JA, Sarr O, Piorkowska K, Gros R, Regnault TRH. Low birth weight followed by postnatal over-nutrition in the guinea pig exposes a predominant player in the development of vascular dysfunction. J Physiol 2014; 592:5429-43. [PMID: 25362153 DOI: 10.1113/jphysiol.2014.275016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The association between intrauterine growth restriction (IUGR) and hypertension is well established, yet the interaction between IUGR and other pathogenic contributors remains ill-defined. This study examined the independent and interactive effects of fetal growth reduction resulting in low birth weight (LBW), and postnatal Western diet (WD) on vascular function. Growth reduction was induced in pregnant guinea pigs by uterine artery ablation. LBW and normal birth weight (NBW) offspring were randomly assigned to a control diet (CD) or a WD. In young adulthood, length-tension curves were generated in aortic rings and responses to methacholine (MCh) were evaluated in the carotid and aorta using wire myography. Relative to NBW/CD, aortae of NBW/WD offspring were stiffer, as determined by a leftward shift in the length-tension curve, yet the shift in the LBW/CD curve was considerably greater. Aortic stiffening was most severe in LBW/WD (slope: NBW/CD, 1.97 ± 0.04; NBW/WD, 2.16 ± 0.04; LBW/CD, 2.28 ± 0.05; LBW/WD, 2.34 ± 0.07). Maximal responses (Emax) to MCh were significantly blunted in the aorta of LBW/CD vs. NBW/CD (P < 0.05) and in LBW/WD vs. NBW/WD offspring (P < 0.05); but WD alone had no influence on MCh responses. Emax values for carotid responses to MCh were reduced in LBW/CD vs. NBW/CD (P < 0.05). Thus, aortic stiffening was influenced more by LBW than by a postnatal WD and the most severe stiffening was observed in LBW/WD offspring. In contrast, blunted endothelial responses in LBW/CD offspring were not exacerbated by WD. IUGR may have a greater independent impact on vascular function than a postnatal WD.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Department of Physiology and Pharmacology, The University of Western London, Ontario, Canada Department of Obstetrics and Gynaecology, The University of Western London, Ontario, Canada
| | - Ousseynou Sarr
- Department of Obstetrics and Gynaecology, The University of Western London, Ontario, Canada Lawson Health Research Institute, The University of Western London, Ontario, Canada Children's Health Research Institute, The University of Western London, Ontario, Canada
| | - Karolina Piorkowska
- Department of Physiology and Pharmacology, The University of Western London, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, The University of Western London, Ontario, Canada Robarts Research Institute, The University of Western London, Ontario, Canada Department of Medicine, The University of Western London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, The University of Western London, Ontario, Canada Department of Obstetrics and Gynaecology, The University of Western London, Ontario, Canada Lawson Health Research Institute, The University of Western London, Ontario, Canada Children's Health Research Institute, The University of Western London, Ontario, Canada
| |
Collapse
|
40
|
Salinas CE, Blanco CE, Villena M, Giussani DA. High-Altitude Hypoxia and Echocardiographic Indices of Pulmonary Hypertension in Male and Female Chickens at Adulthood. Circ J 2014; 78:1459-1464. [DOI: 10.1253/circj.cj-13-1329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Carlos E. Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés
| | - Carlos E. Blanco
- National Children’s Research Centre, Our Lady’s Children’s Hospital
| | - Mercedes Villena
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
41
|
Majumder K, Chakrabarti S, Morton JS, Panahi S, Kaufman S, Davidge ST, Wu J. Egg-derived tri-peptide IRW exerts antihypertensive effects in spontaneously hypertensive rats. PLoS One 2013; 8:e82829. [PMID: 24312436 PMCID: PMC3843735 DOI: 10.1371/journal.pone.0082829] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
Background There is a growing interest in using functional food components as therapy for cardiovascular diseases such as hypertension. We have previously characterized a tri-peptide IRW (Ile-Arg-Trp) from egg white protein ovotransferrin; this peptide showed anti-inflammatory, anti-oxidant and angiotensin converting enzyme (ACE) inhibitor properties invitro. Given the pathogenic roles played by angiotensin, oxidative stress and inflammation in the spontaneously hypertensive rat (SHR), we tested the therapeutic potential of IRW in this well-established model of hypertension. Methods and Results 16–17 week old male SHRs were orally administered IRW at either a low dose (3 mg/Kg BW) or a high dose (15 mg/Kg BW) daily for 18 days. Blood pressure (BP) and heart rate were measured by telemetry. Animals were sacrificed at the end of the treatment for vascular function studies and measuring markers of inflammation. IRW treatment attenuated mean BP by ~10 mmHg and ~40 mmHg at the low- and high-dose groups respectively compared to untreated SHRs. Heart rate was not affected. Reduction in BP was accompanied by the restoration of diurnal variations in BP, preservation of nitric oxide dependent vasorelaxation, as well as reduction of plasma angiotensin II, other inflammatory markers and tissue fibrosis. Conclusion Our results demonstrate anti-hypertensive effects of IRW invivo likely mediated through ACE inhibition, endothelial nitric oxide synthase and anti-inflammatory properties.
Collapse
Affiliation(s)
- Kaustav Majumder
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Subhadeep Chakrabarti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S. Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Sareh Panahi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Kaufman
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
42
|
Bahls M, Sheldon RD, Taheripour P, Clifford KA, Foust KB, Breslin ED, Marchant-Forde JN, Cabot RA, Harold Laughlin M, Bidwell CA, Newcomer SC. Mother's exercise during pregnancy programmes vasomotor function in adult offspring. Exp Physiol 2013; 99:205-19. [PMID: 24163423 DOI: 10.1113/expphysiol.2013.075978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intrauterine environment is influenced by maternal behaviour and programmes atherosclerotic disease susceptibility in offspring. The aim of this investigation was to test the hypothesis that mothers' exercise during pregnancy improves endothelial function in 3-, 5- and 9-month-old porcine offspring. The pregnant sows in the exercise group ran for an average of 39.35 ± 0.75 min at 4.81 ± 0.35 km h(-1) each day for 5 days per week for all but the last week of gestation. This induced a significant reduction in resting heart rate (exercised group, 89.3 ± 3.5 beats min(-1); sedentary group, 102.1 ± 3.1 beats min(-1); P < 0.05) but no significant differences in gestational weight gain (65.8 ± 2.1 versus 63.3 ± 1.9%). No significant effect on bradykinin-induced vasorelaxation with and without l-NAME was observed. A significant main effect was identified on sodium nitroprusside-induced vasorelaxation (P = 0.01), manifested by a reduced response in femoral arteries of all age groups from exercised-trained swine. Nitric oxide signalling was not affected by maternal exercise. Protein expression of MYPT1 was reduced in femoral arteries from 3-month-old offspring of exercised animals. A significant interaction was observed for PPP1R14A (P < 0.05) transcript abundance and its protein product CPI-17. In conclusion, pregnant swine are able to complete an exercise-training protocol that matches the current recommendations for pregnant women. Gestational exercise is a potent stimulus for programming vascular smooth muscle relaxation in adult offspring. Specifically, exercise training for the finite duration of pregnancy decreases vascular smooth muscle responsiveness in adult offspring to an exogenous nitric oxide donor.
Collapse
Affiliation(s)
- Martin Bahls
- S. C. Newcomer: Department of Kinesiology, California State University San Marcos, 333 South Twin Oaks Valley Road, San Marcos, CA 92096, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST. Prenatal Hypoxia Causes Long-Term Alterations in Vascular Endothelin-1 Function in Aged Male, but Not Female, Offspring. Hypertension 2013; 62:753-8. [DOI: 10.1161/hypertensionaha.113.01516] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prenatal hypoxia can alter the growth trajectory of the fetus and cause lasting health complications including vascular dysfunction. We hypothesized that offspring that were intrauterine growth restricted (IUGR) because of prenatal hypoxia would exhibit altered vascular endothelin-1 (ET-1) signaling in later life. Isolated mesenteric artery responses to big ET-1 (bET-1) and ET-1 were assessed by using wire myography. Male IUGR offspring had 3-fold greater bET-1–induced vasoconstriction compared with controls (n=7 per group;
P
<0.001); NO synthase inhibition with L-N
G
-nitro-arginine-methyl ester potentiated bET-1–induced vasoconstriction, albeit this effect was 2-fold greater (
P
<0.05) in male control compared with IUGR offspring. Vascular responses to bET-1 were similar between female IUGR and control offspring (n=9–11 per group). In the presence of L-N
G
-nitro-arginine-methyl ester, pretreatment with the chymase inhibitor chymostatin, the gelatinase inhibitor GM6001, or the neutral endopeptidase inhibitor thiorphan did not alter responses to bET-1; however, the ET-converting enzyme inhibitor CGS35066 almost completely abolished vascular responses to bET-1 in control and IUGR groups. Systolic blood pressure in IUGR male offspring was more responsive to ET-1 antagonism in vivo compared with controls (−9 versus −4 mm Hg; n=5 per group;
P
=0.02); no such differences were observed in female offspring (n=5–6 per group). These results demonstrate that vascular ET-1 function is programmed by prenatal hypoxia and provide further insights into the sex differences in the long-term vascular effects of developmental stressors.
Collapse
Affiliation(s)
- Stephane L. Bourque
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Ferrante S. Gragasin
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Anita L. Quon
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Yael Mansour
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Jude S. Morton
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| | - Sandra T. Davidge
- From the Department of Obstetrics and Gynecology (S.L.B., A.L.Q., Y.M., J.S.M., S.T.D.), Department of Anesthesiology and Pain Medicine (F.S.G.), and Women and Children’s Health Research Institute (S.L.B., F.S.G., Y.M., J.S.M., S.T.D.), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Abstract
Pregnancy encompasses substantial changes in vascular function to accommodate dramatic increases in blood volume and uteroplacental blood flow to the growing fetus. Despite increased hemodynamics, decreased peripheral resistance results in a reduction in mean arterial blood pressure. Vascular tone, and hence peripheral resistance, is determined by a delicate balance of constrictor and dilator capacities. In the normal physiological response to pregnancy, endothelial-derived hyperpolarization (EDH) has been shown to be a major contributor; both EDH and nitric oxide (NO) are predominantly involved in providing an increased vascular capacity for vasodilation. The ability of EDH and NO to adequately accommodate increased blood volume is tested in pathological states such as placental insufficiency or diabetes and both EDH and NO-dependent mechanisms seem to be impacted in these situations. Pregnancy complications also have an impact on the cardiovascular health of the offspring. In adult offspring born from complicated pregnancies, the data suggest that EDH mechanisms are largely maintained, whereas NO is commonly reduced. A diversity of EDH mechanisms may be useful in providing many targets for potential therapeutic avenues for compromised pregnancies; however, further research delineating the mechanisms of EDH and the interactions of NO and EDH, in normal and pathological pregnancies is required.
Collapse
|
45
|
He J, Zhang A, Fang M, Fang R, Ge J, Jiang Y, Zhang H, Han C, Ye X, Yu D, Huang H, Liu Y, Dong M. Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies. BMC Genomics 2013; 14:472. [PMID: 23844573 PMCID: PMC3723441 DOI: 10.1186/1471-2164-14-472] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/09/2013] [Indexed: 11/23/2022] Open
Abstract
Background Offspring of pregnancy complicated with preeclampsia are at high risk for hypertension, stroke and possibly obesity. The mechanisms behind the association of intrauterine exposure to preeclampsia and high risk of health problems in the later life remain largely unknown. The aims of the current investigation were to determine the changes in DNA methylation at IGF2 and GNAS DMR in offspring of preeclamptic pregnancy and to explore the possible mechanisms underlying the association between maternal preeclampsia and high risk for health problems in the later life of their offspring. Results Umbilical cord blood was taken from infants born to women of preeclampsia (n=56), gestational hypertension (n=23) and normal pregnancy (n=81). DNA methylation levels of IGF2 and GNAS DMR were determined by Massarray quantitative methylation analysis. Methylation levels at IGF2 DMR were significantly lower in preeclampsia than normal pregnancy. The average methylation level at IGF2 DMR was significantly correlated with preeclampsia even after birth weight, maternal age, gestational age at delivery and fetal gender were adjusted. The difference in methylation level was not significantly different between mild and severe preeclampsia. The methylation level at GNAS DMR was not significantly correlated with birth weight, maternal age, gestational age at delivery, fetal gender, preeclampsia or gestational hypertension. Conclusions We concluded preeclampsia induced a decrease in methylation level at IGF 2 DMR, and this might be among the mechanisms behind the association between intrauterine exposure to preeclampsia and high risk for metabolic diseases in the later life of the infants.
Collapse
Affiliation(s)
- Jing He
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310006, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Osumek JE, Revesz A, Morton JS, Davidge ST, Hardy DB. Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy. Reprod Sci 2013; 21:112-21. [PMID: 23744881 DOI: 10.1177/1933719113492212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given that hepatic glucose 6-phosphatase (G6Pase, involved in gluconeogenesis) has been demonstrated to be altered long term in animal models of intrauterine growth restriction (IUGR), we hypothesized that hypoxia in utero may regulate G6Pase expression via epigenetic mechanisms. To address this further, a rat model of maternal hypoxia leading to IUGR and impaired liver growth was utilized. In the 12-month-old male offspring of pregnant rat dams exposed to 11.5% atmospheric oxygen from gestational day (gd) 15 to gd 21, nonfasting glucose was lower in association with decreased hepatic G6Pase messenger RNA and protein levels. This was concomitant with enhanced methylation of histone H3 [K9] surrounding the promoter of G6Pase. Moreover, when McA-RH7777 hepatoma cells were exposed to various concentrations of oxygen for 48 hours, we observed an oxygen-dependent decrease in G6Pase expression associated with enhanced histone H3 [K9] methylation. Collectively, these results indicate that hypoxia directly and indirectly impairs G6Pase expression through enhanced methylation of histone H3 [K9].
Collapse
Affiliation(s)
- Jessica E Osumek
- 1The Department of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
It is now recognized that the quality of the fetal environment during early development is important in programming cardiovascular health and disease in later life. Fetal hypoxia is one of the most common consequences of complicated pregnancies worldwide. However, in contrast to the extensive research effort on pregnancy affected by maternal nutrition or maternal stress, the contribution of pregnancy affected by fetal chronic hypoxia to developmental programming is only recently becoming delineated and established. This review discusses the increasing body of evidence supporting the programming of cardiac susceptibility to ischaemia and reperfusion (I/R) injury, of endothelial dysfunction in peripheral resistance circulations, and of indices of the metabolic syndrome in adult offspring of hypoxic pregnancy. An additional focus of the review is the identification of plausible mechanisms and the implementation of maternal and early life interventions to protect against adverse programming.
Collapse
|
48
|
Abstract
A large body of literature suggests an inverse relationship between birth weight and blood pressure in children, adolescents and adults. The most persistent findings have been observed in children with a history of low birth weight or intrauterine growth restriction, while a large number of studies carried out in populations with normally distributed birth weight have shown conflicting results. A recently reported strong direct association between high birth weight and blood pressure, and the significant positive effect of postnatal growth on blood pressure suggests that the fetal origins of adult disease hypothesis should be expanded to include the role of excessive fetal and postnatal growth. In this paper, we review recent studies on the relationship between birth weight and blood pressure in childhood, with a focus on confounding variables that may explain the conflicting results of published work in this field.
Collapse
|
49
|
Gragasin FS, Bourque SL, Davidge ST. Propofol increases vascular relaxation in aging rats chronically treated with the angiotensin-converting enzyme inhibitor captopril. Anesth Analg 2013; 116:775-83. [PMID: 23429803 DOI: 10.1213/ane.0b013e3182825fbf] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Both propofol use and advanced age are predictors of intraoperative hypotension. We previously demonstrated that propofol enhances vasodilation in mesenteric arteries from aged rats, partly due to increased nitric oxide (NO) bioavailability. Patients chronically treated with angiotensin-converting enzyme (ACE) inhibitors may exhibit refractory hypotension under general anesthesia. We hypothesized that propofol enhances NO-mediated vasodilation in arteries from aged rats chronically treated with ACE inhibitors. METHODS Sprague-Dawley rats aged 12 to 13 months were treated with or without captopril for 7 to 8 weeks, yielding a final age of 14 to 15 months at the time of experimentation. Before euthanasia, arterial blood pressures were obtained through carotid artery cannulation. Concentration-response curves to propofol (0.1-100 µM) or methacholine (MCh) (0.01-3 µM) were then assessed on isolated resistance mesenteric arteries (100-200 μm diameter) from both treatment (captopril) and control rats. MCh relaxation was also assessed after propofol pretreatment (1 and 10 µM). N(G)-nitro-l-arginine methyl ester (l-NAME) (100 µM) and meclofenamate (10 µM) were used to inhibit NO and prostaglandin synthesis, respectively. Concentration-response data were summarized as 50% of the maximum relaxation response or area under the curve. RESULTS Mean arterial blood pressure in the captopril-treated rats was lower than in untreated rats (P = 0.049). When comparing relaxation in arteries from captopril-treated versus untreated rats, concentration-response curves revealed that captopril-treated rats display greater direct propofol relaxation (P = 0.018). MCh relaxation in the absence of propofol, however, was not different between captopril-treated and untreated rats (P = 0.80). Propofol pretreatment increased MCh relaxation in arteries from captopril-treated compared with untreated rats (P = 0.029 for 1 µM and P = 0.020 for 10 µM). Meclofenamate did not have an effect in this response (P = 0.22). l-NAME-dependent inhibition of MCh relaxation, however, was greater in arteries from control compared with captopril-treated rats (P = 0.0077). However, propofol increased the proportion of NO-dependent vasodilation to MCh similarly in both groups. This suggests that other vasodilatory pathways are involved in the differential response to MCh in the presence of propofol in captopril-treated rats. CONCLUSIONS Our results show that mesenteric arterial relaxation in response to propofol, both by direct stimulation and through modulation of endothelium-dependent mechanisms, is, in part, NO-dependent. In captopril-treated rats, propofol further increased arterial relaxation through a non-NO-dependent vasodilating pathway (e.g., endothelium-derived hyperpolarizing factor), which may account for enhanced vasodilation during propofol exposure in patients treated with ACE inhibitors.
Collapse
Affiliation(s)
- Ferrante S Gragasin
- FRCPC, Department of Anesthesiology and Pain Medicine, University of Alberta, 8-120 Clinical Science Building, 8440-112 St., Edmonton, Alberta, Canada T6G 2G3.
| | | | | |
Collapse
|
50
|
Ojeda NB, Royals TP, Alexander BT. Sex differences in the enhanced responsiveness to acute angiotensin II in growth-restricted rats: role of fasudil, a Rho kinase inhibitor. Am J Physiol Renal Physiol 2013; 304:F900-7. [PMID: 23344570 DOI: 10.1152/ajprenal.00687.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study tested the hypothesis that Rho kinase contributes to the enhanced pressor response to acute angiotensin II in intact male growth-restricted and gonadectomized female growth-restricted rats. Mean arterial pressure (MAP) and renal function were determined in conscious animals pretreated with enalapril (250 mg/l in drinking water) for 1 wk to block the endogenous renin-angiotensin system and normalize blood pressure (baseline). Blood pressure and renal hemodynamics did not differ at baseline. Acute Ang II (100 ng·kg(-1)·min(-1)) induced a greater increase in MAP and renal vascular resistance and enhanced reduction in glomerular filtration rate in intact male growth-restricted rats compared with intact male controls (P < 0.05). Cotreatment with the Rho kinase inhibitor fasudil (33 μg·kg(-1)·min(-1)) significantly attenuated these hemodynamic changes (P < 0.05), but it did not abolish the differential increase in blood pressure above baseline, suggesting that the impact of intrauterine growth restriction on blood pressure in intact male growth-restricted rats is independent of Rho kinase. Gonadectomy in conjunction with fasudil returned blood pressure back to baseline in male growth-restricted rats, and yet glomerular filtration rate remained significantly reduced (P < 0.05). Thus, these data suggest a role for enhanced renal sensitivity to acute Ang II in the developmental programming of hypertension in male growth-restricted rats. However, inhibition of Rho kinase had no effect on the basal or enhanced increase in blood pressure induced by acute Ang II in the gonadectomized female growth-restricted rat. Therefore, these studies suggest that Rho kinase inhibition exerts a sex-specific effect on blood pressure sensitivity to acute Ang II in growth-restricted rats.
Collapse
Affiliation(s)
- Norma B Ojeda
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|