1
|
Grove JCR, Knight ZA. The neurobiology of thirst and salt appetite. Neuron 2024; 112:3999-4016. [PMID: 39610247 DOI: 10.1016/j.neuron.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
The first act of life was the capture of water within a cell membrane,1 and maintaining fluid homeostasis is critical for the survival of most organisms. In this review, we discuss the neural mechanisms that drive animals to seek out and consume water and salt. We discuss the cellular and molecular mechanisms for sensing imbalances in blood osmolality, volume, and sodium content; how this information is integrated in the brain to produce thirst and salt appetite; and how these motivational drives are rapidly quenched by the ingestion of water and salt. We also highlight some of the gaps in our current understanding of the fluid homeostasis system, including the molecular identity of the key sensors that detect many fluid imbalances, as well as the mechanisms that control drinking in the absence of physiologic deficit, such as during meals.
Collapse
Affiliation(s)
- James C R Grove
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Center for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Jang H, Sharma AB, Dan U, Wong JH, Knight ZA, Garrison JL. Dysregulation of the fluid homeostasis system by aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615271. [PMID: 39386575 PMCID: PMC11463352 DOI: 10.1101/2024.09.26.615271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chronic dehydration is a leading cause of morbidity for the elderly, but how aging alters the fluid homeostasis system is not well understood. Here, we used a combination of physiologic, behavioral and circuit analyses to characterize how fluid balance is affected by aging in mice. We found that old mice have a primary defect in sensing and producing the anti-diuretic hormone vasopressin, which results in chronic dehydration. Recordings and manipulations of the thirst circuitry revealed that old mice retain the ability to sense systemic cues of dehydration but are impaired in detecting presystemic, likely oropharyngeal, cues generated during eating and drinking, resulting in disorganized drinking behavior on short timescales. Surprisingly, old mice had increased drinking and motivation after 24-hour water deprivation, indicating that aging does not result in a general impairment in the thirst circuit. These findings reveal how a homeostatic system undergoes coordinated changes during aging.
Collapse
Affiliation(s)
- Heeun Jang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Alexis B. Sharma
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Usan Dan
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Jasmine H. Wong
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary A. Knight
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience; University of California San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; University of California San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L. Garrison
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Center for Healthy Aging in Women, Novato, CA 94945, USA
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Leonard Davis School of Gerontology, University of Southern California; Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Santollo J, Daniels D. Fluid transitions. Neuropharmacology 2024; 256:110009. [PMID: 38823577 PMCID: PMC11184821 DOI: 10.1016/j.neuropharm.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Water is critical for survival and thirst is a powerful way of ensuring that fluid levels remain in balance. Overconsumption, however, can have deleterious effects, therefore optimization requires a need to balance the drive for water with the satiation of that water drive. This review will highlight our current understanding of how thirst is both generated and quenched, with particular focus on the roles of angiotensin II, glucagon like-peptide 1, and estradiol in turning on and off the thirst drive. Our understanding of the roles these bioregulators play has benefited from modern behavioral analyses, which have improved the time resolution of intake measures, allowing for attention to the details of the patterns within a bout of intake. This has led to behavioral interpretation in ways that are helpful in understanding the many controls of water intake and has expanded our understanding beyond the dichotomy that something which increases water intake is simply a "stimulator" while something that decreases water intake is simply a "satiety" factor. Synthesizing the available information, we describe a framework in which thirst is driven directly by perturbations in fluid intake and indirectly modified by several bioregulators. This allows us to better highlight areas that are in need of additional attention to form a more comprehensive understanding of how the system transitions between states of thirst and satiety.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | - Derek Daniels
- Department of Biology, University at Buffalo, State University of New York, Buffalo, NY 14260, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Todini L, Fantuz F. Thirst: neuroendocrine regulation in mammals. Vet Res Commun 2023; 47:1085-1101. [PMID: 36932281 DOI: 10.1007/s11259-023-10104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Animals can sense their changing internal needs and then generate specific physiological and behavioural responses in order to restore homeostasis. Water-saline homeostasis derives from balances of water and sodium intake and output (drinking and diuresis, salt appetite and natriuresis), maintaining an appropriate composition and volume of extracellular fluid. Thirst is the sensation which drives to seek and consume water, regulated in the central nervous system by both neural and chemical signals. Water and electrolyte homeostasis depends on finely tuned physiological mechanisms, mainly susceptible to plasma Na+ concentration and osmotic pressure, but also to blood volume and arterial pressure. Increases of osmotic pressure as slight as 1-2% are enough to induce thirst ("homeostatic" or cellular), by activation of specialized osmoreceptors in the circumventricular organs, outside the blood-brain barrier. Presystemic anticipatory signals (by oropharyngeal or gastrointestinal receptors) inhibit thirst when fluids are ingested, or stimulate thirst associated with food intake. Hypovolemia, arterial hypotension, Angiotensin II stimulate thirst ("hypovolemic thirst", "extracellular dehydration"). Hypervolemia, hypertension, Atrial Natriuretic Peptide inhibit thirst. Circadian rhythms of thirst are also detectable, driven by suprachiasmatic nucleus in the hypothalamus. Such homeostasis and other fundamental physiological functions (cardiocircolatory, thermoregulation, food intake) are highly interdependent.
Collapse
Affiliation(s)
- Luca Todini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy.
| | - Francesco Fantuz
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, Via della Circonvallazione 93/95, 62024, Matelica, MC, Italy
| |
Collapse
|
5
|
Peltekian L, Gasparini S, Fazan FS, Karthik S, Iverson G, Resch JM, Geerling JC. Sodium appetite and thirst do not require angiotensinogen production in astrocytes or hepatocytes. J Physiol 2023; 601:3499-3532. [PMID: 37291801 DOI: 10.1113/jp283169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.
Collapse
Affiliation(s)
- Lila Peltekian
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Jon M Resch
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Joel C Geerling
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
6
|
de Souza AMA, Ji H, Wu X, Sandberg K, West CA. Persistent Renin-Angiotensin System Sensitization Months After Body Weight Recovery From Severe Food Restriction in Female Fischer Rats. J Am Heart Assoc 2020; 9:e017246. [PMID: 32674648 PMCID: PMC7660733 DOI: 10.1161/jaha.120.017246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Prior exposure to periods of severe food restriction (sFR) is associated with increased risk of developing hypertension and cardiovascular disease later in life. Methods and Results To investigate the mechanism of these long-term adverse effects of sFR, 4-month-old female Fischer rats were divided in 2 groups and maintained on a normal diet ad libitum (control) or on an sFR diet with 60% reduction in daily food intake for 2 weeks that resulted in a 15% reduction in body weight. After the 2-week sFR period ended, both groups received normal chow ad libitum for 3 months. Within 2 weeks after refeeding was initiated in the sFR group, body weight was restored to control levels; however, plasma angiotensinogen (1.3-fold; P<0.05), Ang-[1-8] (2.0-fold; P<0.05), and angiotensin-converting enzyme activity (1.1-fold; P<0.01) were all elevated 3 months after refeeding. Angiotensin type 1 receptor activity was also increased as evidenced by augmented pressor responses to angiotensin-[1-8] (P<0.01) and depressor responses to the angiotensin type 1 receptor antagonist, losartan (P<0.01) in the sFR group. Conclusions These results indicate that sensitization of the renin-angiotensin system persisted months after the sFR period ended. These findings may have implications for women who voluntarily or involuntarily experience an extended period of sFR and thus may be at increased risk of developing cardiovascular disease through sensitization of the renin-angiotensin system even though their body weight, mean arterial pressure, and heart rate appear normal.
Collapse
Affiliation(s)
| | - Hong Ji
- Department of Medicine Georgetown University Washington DC
| | - Xie Wu
- Department of Medicine Georgetown University Washington DC
| | | | - Crystal A West
- Department of Medicine Georgetown University Washington DC
| |
Collapse
|
7
|
Ma L, Zhang Y, Yue L, Zhang X, Cui S, Liu FY, Wan Y, Yi M. Anterior cingulate cortex modulates the affective-motivative dimension of hyperosmolality-induced thirst. J Physiol 2019; 597:4851-4860. [PMID: 31390064 DOI: 10.1113/jp278301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 11/08/2022] Open
Abstract
Neuroimaging studies have shown that the anterior cingulate cortex (ACC) is consistently activated by thirst and may underlie the affective motivation of drinking behaviour demanded by thirst. But direct evidence for this hypothesis is lacking. The present study evaluated potential correlations between ACC neuronal activity and drinking behaviour in rats injected with different concentrations of saline. We observed an increased number of c-Fos-positive neurons in the ACC after injection of hypertonic saline, indicating strong ACC neuronal activation under hyperosmotic thirst. Increased firing rates of putative ACC pyramidal neurons preceded drinking behaviour and positively correlated with both the total duration of drinking and the total amount of water consumed. Chemogenetic inhibition of ACC pyramidal neurons changed drinking behaviour from an explosive and short-lasting pattern to a gradual but more persistent pattern, without affecting either the total duration of drinking or the total amount of water consumed. Together, these findings support a role of the ACC in modulating the affective-motivative dimension of hyperosmolality-induced thirst.
Collapse
Affiliation(s)
- Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China
| | - Yuqi Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueying Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, P. R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, P. R. China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, P. R. China
| |
Collapse
|
8
|
Leng G, Russell JA. The osmoresponsiveness of oxytocin and vasopressin neurones: Mechanisms, allostasis and evolution. J Neuroendocrinol 2019; 31:e12662. [PMID: 30451331 DOI: 10.1111/jne.12662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
In the rat supraoptic nucleus, every oxytocin cell projects to the posterior pituitary, and is involved both in reflex milk ejection during lactation and in regulating uterine contractions during parturition. All are also osmosensitive, regulating natriuresis. All are also regulated by signals that control appetite, including the neural and hormonal signals that arise from the gut after food intake and from the sites of energy storage. All are also involved in sexual behaviour, anxiety-related behaviours and social behaviours. The challenge is to understand how a single population of neurones can coherently regulate such a diverse set of functions and adapt to changing physiological states. Their multiple functions arise from complex intrinsic properties that confer sensitivity to a wide range of internal and environmental signals. Many of these properties have a distant evolutionary origin in multifunctional, multisensory neurones of Urbilateria, the hypothesised common ancestor of vertebrates, insects and worms. Their properties allow different patterns of oxytocin release into the circulation from their axon terminals in the posterior pituitary into other brain areas from axonal projections, as well as independent release from their dendrites.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - John A Russell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
McKinley MJ, Denton DA, Ryan PJ, Yao ST, Stefanidis A, Oldfield BJ. From sensory circumventricular organs to cerebral cortex: Neural pathways controlling thirst and hunger. J Neuroendocrinol 2019; 31:e12689. [PMID: 30672620 DOI: 10.1111/jne.12689] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 01/14/2023]
Abstract
Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Derek A Denton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Office of the Dean of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Philip J Ryan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aneta Stefanidis
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Brian J Oldfield
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
de Souza AMA, West CA, de Abreu ARR, Pai AV, Mesquita LBT, Ji H, Chianca D, de Menezes RCA, Sandberg K. Role of the Renin Angiotensin System in Blood Pressure Allostasis-induced by Severe Food Restriction in Female Fischer rats. Sci Rep 2018; 8:10327. [PMID: 29985423 PMCID: PMC6037681 DOI: 10.1038/s41598-018-28593-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Severe food restriction (FR) is associated with blood pressure (BP) and cardiovascular dysfunction. The renin-angiotensin system (RAS) regulates BP and its dysregulation contributes to impaired cardiovascular function. Female Fischer rats were maintained on a control (CT) or severe FR (40% of CT) diet for 14 days. In response to severe FR, BP allostasis was achieved by up-regulating circulating Ang-[1–8] by 1.3-fold through increased angiotensin converting enzyme (ACE) activity and by increasing the expression of AT1Rs 1.7-fold in mesenteric vessels. Activation of the RAS countered the depressor effect of the severe plasma volume reduction (≥30%). The RAS, however, still underperformed as evidenced by reduced pressor responses to Ang-[1–8] even though AT1Rs were still responsive to the depressor effects of an AT1R antagonist. The aldosterone (ALDO) response was also inadequate as no changes in plasma ALDO were observed after the large fall in plasma volume. These findings have implications for individuals who have experienced a period(s) of severe FR (e.g., anorexia nervosa, dieters, natural disasters) and suggests increased activity of the RAS in order to achieve allostasis contributes to the cardiovascular dysfunction associated with inadequate food intake.
Collapse
Affiliation(s)
- Aline Maria Arlindo de Souza
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA. .,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil.
| | - Crystal A West
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| | | | - Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - Laura Batista Tavares Mesquita
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| | - Deoclécio Chianca
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
11
|
Begg DP. Disturbances of thirst and fluid balance associated with aging. Physiol Behav 2017; 178:28-34. [DOI: 10.1016/j.physbeh.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/22/2017] [Accepted: 03/02/2017] [Indexed: 01/25/2023]
|
12
|
Kawano H. Synaptic contact between median preoptic neurons and subfornical organ neurons projecting to the paraventricular hypothalamic nucleus. Exp Brain Res 2017; 235:1053-1062. [DOI: 10.1007/s00221-016-4862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
|
13
|
Abbott SBG, Machado NLS, Geerling JC, Saper CB. Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice. J Neurosci 2016; 36:8228-37. [PMID: 27488641 PMCID: PMC4971367 DOI: 10.1523/jneurosci.1244-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Stimulation of glutamatergic neurons in the subfornical organ drives drinking behavior, but the brain targets that mediate this response are not known. The densest target of subfornical axons is the anterior tip of the third ventricle, containing the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a region that has also been implicated in fluid and electrolyte management. The neurochemical composition of this region is complex, containing both GABAergic and glutamatergic neurons, but the possible roles of these neurons in drinking responses have not been addressed. In mice, we show that optogenetic stimulation of glutamatergic neurons in MnPO/OVLT drives voracious water consumption, and that optogenetic stimulation of GABAergic neurons in the same region selectively reduces water consumption. Both populations of neurons have extensive projections to overlapping regions of the thalamus, hypothalamus, and hindbrain that are much more extensive than those from the subfornical organ, suggesting that the MnPO/OVLT serves as a key link in regulating drinking responses. SIGNIFICANCE STATEMENT Neurons in the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT) are known to regulate fluid/electrolyte homeostasis, but few studies have examined this issue with an appreciation for the neurochemical heterogeneity of these nuclei. Using Cre-Lox genetic targeting of Channelrhodospin-2 in transgenic mice, we demonstrate that glutamate and GABA neurons in the MnPO/OVLT reciprocally regulate water consumption. Stimulating glutamatergic MnPO/OVLT neurons induced water consumption, whereas stimulating GABAergic MnPO neurons caused a sustained and specific reduction in water consumption in dehydrated mice, the latter highlighting a heretofore unappreciated role of GABAergic MnPO neurons in thirst regulation. These observations represent an important advance in our understanding of the neural circuits involved in the regulation of fluid/electrolyte homeostasis.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Heart Research Institute, Sydney, Australia, and
| | - Natalia L S Machado
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Joel C Geerling
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215
| | - Clifford B Saper
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215,
| |
Collapse
|
14
|
Abstract
Hypernatremia is defined as a serum sodium level above 145 mmol/L. It is a frequently encountered electrolyte disturbance in the hospital setting, with an unappreciated high mortality. Understanding hypernatremia requires a comprehension of body fluid compartments, as well as concepts of the preservation of normal body water balance. The human body maintains a normal osmolality between 280 and 295 mOsm/kg via Arginine Vasopressin (AVP), thirst, and the renal response to AVP; dysfunction of all three of these factors can cause hypernatremia. We review new developments in the pathophysiology of hypernatremia, in addition to the differential diagnosis and management of this important electrolyte disorder.
Collapse
Affiliation(s)
- Saif A Muhsin
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA; Veterans Affairs Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
15
|
Coble JP, Grobe JL, Johnson AK, Sigmund CD. Mechanisms of brain renin angiotensin system-induced drinking and blood pressure: importance of the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2014; 308:R238-49. [PMID: 25519738 DOI: 10.1152/ajpregu.00486.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.
Collapse
Affiliation(s)
| | - Justin L Grobe
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Curt D Sigmund
- Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Waldréus N, Hahn RG, Engvall J, Skoog J, Ewerman L, Lindenberger M. Thirst response to acute hypovolaemia in healthy women and women prone to vasovagal syncope. Physiol Behav 2013; 120:34-9. [PMID: 23834893 DOI: 10.1016/j.physbeh.2013.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/07/2013] [Accepted: 06/20/2013] [Indexed: 11/15/2022]
Abstract
The present study measured self-perceived thirst and plasma angiotensin II (ATII) concentrations during graded hypovolaemic stress, induced by lower body negative pressure (LBNP), to elucidate the dependence of thirst on haemodynamics. A total of 24 women aged between 20 and 36 (mean age, 23) years rated their thirst on a visual analogue scale, graded from 0 to 100, when LBNP of 20, 30 and 40 mmHg was applied. Half of the women had a history of vasovagal syncope (VVS). The results showed that the thirst score increased three-fold when LBNP was applied, from 11 (median; 25th-75th percentiles, 9-25) to 34 (27-53; P<0.001). The women in the VVS group had twice as great an increase as those without a history of VVS (P<0.02). The plasma ATII concentration increased significantly in response to LBNP, both in the VVS group and in the control group, but the changes did not correlate with thirst. Application of LBNP decreased systolic and mean arterial pressures, cardiac output and pulse pressure (P<0.001 for all), but thirst correlated only with increase in heart rate and, independently, with reduction of mean arterial pressure. In conclusion, thirst and ATII increase in response to hypovolaemic stress, but are not statistically related. The haemodynamic parameter that was most strongly related to thirst was tachycardia.
Collapse
Affiliation(s)
- Nana Waldréus
- Department of Social and Welfare Studies, Faculty of Health Sciences, Linköping University, Norrköping, Sweden; Department of Research, Södertälje Sjukhus, Södertälje, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Walch JD, Carreño FR, Cunningham JT. Intracerebroventricular losartan infusion modulates angiotensin II type 1 receptor expression in the subfornical organ and drinking behaviour in bile-duct-ligated rats. Exp Physiol 2012; 98:922-33. [PMID: 23243146 DOI: 10.1113/expphysiol.2012.068593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bile duct ligation (BDL) causes congestive liver failure that initiates haemodynamic changes, including peripheral vasodilatation and generalized oedema. Peripheral vasodilatation is hypothesized to activate compensatory mechanisms, including increased drinking behaviour and neurohumoral activation. This study tested the hypothesis that changes in the expression of angiotensin II type 1 receptor (AT(1)R) mRNA and protein in the lamina terminalis are associated with BDL-induced hyposmolality in the rat. All rats received either BDL or sham-ligation surgery. The rats were housed in metabolic chambers for measurement of fluid and food intake and urine output. Expression of AT(1)R in the lamina terminalis was assessed by Western blot and quantitative real-time PCR (RT-qPCR). Average baseline water intake increased significantly in BDL rats compared with sham-operated rats, and upregulation of AT(1)R protein and AT(1a)R mRNA were observed in the subfornical organ of BDL rats. Separate groups of BDL and sham-ligated rats were instrumented with minipumps filled with either losartan (2.0 μg μl(-1)) or 0.9% saline for chronic intracerebroventricular or chronic subcutaneous infusion. Chronic intracerebroventricular losartan infusion attenuated the increased drinking behaviour and prevented the increased abundance of AT(1)R protein in the subfornical organ in BDL rats. Chronic subcutaneous infusion did not affect water intake or AT(1)R abundance in the subfornical organ. The data presented here indicate a possible role of increased central AT(1)R expression in the regulation of drinking behaviour during congestive cirrhosis.
Collapse
Affiliation(s)
- Joseph D Walch
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Centre at Fort Worth, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
18
|
Issa AT, Miyata K, Heng V, Mitchell KD, Derbenev AV. Increased neuronal activity in the OVLT of Cyp1a1-Ren2 transgenic rats with inducible Ang II-dependent malignant hypertension. Neurosci Lett 2012; 519:26-30. [PMID: 22579820 DOI: 10.1016/j.neulet.2012.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 11/27/2022]
Abstract
The contribution of angiotensin II (Ang II) to the pathophysiology of hypertension is established based on facts that high levels of circulating Ang II increase vasoconstriction of peripheral arteries causing a rise in blood pressure (BP). In addition, circulating Ang II has various effects on the central nervous system, including the osmosensitive neurons in the organum vasculosum of the lamina terminalis (OVLT). Osmosensitive neurons in the OVLT transduce hypertonicity via the activation of the nonselective cation channel known as transient receptor potential vanilloid 1 (TRPV1), causing membrane depolarization, followed by increased action potential discharge. This effect is absent in mice lacking expression of the TRPV1 gene. Most observations related to the importance of the OVLT in cardiovascular control are mainly based on models of lesion of the entire preoptic periventricular tissue. However, it remains unclear whether neuronal activity and TRPV1 protein expression levels alter in the OVLT of Cyp1a1-Ren2 transgenic rats with inducible Ang II-dependent malignant hypertension. C-fos was used as a marker of neuronal activity. Immunostaining was used to demonstrate distribution of c-fos positive neurons in the OVLT of Cyp1a1Ren2 transgenic rats. Western blot analysis showed increased c-fos and TRPV1 total protein expression levels in the OVLT of hypertensive rats. The present findings demonstrate increased c-fos and TRPV1 expression levels in the OVLT of Cyp1a1-Ren2 transgenic rats with Ang II-dependent malignant hypertension.
Collapse
Affiliation(s)
- Alexandra T Issa
- Department of Physiology, Tulane University, New Orleans, LA, United States
| | | | | | | | | |
Collapse
|
19
|
Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J Neurosci 2011; 31:14669-76. [PMID: 21994383 DOI: 10.1523/jneurosci.1420-11.2011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary osmosensory neurons in the mouse organum vasculosum lamina terminalis (OVLT) transduce hypertonicity via the activation of nonselective cation channels that cause membrane depolarization and increased action potential discharge, and this effect is absent in mice lacking expression of the transient receptor potential vanilloid 1 (Trpv1) gene (Ciura and Bourque, 2006). However other experiments have indicated that channels encoded by Trpv4 also contribute to central osmosensation in mice (Liedtke and Friedman, 2003; Mizuno et al., 2003). At present, the mechanism by which hypertonicity modulates cation channels in OVLT neurons is unknown, and it remains unclear whether Trpv1 and Trpv4 both contribute to this process. Here, we show that physical shrinking is necessary and sufficient to mediate hypertonicity sensing in OVLT neurons isolated from adult mice. Steps coupling progressive decreases in cell volume to increased neuronal activity were quantitatively equivalent whether shrinking was evoked by osmotic pressure or mechanical aspiration. Finally, modulation of OVLT neurons by tonicity or mechanical stimulation was unaffected by deletion of trpv4 but was abolished in cells lacking Trpv1 or wild-type neurons treated with the TRPV1 antagonist SB366791. Thus, hypertonicity sensing is a mechanical process requiring Trpv1, but not Trpv4.
Collapse
|
20
|
Thirst in the elderly with and without heart failure. Arch Gerontol Geriatr 2010; 53:174-8. [PMID: 21035203 DOI: 10.1016/j.archger.2010.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
Abstract
Elderly patients with heart failure (HF) may be troubled by thirst, despite the fact that elderly have an impaired ability to sense thirst. The present study was undertaken to compare the intensity of thirst in patients with and without HF and to evaluate how this symptom relates to the health-related quality of life and indices of the fluid balance. Forty-eight patients (mean age 80 years) admitted to hospital with worsening HF (n = 23) or with other acute illness (n = 25) graded their thirst and estimated their health-related quality of life (HRQoL). Serum sodium was measured and urine samples were assessed for color and electrolyte content. The HF patients reported significantly more intensive thirst (median = 75 mm) compared with those in the control group (median = 25 mm; p < 0.0001). There was no statistically significant relationship between thirst and HRQoL, which was low overall. Serum sodium and urine color did not differ significantly between the groups, but the urine of the HF patients had a lower sodium concentration and osmolality. We conclude that elderly patients with worsening HF have considerably increased thirst and, hence, intense thirst should be regarded as a symptom of HF.
Collapse
|
21
|
Lee VHY, Lee LTO, Chu JYS, Lam IPY, Siu FKY, Vaudry H, Chow BKC. An indispensable role of secretin in mediating the osmoregulatory functions of angiotensin II. FASEB J 2010. [DOI: 10.1096/fj.10.165399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vien H. Y. Lee
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| | - Leo T. O. Lee
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| | - Jessica Y. S. Chu
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| | - Ian P. Y. Lam
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| | - Francis K Y. Siu
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| | - Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, University of Rouen Mont-Saint-Aignan France
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong Hong Kong China
| |
Collapse
|
22
|
Lee VHY, Lee LTO, Chu JYS, Lam IPY, Siu FKY, Vaudry H, Chow BKC. An indispensable role of secretin in mediating the osmoregulatory functions of angiotensin II. FASEB J 2010; 24:5024-32. [PMID: 20739612 DOI: 10.1096/fj.10-165399] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluid balance is critical to life and hence is tightly controlled in the body. Angiotensin II (ANGII), one of the most important components of this regulatory system, is recognized as a dipsogenic hormone that stimulates vasopressin (VP) expression and release. However, detailed mechanisms regarding how ANGII brings about these changes are not fully understood. In the present study, we show initially that the osmoregulatory functions of secretin (SCT) in the brain are similar to those of ANGII in mice and, more important, we discovered the role of SCT as the link between ANGII and its downstream effects. This was substantiated by the use of two knockout mice, SCTR(-/-) and SCT(-/-), in which we show the absence of an intact SCT/secretin receptor (SCTR) axis resulted in an abolishment or much reduced ANGII osmoregulatory functions. By immunohistochemical staining and in situ hybridization, the proteins and transcripts of SCT and its receptor are found in the paraventricular nucleus (PVN) and lamina terminalis. We propose that SCT produced in the circumventricular organs is transported and released in the PVN to stimulate vasopressin expression and release. In summary, our findings identify SCT and SCTR as novel elements of the ANGII osmoregulatory pathway in maintaining fluid balance in the body.
Collapse
Affiliation(s)
- Vien H Y Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Evidence that central action of paraquat interferes in the dipsogenic effect of Ang II. Neurotoxicology 2010; 31:305-9. [DOI: 10.1016/j.neuro.2010.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 02/19/2010] [Accepted: 03/03/2010] [Indexed: 11/19/2022]
|
24
|
Roberts EM, Pope GR, Newson MJF, Landgraf R, Lolait SJ, O'Carroll AM. Stimulus-specific neuroendocrine responses to osmotic challenges in apelin receptor knockout mice. J Neuroendocrinol 2010; 22:301-8. [PMID: 20136689 DOI: 10.1111/j.1365-2826.2010.01968.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of the novel peptide apelin and its receptor APJ within specific regions of the brain, in particular the magnocellular neurones of the hypothalamus and the circumventricular organs, has implicated the apelinergic system in mechanisms controlling fluid homeostasis. In addition, apelin and APJ are considered to be involved in controlling arginine vasopressin (AVP) secretion into the circulation and release within the hypothalamic-neurohypophysial system. To clarify the role of APJ during regulation of fluid homeostasis, we compared the effects of osmotic stimulation on the urinary concentrating capacities and central nervous system responses of salt-loaded (SL) and water-deprived (WD) female APJ knockout (APJ(-/-)) mice and wild-type controls. SL resulted in a significantly increased urine volume in APJ(-/-) mice compared to wild-type controls, whereas WD in APJ(-/-) mice failed to reduce urine volume as seen in wild-type controls. AVP transcripts in the supraoptic and paraventricular nuclei and plasma AVP concentrations were significantly attenuated in SL APJ(-/-) mice compared to SL wild-type, but increased comparably in wild-type and APJ(-/-) mice after WD. Analysis of c-fos mRNA expression in the median preoptic nucleus and subfornical organ in response to either WD or SL showed attenuated expression in APJ(-/-) compared to wild-type mice. These findings further implicate the apelinergic system in mechanisms controlling fluid homeostasis, particularly at a neuroendocrine level, and suggest stimulus-specific involvement in vasopressinergic activity.
Collapse
Affiliation(s)
- E M Roberts
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | | | | | | | | | | |
Collapse
|
25
|
Albrecht D. Physiological and pathophysiological functions of different angiotensins in the brain. Br J Pharmacol 2010. [DOI: 10.1111/j.1476-5381.2010.00648.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
26
|
Chen D, Hazelwood L, Walker LL, Oldfield BJ, McKinley MJ, Allen AM. Changes in angiotensin type 1 receptor binding and angiotensin-induced pressor responses in the rostral ventrolateral medulla of angiotensinogen knockout mice. Am J Physiol Regul Integr Comp Physiol 2010; 298:R411-8. [DOI: 10.1152/ajpregu.00462.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ANG II, the main circulating effector hormone of the renin-angiotensin system, is produced by enzymatic cleavage of angiotensinogen. The present study aimed to examine whether targeted deletion of the angiotensinogen gene ( Agt) altered brain ANG II receptor density or responsiveness to ANG II. In vitro autoradiography was used to examine the distribution and density of angiotensin type 1 (AT1) and type 2 receptors. In most brain regions, the distribution and density of angiotensin receptors were similar in brains of Agt knockout mice ( Agt−/−) and wild-type mice. In Agt−/−mice, a small increase in AT1receptor binding was observed in the rostral ventrolateral medulla (RVLM), a region that plays a critical role in blood pressure regulation. To examine whether Agt−/−mice showed altered responses to ANG II, blood pressure responses to intravenous injection (0.01–0.1 μg/kg) or RVLM microinjection (50 pmol in 50 nl) of ANG II were recorded in anesthetized Agt−/−and wild-type mice. Intravenous injections of phenylephrine (4 μg/kg and 2 μg/kg) were also made in both groups. The magnitude of the pressor response to intravenous injections of ANG II or phenylephrine was not different between Agt−/−and wild-type mice. Microinjection of ANG II into the RVLM induced a pressor response, which was significantly smaller in Agt−/−compared with wild-type mice (+10 ± 1 vs. +23 ± 4 mmHg, respectively, P = 0.004). Microinjection of glutamate into the RVLM (100 pmol in 10 nl) produced a robust pressor response, which was not different between Agt−/−and wild-type mice. A diminished response to ANG II microinjection in the RVLM of Agt−/−mice, despite an increased density of AT1receptors suggests that signal transduction pathways may be altered in RVLM neurons of Agt−/−mice, resulting in attenuated cellular excitation.
Collapse
Affiliation(s)
- Daian Chen
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Lisa Hazelwood
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Lesley L. Walker
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia; and
| | | | - Michael J. McKinley
- Department of Physiology, University of Melbourne, Victoria, Australia
- Howard Florey Institute, Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia; and
| | - Andrew M. Allen
- Department of Physiology, University of Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Hashimoto H, Otsubo H, Fujihara H, Suzuki H, Ohbuchi T, Yokoyama T, Takei Y, Ueta Y. Centrally administered ghrelin potently inhibits water intake induced by angiotensin II and hypovolemia in rats. J Physiol Sci 2010; 60:19-25. [PMID: 19760484 PMCID: PMC10717457 DOI: 10.1007/s12576-009-0062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
Abstract
Ghrelin is a potent, centrally acting orexigenic hormone. Recently, we showed that centrally administered ghrelin is a potent antidipsogenic hormone in 24-h water deprived rats. In this study, we examined the effect of intracerebroventricular (icv) injection of ghrelin on angiotensin II (AII)-induced water intake in rats. We also examined the effects of icv injection of ghrelin on drinking induced by intraperitoneal injection of an isotonic polyethylene glycol (PEG) solution that causes isotonic hypovolemia. Water intake induced by the icv injection of AII or ip injection of PEG was significantly reduced after icv injection of ghrelin, although food intake was stimulated by the hormone. The drinking induced by AII was also inhibited by the icv administration of 4alpha-phorbol 12, 13-didecanoate, an agonist of the osmosensitive TRPV4 channel. This study showed that ghrelin is a potent antidipsogenic peptide by antagonizing general dipsogenic mechanisms including those activated by AII and hypovolemia in rats.
Collapse
Affiliation(s)
- Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Hiroki Otsubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Hiroaki Fujihara
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Hitoshi Suzuki
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Toru Yokoyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| | - Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Ocean Research Institute, University of Tokyo, Tokyo, 164-8639 Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555 Japan
| |
Collapse
|
28
|
|
29
|
Shimizu F, Kasai T, Takamata A. Involvement of central angiotensin II type 1 receptors in LPS-induced systemic vasopressin release and blood pressure regulation in rats. J Appl Physiol (1985) 2009; 106:1943-8. [PMID: 19359612 DOI: 10.1152/japplphysiol.90516.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate the involvement of central angiotensin II (ANG II) and ANG II type 1 (AT(1)) receptors in systemic release of arginine vasopressin (AVP) and blood pressure regulation during endotoxemia. LPS (150 microg/kg) was injected intravenously 30 min after intracerebroventricular (icv) losartan (50 microg), an AT(1) receptor antagonist, or subcutaneous (sc) captopril (50 mg/kg), an angiotensin-converting enzyme inhibitor. Rats with icv and sc saline injections served as control. LPS administration increased plasma AVP concentration from 2.1 +/- 0.2 to 15.2 +/- 2.5 pg/ml (60 min after LPS injection) without significant changes in plasma osmolality or hematocrit. LPS-induced AVP secretion was significantly attenuated by pretreatment with icv losartan (2.3 +/- 0.5 to 3.7 +/- 0.5 pg/ml) but was not attenuated after peripheral captopril treatment (2.2 +/- 0.6 to 17.6 +/- 4.2 pg/ml). LPS administration significantly decreased systolic blood pressure (SBP) by 22.7 +/- 5.4 mmHg after intravenous LPS injection in icv losartan-treated rats, while SBP remained unchanged in vehicle-treated or sc captopril-treated rats by intravenous LPS. These results indicate that central AT(1) receptors, not responsive to peripheral ANG II, play an important role in systemic AVP secretion and maintenance of blood pressure during endotoxemia.
Collapse
Affiliation(s)
- Fumihiro Shimizu
- Department of Environmental Health, Nara Women's Univesity, Kitauoya Nishimachi, Nara 630-8506, Japan
| | | | | |
Collapse
|