1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Melbacke A, Salhotra A, Ušaj M, Månsson A. Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications. Sci Rep 2024; 14:22768. [PMID: 39354041 PMCID: PMC11445438 DOI: 10.1038/s41598-024-73457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.
Collapse
Affiliation(s)
- Andreas Melbacke
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
4
|
Månsson A, Ušaj M, Moretto L, Matusovsky O, Velayuthan LP, Friedman R, Rassier DE. New paradigms in actomyosin energy transduction: Critical evaluation of non-traditional models for orthophosphate release. Bioessays 2023; 45:e2300040. [PMID: 37366639 DOI: 10.1002/bies.202300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Release of the ATP hydrolysis product ortophosphate (Pi) from the active site of myosin is central in chemo-mechanical energy transduction and closely associated with the main force-generating structural change, the power-stroke. Despite intense investigations, the relative timing between Pi-release and the power-stroke remains poorly understood. This hampers in depth understanding of force production by myosin in health and disease and our understanding of myosin-active drugs. Since the 1990s and up to today, models that incorporate the Pi-release either distinctly before or after the power-stroke, in unbranched kinetic schemes, have dominated the literature. However, in recent years, alternative models have emerged to explain apparently contradictory findings. Here, we first compare and critically analyze three influential alternative models proposed previously. These are either characterized by a branched kinetic scheme or by partial uncoupling of Pi-release and the power-stroke. Finally, we suggest critical tests of the models aiming for a unified picture.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Luisa Moretto
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Oleg Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Lok Priya Velayuthan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| |
Collapse
|
5
|
Marang C, Scott B, Chambers J, Gunther LK, Yengo CM, Debold EP. A mutation in switch I alters the load-dependent kinetics of myosin Va. Nat Commun 2023; 14:3137. [PMID: 37253724 PMCID: PMC10229639 DOI: 10.1038/s41467-023-38535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Myosin Va is the molecular motor that drives intracellular vesicular transport, powered by the transduction of chemical energy from ATP into mechanical work. The coupling of the powerstroke and phosphate (Pi) release is key to understanding the transduction process, and crucial details of this process remain unclear. Therefore, we determined the effect of elevated Pi on the force-generating capacity of a mini-ensemble of myosin Va S1 (WT) in a laser trap assay. By increasing the stiffness of the laser trap we determined the effect of increasing resistive loads on the rate of Pi-induced detachment from actin, and quantified this effect using the Bell approximation. We observed that WT myosin generated higher forces and larger displacements at the higher laser trap stiffnesses in the presence of 30 mM Pi, but binding event lifetimes decreased dramatically, which is most consistent with the powerstroke preceding the release of Pi from the active site. Repeating these experiments using a construct with a mutation in switch I of the active site (S217A) caused a seven-fold increase in the load-dependence of the Pi-induced detachment rate, suggesting that the S217A region of switch I may help mediate the load-dependence of Pi-rebinding.
Collapse
Affiliation(s)
- Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura K Gunther
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Multistep orthophosphate release tunes actomyosin energy transduction. Nat Commun 2022; 13:4575. [PMID: 35931685 PMCID: PMC9356070 DOI: 10.1038/s41467-022-32110-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Muscle contraction and a range of critical cellular functions rely on force-producing interactions between myosin motors and actin filaments, powered by turnover of adenosine triphosphate (ATP). The relationship between release of the ATP hydrolysis product ortophosphate (Pi) from the myosin active site and the force-generating structural change, the power-stroke, remains enigmatic despite its central role in energy transduction. Here, we present a model with multistep Pi-release that unifies current conflicting views while also revealing additional complexities of potential functional importance. The model is based on our evidence from kinetics, molecular modelling and single molecule fluorescence studies of Pi binding outside the active site. It is also consistent with high-speed atomic force microscopy movies of single myosin II molecules without Pi at the active site, showing consecutive snapshots of pre- and post-power stroke conformations. In addition to revealing critical features of energy transduction by actomyosin, the results suggest enzymatic mechanisms of potentially general relevance. Release of the ATP hydrolysis product orthophosphate (Pi) from the myosin active site is central in force generation but is poorly understood. Here, Moretto et al. present evidence for multistep Pi-release reconciling apparently contradictory results.
Collapse
|
7
|
Kang'iri SM, Nitta T. Motility resilience of molecular shuttles against defective motors. IEEE Trans Nanobioscience 2022; 21:439-444. [PMID: 35471882 DOI: 10.1109/tnb.2022.3170562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myosin and kinesin are biomolecular motors found in living cells. By propelling their associated cytoskeletal filaments, these biomolecular motors facilitate force generation and material transport in the cells. When extracted, the biomolecular motors are promising candidates for in vitro applications such as biosensor devices, on account of their high operating efficiency and nanoscale size. However, during integration into these devices, some of the motors become defective due to unfavorable adhesion to the substrate surface. These defective motors inhibit the motility of the cytoskeletal filaments which make up the molecular shuttles used in the devices. Difficulties in controlling the fraction of active and defective motors in experiments discourage systematic studies concerning the resilience of the molecular shuttle motility against the impedance of defective motors. Here, we used mathematical modelling to systematically examine the resilience of the propulsion by these molecular shuttles against the impedance of the defective motors. The model showed that the fraction of active motors on the substrate is the essential factor determining the resilience of the molecular shuttle motility. Approximately 40% of active kinesin or 80% of active myosin motors are required to constitute continuous gliding of molecular shuttles in their respective substrates. The simplicity of the mathematical model in describing motility behavior offers utility in elucidating the mechanisms of the motility resilience of molecular shuttles.
Collapse
|
8
|
Debold EP. Mini‐ review: Recent insights into the relative timing of myosin’s powerstroke and release of phosphate. Cytoskeleton (Hoboken) 2022; 78:448-458. [DOI: 10.1002/cm.21695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology University of Massachusetts Amherst Massachusetts
| |
Collapse
|
9
|
Ghosh D, Ghosh S, Chaudhuri A. Deconstructing the role of myosin contractility in force fluctuations within focal adhesions. Biophys J 2022; 121:1753-1764. [PMID: 35346641 PMCID: PMC9117893 DOI: 10.1016/j.bpj.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Force fluctuations exhibited in focal adhesions that connect a cell to its extracellular environment point to the complex role of the underlying machinery that controls cell migration. To elucidate the explicit role of myosin motors in the temporal traction force oscillations, we vary the contractility of these motors in a dynamical model based on the molecular clutch hypothesis. As the contractility is lowered, effected both by changing the motor velocity and the rate of attachment/detachment, we show analytically in an experimentally relevant parameter space, that the system goes from decaying oscillations to stable limit cycle oscillations through a supercritical Hopf bifurcation. As a function of the motor activity and the number of clutches, the system exhibits a rich array of dynamical states. We corroborate our analytical results with stochastic simulations of the motor-clutch system. We obtain limit cycle oscillations in the parameter regime as predicted by our model. The frequency range of oscillations in the average clutch and motor deformation compares well with experimental results.
Collapse
Affiliation(s)
- Debsuvra Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Manauli, India
| | - Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Manauli, India.
| |
Collapse
|
10
|
Scott B, Marang C, Woodward M, Debold EP. Myosin's powerstroke occurs prior to the release of phosphate from the active site. Cytoskeleton (Hoboken) 2021; 78:185-198. [PMID: 34331410 DOI: 10.1002/cm.21682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Myosins are a family of motor proteins responsible for various forms of cellular motility, including muscle contraction and vesicular transport. The most fundamental aspect of myosin is its ability to transduce the chemical energy from the hydrolysis of ATP into mechanical work, in the form of force and/or motion. A key unanswered question of the transduction process is the timing of the force-generating powerstroke relative to the release of phosphate (Pi ) from the active site. We examined the ability of single-headed myosin Va to generate a powerstroke in a single molecule laser trap assay while maintaining Pi in its active site, by either elevating Pi in solution or by introducing a mutation in myosin's active site (S217A) to slow Pi -release from the active site. Upon binding to the actin filament, WT myosin generated a powerstoke rapidly (≥500 s-1 ) and without a detectable delay, both in the absence and presence of 30 mM Pi . The elevated levels of Pi did, however, affect event lifetime, eliminating the longest 25% of binding events, confirming that Pi rebound to myosin's active site and accelerated detachment. The S217A construct also generated a powerstroke similar in size and rate upon binding to actin despite the slower Pi release rate. These findings provide direct evidence that myosin Va generates a powerstroke with Pi still in its active site. Therefore, the findings are most consistent with a model in which the powerstroke occurs prior to the release of Pi from the active site.
Collapse
Affiliation(s)
- Brent Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Gunther LK, Rohde JA, Tang W, Cirilo JA, Marang CP, Scott BD, Thomas DD, Debold EP, Yengo CM. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V. J Biol Chem 2021; 295:17383-17397. [PMID: 33453985 DOI: 10.1074/jbc.ra120.015632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - John A Rohde
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher P Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brent D Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
12
|
Positional Isomers of a Non-Nucleoside Substrate Differentially Affect Myosin Function. Biophys J 2020; 119:567-580. [PMID: 32652059 DOI: 10.1016/j.bpj.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Molecular motors have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction of these motors is a root cause of many pathologies necessitating the need for intrinsic control over molecular motor function. Herein, we demonstrate that positional isomerism can be used as a simple and powerful tool to control the molecular motor of muscle, myosin. Using three isomers of a synthetic non-nucleoside triphosphate, we demonstrate that myosin's force- and motion-generating capacity can be dramatically altered at both the ensemble and single-molecule levels. By correlating our experimental results with computation, we show that each isomer exerts intrinsic control by affecting distinct steps in myosin's mechanochemical cycle. Our studies demonstrate that subtle variations in the structure of an abiotic energy source can be used to control the force and motility of myosin without altering myosin's structure.
Collapse
|
13
|
Månsson A. The effects of inorganic phosphate on muscle force development and energetics: challenges in modelling related to experimental uncertainties. J Muscle Res Cell Motil 2019; 42:33-46. [PMID: 31620962 PMCID: PMC7932973 DOI: 10.1007/s10974-019-09558-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023]
Abstract
Muscle force and power are developed by myosin cross-bridges, which cyclically attach to actin, undergo a force-generating transition and detach under turnover of ATP. The force-generating transition is intimately associated with release of inorganic phosphate (Pi) but the exact sequence of events in relation to the actual Pi release step is controversial. Details of this process are reflected in the relationships between [Pi] and the developed force and shortening velocity. In order to account for these relationships, models have proposed branched kinetic pathways or loose coupling between biochemical and force-generating transitions. A key hypothesis underlying the present study is that such complexities are not required to explain changes in the force–velocity relationship and ATP turnover rate with altered [Pi]. We therefore set out to test if models without branched kinetic paths and Pi-release occurring before the main force-generating transition can account for effects of varied [Pi] (0.1–25 mM). The models tested, one assuming either linear or non-linear cross-bridge elasticity, account well for critical aspects of muscle contraction at 0.5 mM Pi but their capacity to account for the maximum power output vary. We find that the models, within experimental uncertainties, account for the relationship between [Pi] and isometric force as well as between [Pi] and the velocity of shortening at low loads. However, in apparent contradiction with available experimental findings, the tested models produce an anomalous force–velocity relationship at elevated [Pi] and high loads with more than one possible velocity for a given load. Nevertheless, considering experimental uncertainties and effects of sarcomere non-uniformities, these discrepancies are insufficient to refute the tested models in favour of more complex alternatives.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Universitetskajen, 391 82, Kalmar, Sweden.
| |
Collapse
|
14
|
Unger M, Debold EP. Acidosis decreases the Ca 2+ sensitivity of thin filaments by preventing the first actomyosin interaction. Am J Physiol Cell Physiol 2019; 317:C714-C718. [PMID: 31339771 DOI: 10.1152/ajpcell.00196.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular acidosis is a putative agent of skeletal muscle fatigue, in part, because it depresses the calcium (Ca2+) sensitivity of the myofilaments. However, the molecular mechanism behind this depression in Ca2+ sensitivity is unknown, providing a significant challenge to a complete understanding of the fatigue process. To elucidate this mechanism, we directly determined the effect of acidosis on the ability of a single myosin molecule to bind to a regulated actin filament in a laser trap assay. Decreasing pH from 7.4 to 6.5 significantly (P < 0.05) reduced the frequency of single actomyosin-binding events at submaximal (pCa 8-pCa 6) but not at maximal Ca2+ concentration (pCa 5-pCa 4). To delineate whether this was due to a direct effect on myosin versus an indirect effect on the regulatory proteins troponin (Tn) and tropomyosin (Tm), binding frequency was also quantified in the absence of Tn and Tm. This revealed that acidosis did not significantly alter the frequency of actomyosin binding events in the absence of regulatory proteins (1.4 ± 0.15 vs. 1.4 ± 0.15 events/s for pH 7.4 and 6.5, respectively). Acidosis also did not significantly affect the size of myosin's powerstroke or the duration of binding events in the presence of regulatory proteins, at every [Ca2+]. These data suggest acidosis impedes activation of the thin filament by competitively inhibiting Ca2+ binding to TnC. This slows the rate at which myosin initially attaches to actin; therefore, less cross bridges will be bound and generating force at any given submaximal [Ca2+]. These data provide a molecular explanation for the acidosis-induced decrease in force observed at the submaximal Ca2+ concentrations that might contribute to the loss of force during muscle fatigue.
Collapse
Affiliation(s)
- Matthew Unger
- Muscle Biophysics Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Edward P Debold
- Muscle Biophysics Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
15
|
Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers. Int J Mol Sci 2019; 20:ijms20123075. [PMID: 31238505 PMCID: PMC6627110 DOI: 10.3390/ijms20123075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022] Open
Abstract
The relation between the force (load) and the velocity of shortening (V) in contracting skeletal muscle is part of a rectangular hyperbola: (P + a) V = b(Po − P); where Po is the maximum isometric force and a and b are constants. The force–velocity (P–V) relation suggests that muscle can regulate its energy output depending on the load imposed on it (Hill, 1938). After the establishment of the sliding filament mechanism (H.E. Huxley and Hanson, 1954), the P–V relation has been regarded to reflect the cyclic interaction between myosin heads in myosin filaments and the corresponding myosin-binding sites in actin filaments, coupled with ATP hydrolysis (A.F. Huxley, 1957). In single skeletal muscle fibers, however, the P–V relation deviates from the hyperbola at the high force region, indicating complicated characteristics of the cyclic actin–myosin interaction. To correlate the P–V relation with kinetics of actin–myosin interaction, skinned muscle fibers have been developed, in which the surface membrane is removed to control chemical and ionic conditions around the 3D lattice of actin and myosin filaments. This article also deals with experimental methods with which the structural instability of skinned fibers can be overcome by applying parabolic decreases in fiber length.
Collapse
|
16
|
Hanft LM, McDonald KS. Regulating myofilament power: The determinant of health. Arch Biochem Biophys 2019; 663:160-164. [PMID: 30639328 PMCID: PMC10155509 DOI: 10.1016/j.abb.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Laurin M Hanft
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Kerry S McDonald
- Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
17
|
Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil 2018; 39:135-147. [PMID: 30382520 DOI: 10.1007/s10974-018-9499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022]
Abstract
The loss of muscle force and power during fatigue from intense contractile activity is associated with, and likely caused by, elevated levels of phosphate ([Formula: see text]) and hydrogen ions (decreased pH). To understand how these deficits in muscle performance occur at the molecular level, we used direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH 7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH reduces myosin's detachment from actin (by slowing ADP release), increases non-productive myosin binding (by detached myosin rebinding without a powerstroke), and reduces myosin's attachment to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism is found by incorporating it into a branched pathway model for the effects of [Formula: see text] on myosin's interaction with actin. Including pH-dependence in one additional parameter (acceleration of [Formula: see text]-induced detachment), the model reproduces experimental measurements at high and low pH, and variable [Formula: see text], from the single molecule to large ensemble levels. Furthermore, when scaled up, the model predicts force-velocity relationships that are consistent with muscle fiber measurements. The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring a decrease in muscle force and a decrease in detachment favoring an increase in muscle force. Depending on experimental details, the addition of [Formula: see text] can strengthen one or the other effect, resulting in either synergistic or antagonistic effects. This detailed molecular description suggests a molecular basis for contractile failure during muscle fatigue.
Collapse
Affiliation(s)
- Katelyn Jarvis
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Sam Walcott
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Woodward M, Debold EP. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms. Front Physiol 2018; 9:862. [PMID: 30042692 PMCID: PMC6048269 DOI: 10.3389/fphys.2018.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 12/04/2022] Open
Abstract
Elevated levels of the metabolic by-products, including acidosis (i.e., high [H+]) and phosphate (Pi) are putative agents of muscle fatigue; however, the mechanism through which they affect myosin’s function remain unclear. To elucidate these mechanisms, we directly examined the effect of acidosis (pH 6.5 vs. 7.4), alone and in combination with elevated levels of Pi on the force-generating capacity of a mini-ensemble of myosin using a laser trap assay. Acidosis decreased myosin’s average force-generating capacity by 20% (p < 0.05). The reduction was due to both a decrease in the force generated during each actomyosin interaction, as well as an increase in the number of binding events generating negative forces. Adding Pi to the acidic condition resulted in a quantitatively similar decrease in force but was solely due to an elimination of all high force-generating events (>2 pN), resulting from an acceleration of the myosin’s rate of detachment from actin. Acidosis and Pi also had distinct effects on myosin’s steady state ATPase rate with acidosis slowing it by ∼90% (p > 0.05), while the addition of Pi under acidic conditions caused a significant recovery in the ATPase rate. These data suggest that these two fatigue agents have distinct effects on myosin’s cross-bridge cycle that may underlie the synergistic effect that they have muscle force. Thus these data provide novel molecular insight into the mechanisms underlying the depressive effects of Pi and H+ on muscle contraction during fatigue.
Collapse
Affiliation(s)
- Mike Woodward
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| | - Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
19
|
The molecular basis of thin filament activation: from single molecule to muscle. Sci Rep 2017; 7:1822. [PMID: 28500282 PMCID: PMC5431769 DOI: 10.1038/s41598-017-01604-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
For muscles to effectively power locomotion, trillions of myosin molecules must rapidly attach and detach from the actin thin filament. This is accomplished by precise regulation of the availability of the myosin binding sites on actin (i.e. activation). Both calcium (Ca++) and myosin binding contribute to activation, but both mechanisms are simultaneously active during contraction, making their relative contributions difficult to determine. Further complicating the process, myosin binding accelerates the attachment rate of neighboring myosin molecules, adding a cooperative element to the activation process. To de-convolve these two effects, we directly determined the effect of Ca++ on the rate of attachment of a single myosin molecule to a single regulated actin thin filament, and separately determined the distance over which myosin binding increases the attachment rate of neighboring molecules. Ca++ alone increases myosin’s attachment rate ~50-fold, while myosin binding accelerates attachment of neighboring molecules 400 nm along the actin thin filament.
Collapse
|
20
|
Maffei M, Longa E, Sabatini A, Vacca A, Iotti S. Actomyosin interaction at low ATP concentrations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:195-202. [PMID: 28039513 DOI: 10.1007/s00249-016-1194-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
In vitro motility assay (IVMA) experiments were performed to analyze the movement of actin filaments sliding on a pavement of myosin molecules at different [ATP] and [ADP]. In standard experimental conditions at [ATP] = 2 mM, about 80% of the actin filaments move in unloaded conditions with a constant velocity. However, a fraction of at least 20% static actin filaments is always present. The accepted explanation is the occurrence of damaged "rigor"-like myosin heads that do not undergo the normal ATP-dependent cycling motion. However, in a series of IVMA experiments performed at different [ATP] we observed that the mobility of actin filaments increased with lowering [ATP]. We investigated the influence of [ATP] on the number of mobile actin filaments. IVMA experiments were performed at controlled nucleotide concentrations and the percentage of mobile filaments accurately determined by specific operator-guided software. The value of ΔG ATP involved was determined. Results showed that the number of mobile actin filaments sliding on type 2B heavy meromyosin isoform (2B HMM) increased at very low [ATP] accompanied by less negative ΔG ATP values. Similar results were obtained by increasing [ADP]. Performing experiments at the same [ATP] with different myosin types, we found a higher number of mobile actin filaments on slow type 1 HMM with respect to type 2B HMM while the highest number of mobile actin filaments was found on single-head myosin (S1 fraction). We also found that [ATP] did not influence the percentage of mobile actin filaments sliding on S1. Our results reveal novel aspects of actomyosin interaction.
Collapse
Affiliation(s)
- Manuela Maffei
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Emanuela Longa
- Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Antonio Sabatini
- Department of Chemistry, University of Firenze, Sesto Fiorentino, Italy
| | - Alberto Vacca
- Department of Chemistry, University of Firenze, Sesto Fiorentino, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donatoi 15, 40127, Bologna, Italy. .,National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
21
|
Månsson A. Actomyosin based contraction: one mechanokinetic model from single molecules to muscle? J Muscle Res Cell Motil 2016; 37:181-194. [PMID: 27864648 PMCID: PMC5383694 DOI: 10.1007/s10974-016-9458-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 12/26/2022]
Abstract
Bridging the gaps between experimental systems on different hierarchical scales is needed to overcome remaining challenges in the understanding of muscle contraction. Here, a mathematical model with well-characterized structural and biochemical actomyosin states is developed to that end. We hypothesize that this model accounts for generation of force and motion from single motor molecules to the large ensembles of muscle. In partial support of this idea, a wide range of contractile phenomena are reproduced without the need to invoke cooperative interactions or ad hoc states/transitions. However, remaining limitations exist, associated with ambiguities in available data for model definition e.g.: (1) the affinity of weakly bound cross-bridges, (2) the characteristics of the cross-bridge elasticity and (3) the exact mechanistic relationship between the force-generating transition and phosphate release in the actomyosin ATPase. Further, the simulated number of attached myosin heads in the in vitro motility assay differs several-fold from duty ratios, (fraction of strongly attached ATPase cycle times) derived in standard analysis. After addressing the mentioned issues the model should be useful in fundamental studies, for engineering of myosin motors as well as for studies of muscle disease and drug development.
Collapse
Affiliation(s)
- Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
22
|
DEBOLD EDWARDP, FITTS ROBERTH, SUNDBERG CHRISTOPHERW, NOSEK THOMASM. Muscle Fatigue from the Perspective of a Single Crossbridge. Med Sci Sports Exerc 2016; 48:2270-2280. [DOI: 10.1249/mss.0000000000001047] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Debold EP. Decreased Myofilament Calcium Sensitivity Plays a Significant Role in Muscle Fatigue. Exerc Sport Sci Rev 2016; 44:144-9. [DOI: 10.1249/jes.0000000000000089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Hilbert L, Balassy Z, Zitouni NB, Mackey MC, Lauzon AM. Phosphate and ADP differently inhibit coordinated smooth muscle myosin groups. Biophys J 2015; 108:622-31. [PMID: 25650929 DOI: 10.1016/j.bpj.2014.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022] Open
Abstract
Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.
Collapse
Affiliation(s)
- Lennart Hilbert
- Department of Physiology, McGill University, Montréal, Québec, Canada; Centre for Applied Mathematics in Bioscience and Medicine, Montréal, Québec, Canada; Meakins-Christie Laboratories, Montréal, Québec, Canada.
| | - Zsombor Balassy
- Department of Physiology, McGill University, Montréal, Québec, Canada; Meakins-Christie Laboratories, Montréal, Québec, Canada
| | | | - Michael C Mackey
- Department of Physiology, McGill University, Montréal, Québec, Canada; Centre for Applied Mathematics in Bioscience and Medicine, Montréal, Québec, Canada; Department of Physics, McGill University, Montréal, Québec, Canada; Department of Mathematics, McGill University, Montréal, Québec, Canada
| | - Anne-Marie Lauzon
- Department of Physiology, McGill University, Montréal, Québec, Canada; Meakins-Christie Laboratories, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biomedical Engineering, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
25
|
Woodward M, Previs MJ, Mader TJ, Debold EP. Modifications of myofilament protein phosphorylation and function in response to cardiac arrest induced in a swine model. Front Physiol 2015; 6:199. [PMID: 26236240 PMCID: PMC4503891 DOI: 10.3389/fphys.2015.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/29/2015] [Indexed: 12/27/2022] Open
Abstract
Cardiac arrest is a prevalent condition with a poor prognosis, attributable in part to persistent myocardial dysfunction following resuscitation. The molecular basis of this dysfunction remains unclear. We induced cardiac arrest in a porcine model of acute sudden death and assessed the impact of ischemia and reperfusion on the molecular function of isolated cardiac contractile proteins. Cardiac arrest was electrically induced, left untreated for 12 min, and followed by a resuscitation protocol. With successful resuscitations, the heart was reperfused for 2 h (IR2) and the muscle harvested. In failed resuscitations, tissue samples were taken following the failed efforts (IDNR). Actin filament velocity, using myosin isolated from IR2 or IDNR cardiac tissue, was nearly identical to myosin from the control tissue in a motility assay. However, both maximal velocity (25% faster than control) and calcium sensitivity (pCa50 6.57 ± 0.04 IDNR vs. 6.34 ± 0.07 control) were significantly (p < 0.05) enhanced using native thin filaments (actin+troponin+tropomyosin) from IDNR samples, suggesting that the enhanced velocity is mediated through an alteration in muscle regulatory proteins (troponin+tropomyosin). Mass spectrometry analysis showed that only samples from the IR2 had an increase in total phosphorylation levels of troponin (Tn) and tropomyosin (Tm), but both IR2 and IDNR samples demonstrated a significant shift from mono-phosphorylated to bis-phosphorylated forms of the inhibitory subunit of Tn (TnI) compared to control. This suggests that the shift to bis-phosphorylation of TnI is associated with the enhanced function in IDNR, but this effect may be attenuated when phosphorylation of Tm is increased in tandem, as observed for IR2. There are likely many other molecular changes induced following cardiac arrest, but to our knowledge, these data provide the first evidence that this form cardiac arrest can alter the in vitro function of the cardiac contractile proteins.
Collapse
Affiliation(s)
- Mike Woodward
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Burlington, VT, USA
| | - Timothy J Mader
- Department of Emergency Medicine, Baystate Medical Center/Tufts University School of Medicine Springfield, MA, USA
| | - Edward P Debold
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, MA, USA ; Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
26
|
Ishigure Y, Nitta T. Simulating an Actomyosin in Vitro Motility Assay: Toward the Rational Design of Actomyosin-Based Microtransporters. IEEE Trans Nanobioscience 2015; 14:641-8. [PMID: 26087497 DOI: 10.1109/tnb.2015.2443373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a simulation study of an actomyosin in vitro motility assay. In vitro motility assays have served as an essential element facilitating the application of actomyosin in nanotechnology; such applications include biosensors and biocomputation. Although actomyosin in vitro motility assays have been extensively investigated, some ambiguities remain, as a result of the limited spatio-temporal resolution and unavoidable uncertainties associated with the experimental process. These ambiguities hamper the rational design of nanodevices for practical applications. Here, with the aim of moving toward a rational design process, we developed a 3D computer simulation method of an actomyosin in vitro motility assay, based on a Brownian dynamics simulation. The simulation explicitly included the ATP hydrolysis cycle of myosin. The simulation was validated by the reproduction of previous experimental results. More importantly, the simulation provided new insights that are difficult to obtain experimentally, including data on the number of myosin motors actually binding to actin filaments, the mechanism responsible for the guiding of actin filaments by chemical edges, and the effect of the processivity of motor proteins on the guiding probabilities. The simulations presented here will be useful in interpreting experimental results, and also in designing future nanodevices integrated with myosin motors.
Collapse
|
27
|
Vilfan A. Ensemble velocity of non-processive molecular motors with multiple chemical states. Interface Focus 2014; 4:20140032. [PMID: 25485083 DOI: 10.1098/rsfs.2014.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We study the ensemble velocity of non-processive motor proteins, described with multiple chemical states. In particular, we discuss the velocity as a function of ATP concentration. Even a simple model which neglects the strain dependence of transition rates, reverse transition rates and nonlinearities in the elasticity can show interesting functional dependencies, which deviate significantly from the frequently assumed Michaelis-Menten form. We discuss how the order of events in the duty cycle can be inferred from the measured dependence. The model also predicts the possibility of velocity reversal at a certain ATP concentration if the duty cycle contains several conformational changes of opposite directionalities.
Collapse
Affiliation(s)
- Andrej Vilfan
- J. Stefan Institute , Jamova 39, 1000 Ljubljana , Slovenia ; Faculty of Mathematics and Physics , University of Ljubljana , Jadranska 19, 1000 Ljubljana , Slovenia
| |
Collapse
|
28
|
Debold EP, Walcott S, Woodward M, Turner MA. Direct observation of phosphate inhibiting the force-generating capacity of a miniensemble of Myosin molecules. Biophys J 2014; 105:2374-84. [PMID: 24268149 DOI: 10.1016/j.bpj.2013.09.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/03/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022] Open
Abstract
Elevated levels of phosphate (Pi) reduce isometric force, providing support for the notion that the release of Pi from myosin is closely associated with the generation of muscular force. Pi is thought to rebind to actomyosin in an ADP-bound state and reverse the force-generating steps, including the rotation of the lever arm (i.e., the powerstroke). Despite extensive study, this mechanism remains controversial, in part because it fails to explain the effects of Pi on isometric ATPase and unloaded shortening velocity. To gain new insight into this process, we determined the effect of Pi on the force-generating capacity of a small ensemble of myosin (∼12 myosin heads) using a three-bead laser trap assay. In the absence of Pi, myosin pulled the actin filament out of the laser trap an average distance of 54 ± 4 nm, translating into an average peak force of 1.2 pN. By contrast, in the presence of 30 mM Pi, myosin generated only enough force to displace the actin filament by 13 ± 1 nm, generating just 0.2 pN of force. The elevated Pi also caused a >65% reduction in binding-event lifetime, suggesting that Pi induces premature detachment from a strongly bound state. Definitive evidence of a Pi-induced powerstroke reversal was not observed, therefore we determined if a branched kinetic model in which Pi induces detachment from a strongly bound, postpowerstroke state could explain these observations. The model was able to accurately reproduce not only the data presented here, but also the effects of Pi on both isometric ATPase in muscle fibers and actin filament velocity in a motility assay. The ability of the model to capture the findings presented here as well as previous findings suggests that Pi-induced inhibition of force may proceed along a kinetic pathway different from that of force generation.
Collapse
Affiliation(s)
- Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts.
| | | | | | | |
Collapse
|
29
|
Longyear TJ, Turner MA, Davis JP, Lopez J, Biesiadecki B, Debold EP. Ca++-sensitizing mutations in troponin, P(i), and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity. J Appl Physiol (1985) 2014; 116:1165-74. [PMID: 24651988 DOI: 10.1152/japplphysiol.01161.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca(++)-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca(++) levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca(++)-sensitizing mutation in the Ca(++)-binding subunit of Tn (TnC) increased VRTF at submaximal Ca(++) under acidic conditions but had no effect on VRTF at maximal Ca(++) levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca(++). Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate.
Collapse
Affiliation(s)
- Thomas J Longyear
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | | | | | | | | | | |
Collapse
|
30
|
Persson M, Bengtsson E, ten Siethoff L, Månsson A. Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin. Biophys J 2013; 105:1871-81. [PMID: 24138863 PMCID: PMC3797597 DOI: 10.1016/j.bpj.2013.08.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022] Open
Abstract
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28-29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.
Collapse
Affiliation(s)
| | | | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
31
|
Kobayashi M, Debold EP, Turner MA, Kobayashi T. Cardiac muscle activation blunted by a mutation to the regulatory component, troponin T. J Biol Chem 2013; 288:26335-26349. [PMID: 23897817 DOI: 10.1074/jbc.m113.494096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca(2+) sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca(2+) activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca(2+) binding measurements. Ca(2+) activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca(2+) sensitivity observed in Ca(2+) binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.
Collapse
Affiliation(s)
- Minae Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612 and.
| | - Edward P Debold
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Matthew A Turner
- the Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Tomoyoshi Kobayashi
- From the Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612 and
| |
Collapse
|
32
|
Abstract
The cause of muscle fatigue has been studied for more than 100 yr, yet its molecular basis remains poorly understood. Prevailing theories suggest that much of the fatigue-induced loss in force and velocity can be attributed to the inhibitory action of metabolites, principally phosphate (Pi) and hydrogen ions (H, i.e., acidosis), on the contractile proteins, but the precise detail of how this inhibition occurs has been difficult to visualize at the molecular level. However, recent technological developments in the areas of biophysics, molecular biology, and structural biology are enabling researchers to directly observe the function and dysfunction of muscle contractile proteins at the level of a single molecule. In fact, the first direct evidence that high levels of H and Pi inhibit the function of muscle's molecular motor, myosin, has recently been observed in a single molecule laser trap assay. Likewise, advances in structural biology are taking our understanding further, providing detail at the atomic level of how some metabolites might alter the internal motions of myosin and thereby inhibit its ability to generate force and motion. Finally, new insights are also being gained into the indirect role that muscle regulatory proteins troponin (Tn) and tropomyosin (Tn) play in the fatigue process. In vitro studies, incorporating TnTm, suggest that a significant portion of the decreased force and motion during fatigue may be mediated through a disruption of the molecular motions of specific regions within Tn and Tm. These recent advances are providing unprecedented molecular insight into the structure and function of the contractile proteins and, in the process, are reshaping our understanding of the process of fatigue.
Collapse
|
33
|
Debold EP, Longyear TJ, Turner MA. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay. J Appl Physiol (1985) 2012; 113:1413-22. [DOI: 10.1152/japplphysiol.00775.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle fatigue from intense contractile activity is thought to result, in large part, from the accumulation of inorganic phosphate (Pi) and hydrogen ions (H+) acting to directly inhibit the function of the contractile proteins; however, the molecular basis of this process remain unclear. We used an in vitro motility assay and determined the effects of elevated H+ and Pi on the ability of myosin to bind to and translocate regulated actin filaments (RTF) to gain novel insights into the molecular basis of fatigue. At saturating Ca++, acidosis depressed regulated filament velocity ( VRTF) by ∼90% (6.2 ± 0.3 vs. 0.5 ± 0.2 μm/s at pH 7.4 and 6.5, respectively). However, the addition of 30 mM Pi caused VRTF to increase fivefold, from 0.5 ± 0.2 to 2.6 ± 0.3 μm/s at pH 6.5. Similarly, at all subsaturating Ca++ levels, acidosis slowed VRTF, but the addition of Pi significantly attenuated this effect. We also manipulated the [ADP] in addition to the [Pi] to probe which specific step(s) of cross-bridge cycle of myosin is affected by elevated H+. The findings are consistent with acidosis slowing the isomerization step between two actomyosin ADP-bound states. Because the state before this isomerization is most vulnerable to Pi rebinding, and the associated detachment from actin, this finding may also explain the Pi-induced enhancement of VRTF at low pH. These results therefore may provide a molecular basis for a significant portion of the loss of shortening velocity and possibly muscular power during fatigue.
Collapse
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Thomas J. Longyear
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Matthew A. Turner
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
34
|
Walcott S, Warshaw DM, Debold EP. Mechanical coupling between myosin molecules causes differences between ensemble and single-molecule measurements. Biophys J 2012; 103:501-510. [PMID: 22947866 PMCID: PMC3414898 DOI: 10.1016/j.bpj.2012.06.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/07/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed insight into the kinetics of myosin's mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.
Collapse
Affiliation(s)
- Sam Walcott
- Department of Mathematics, University of California, Davis, California.
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
35
|
Debold EP. Recent insights into muscle fatigue at the cross-bridge level. Front Physiol 2012; 3:151. [PMID: 22675303 PMCID: PMC3365633 DOI: 10.3389/fphys.2012.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 11/22/2022] Open
Abstract
The depression in force and/or velocity associated with muscular fatigue can be the result of a failure at any level, from the initial events in the motor cortex of the brain to the formation of an actomyosin cross-bridge in the muscle cell. Since all the force and motion generated by muscle ultimately derives from the cyclical interaction of actin and myosin, researchers have focused heavily on the impact of the accumulation of intracellular metabolites [e.g., P(i), H(+) and adenosine diphoshphate (ADP)] on the function these contractile proteins. At saturating Ca(++) levels, elevated P(i) appears to be the primary cause for the loss in maximal isometric force, while increased [H(+)] and possibly ADP act to slow unloaded shortening velocity in single muscle fibers, suggesting a causative role in muscular fatigue. However the precise mechanisms through which these metabolites might affect the individual function of the contractile proteins remain unclear because intact muscle is a highly complex structure. To simplify problem isolated actin and myosin have been studied in the in vitro motility assay and more recently the single molecule laser trap assay with the findings showing that both P(i) and H(+) alter single actomyosin function in unique ways. In addition to these new insights, we are also gaining important information about the roles played by the muscle regulatory proteins troponin (Tn) and tropomyosin (Tm) in the fatigue process. In vitro studies, suggest that both the acidosis and elevated levels of P(i) can inhibit velocity and force at sub-saturating levels of Ca(++) in the presence of Tn and Tm and that this inhibition can be greater than that observed in the absence of regulation. To understand the molecular basis of the role of regulatory proteins in the fatigue process researchers are taking advantage of modern molecular biological techniques to manipulate the structure and function of Tn/Tm. These efforts are beginning to reveal the relevant structures and how their functions might be altered during fatigue. Thus, it is a very exciting time to study muscle fatigue because the technological advances occurring in the fields of biophysics and molecular biology are providing researchers with the ability to directly test long held hypotheses and consequently reshaping our understanding of this age-old question.
Collapse
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|