1
|
Behringer EJ. Impact of aging on vascular ion channels: perspectives and knowledge gaps across major organ systems. Am J Physiol Heart Circ Physiol 2023; 325:H1012-H1038. [PMID: 37624095 PMCID: PMC10908410 DOI: 10.1152/ajpheart.00288.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Individuals aged ≥65 yr will comprise ∼20% of the global population by 2030. Cardiovascular disease remains the leading cause of death in the world with age-related endothelial "dysfunction" as a key risk factor. As an organ in and of itself, vascular endothelium courses throughout the mammalian body to coordinate blood flow to all other organs and tissues (e.g., brain, heart, lung, skeletal muscle, gut, kidney, skin) in accord with metabolic demand. In turn, emerging evidence demonstrates that vascular aging and its comorbidities (e.g., neurodegeneration, diabetes, hypertension, kidney disease, heart failure, and cancer) are "channelopathies" in large part. With an emphasis on distinct functional traits and common arrangements across major organs systems, the present literature review encompasses regulation of vascular ion channels that underlie blood flow control throughout the body. The regulation of myoendothelial coupling and local versus conducted signaling are discussed with new perspectives for aging and the development of chronic diseases. Although equipped with an awareness of knowledge gaps in the vascular aging field, a section has been included to encompass general feasibility, role of biological sex, and additional conceptual and experimental considerations (e.g., cell regression and proliferation, gene profile analyses). The ultimate goal is for the reader to see and understand major points of deterioration in vascular function while gaining the ability to think of potential mechanistic and therapeutic strategies to sustain organ perfusion and whole body health with aging.
Collapse
Affiliation(s)
- Erik J Behringer
- Basic Sciences, Loma Linda University, Loma Linda, California, United States
| |
Collapse
|
2
|
Chyła-Danił G, Sałaga-Zaleska K, Kreft E, Stumski O, Krzesińska A, Sakowicz-Burkiewicz M, Kuchta A, Jankowski M. Long-Term Effects of Suramin on Renal Function in Streptozotocin-Induced Diabetes in Rats. Int J Mol Sci 2023; 24:14671. [PMID: 37834118 PMCID: PMC10572378 DOI: 10.3390/ijms241914671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In short-term diabetes (3 weeks), suramin, a drug used clinically, affects renal function and the expression of vascular endothelial growth factor A (VEGF-A), which may be involved in the pathogenesis of diabetic nephropathy, the main cause of end-stage renal disease. In the present study, we evaluated the long-term (11 weeks) effects of suramin (10 mg/kg, i.p., once-weekly) in diabetic rats. Concentrations of VEGF-A, albumin, soluble adhesive molecules (sICAM-1, sVCAM-1), nucleosomes, and thrombin-antithrombin complex (TAT) were measured by ELISA, total protein was measured using a biuret reagent. Glomerular expression of VEGF-A was evaluated by Western blot, mRNA for VEGF-A receptors in the renal cortex by RT-PCR. The vasoreactivity of the interlobar arteries to acetylcholine was assessed by wire myography. Long-term diabetes led to an increased concentration of VEGF-A, TAT, and urinary excretion of total protein and albumin, and a decrease in the concentration of sVCAM-1. We have shown that suramin in diabetes reduces total urinary protein excretion and restores the relaxing properties of acetylcholine relaxation properties to non-diabetic levels. Suramin had no effect on glomerular expression VEGF-A expression and specific receptors, and on sICAM-1 and nucleosomes concentrations in diabetic rats. In conclusion, the long-term effect of suramin on the kidneys in diabetes, expressed in the reduction of proteinuria and the restoration of endothelium-dependent relaxation of the renal arteries, can be considered as potentially contributing to the reduction/slowing down of the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | - Olaf Stumski
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | - Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | | | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland; (G.C.-D.)
| |
Collapse
|
3
|
Babaei S, Dai B, Abbey CK, Ambreen Y, Dobrucki WL, Insana MF. Monitoring Muscle Perfusion in Rodents During Short-Term Ischemia Using Power Doppler Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1465-1475. [PMID: 36967332 PMCID: PMC10106419 DOI: 10.1016/j.ultrasmedbio.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The aim of this work was to evaluate the reliability of power Doppler ultrasound (PD-US) measurements made without contrast enhancement to monitor temporal changes in peripheral blood perfusion. METHODS On the basis of pre-clinical rodent studies, we found that combinations of spatial registration and clutter filtering techniques applied to PD-US signals reproducibly tracked blood perfusion in skeletal muscle. Perfusion is monitored while modulating hindlimb blood flow. First, in invasive studies, PD-US measurements in deep muscle with laser speckle contrast imaging (LSCI) of superficial tissues made before, during and after short-term arterial clamping were compared. Then, in non-invasive studies, a pressure cuff was employed to generate longer-duration hindlimb ischemia. Here, B-mode imaging was also applied to measure flow-mediated dilation of the femoral artery while, simultaneously, PD-US was used to monitor downstream muscle perfusion to quantify reactive hyperemia. Measurements in adult male and female mice and rats, some with exercise conditioning, were included to explore biological variables. RESULTS PD-US methods are validated through comparisons with LSCI measurements. As expected, no significant differences were found between sexes or fitness levels in flow-mediated dilation or reactive hyperemia estimates, although post-ischemic perfusion was enhanced with exercise conditioning, suggesting there could be differences between the hyperemic responses of conduit and resistive vessels. CONCLUSION Overall, we found non-contrast PD-US imaging can reliably monitor relative spatiotemporal changes in muscle perfusion. This study supports the development of PD-US methods for monitoring perfusion changes in patients at risk for peripheral artery disease.
Collapse
Affiliation(s)
- Somaye Babaei
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bingze Dai
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Craig K Abbey
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Yamenah Ambreen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wawrzyniec L Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael F Insana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Chyła-Danił G, Sałaga-Zaleska K, Kreft E, Krzesińska A, Herman S, Kuchta A, Sakowicz-Burkiewicz M, Lenartowicz M, Jankowski M. Suramin Affects the Renal VEGF-A/VEGFR Axis in Short-Term Streptozotocin-Induced Diabetes. Pharmaceuticals (Basel) 2023; 16:ph16030470. [PMID: 36986570 PMCID: PMC10053825 DOI: 10.3390/ph16030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic nephropathy (DN) accounts for approximately 50% of end-stage renal diseases. Vascular endothelial growth factor A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in DN, but its role is unclear. The lack of pharmacological tools to modify renal concentrations further hinders the understanding of its role in DN. In this study, rats were evaluated after 3 weeks of streptozotocin-induced diabetes and two suramin treatments (10 mg/kg, ip). Vascular endothelial growth factor A expression was evaluated by western blot of glomeruli and immunofluorescence of the renal cortex. RT-PCR for receptors Vegfr1 mRNA and Vegfr2 mRNA quantitation was performed. The soluble adhesive molecules (sICAM-1, sVCAM-1) in blood were measured by ELISA and the vasoreactivity of interlobar arteries to acetylcholine was evaluated using wire myography. Suramin administration reduced the expression and intraglomerular localisation of VEGF-A. Increased VEGFR-2 expression in diabetes was reduced by suramin to non-diabetic levels. Diabetes reduced the sVCAM-1 concentrations. Suramin in diabetes restored acetylcholine relaxation properties to non-diabetic levels. In conclusion, suramin affects the renal VEGF-A/VEGF receptors axis and has a beneficial impact on endothelium-dependent relaxation of renal arteries. Thus, suramin may be used as a pharmacological agent to investigate the potential role of VEGF-A in the pathogenesis of renal vascular complications in short-term diabetes.
Collapse
Affiliation(s)
- Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | | | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| |
Collapse
|
5
|
Pinilla E, Sánchez A, Martínez MP, Muñoz M, García‐Sacristán A, Köhler R, Prieto D, Rivera L. Endothelial K Ca 1.1 and K Ca 3.1 channels mediate rat intrarenal artery endothelium-derived hyperpolarization response. Acta Physiol (Oxf) 2021; 231:e13598. [PMID: 33314681 DOI: 10.1111/apha.13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
Abstract
AIM Endothelium-derived hyperpolarization (EDH)-mediated response plays an essential role in the control of kidney preglomerular circulation, but the identity of the K+ channels involved in this response is still controversial. We hypothesized that large- (KCa 1.1), intermediate- (KCa 3.1) and small (KCa 2.3) -conductance Ca2+ -activated K+ (KCa ) channels are expressed in the endothelium of the preglomerular circulation and participate in the EDH-mediated response. METHODS We study the functional expression of different K+ channels in non-cultured, freshly isolated native endothelial cells (ECs) of rat intrarenal arteries using immunofluorescence and the patch-clamp technique. We correlate this with vasorelaxant responses ex vivo using wire myography. RESULTS Immunofluorescence revealed the expression of KCa 1.1, KCa 3.1 and KCa 2.3 channels in ECs. Under voltage-clamp conditions, acetylcholine induced a marked increase in the outward currents in these cells, sensitive to the blockade of KCa 1.1, KCa 3.1 and KCa 2.3 channels respectively. Isometric myography experiments, under conditions of endothelial nitric oxide synthase and cyclooxygenase inhibition, showed that blockade either of KCa 1.1 or KCa 3.1 channels was able to reduce the endothelium-derived vasorelaxation of isolated interlobar arteries, while their combined blockade completely abolished it. In contrast, blockade of KCa 2.3 channels did not reduce this vasorelaxant response, despite being functionally expressed in the endothelial cells. CONCLUSION This study shows that KCa 1.1 and KCa 3.1 channels are functionally expressed at the renal vascular endothelium and play a central role in the EDH-mediated relaxation of kidney preglomerular arteries, which is important in the control of renal blood flow and glomerular filtration rate.
Collapse
Affiliation(s)
- Estéfano Pinilla
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology Aarhus University Aarhus Denmark
| | - Ana Sánchez
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - María P. Martínez
- Department of Compared Anatomy and Pathological Anatomy, Faculty of Veterinary Complutense University of Madrid Madrid Spain
| | - Mercedes Muñoz
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Albino García‐Sacristán
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Ralf Köhler
- Aragonese Agency for Investigation and Development & IACS/IIS Translational ResearchMiguel Servet Hospital Zaragoza Spain
| | - Dolores Prieto
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| | - Luis Rivera
- Departament of Physiology, Faculty of Pharmacy Complutense University of Madrid Madrid Spain
| |
Collapse
|
6
|
Krishnan S, Suarez-Martinez AD, Bagher P, Gonzalez A, Liu R, Murfee WL, Mohandas R. Microvascular dysfunction and kidney disease: Challenges and opportunities? Microcirculation 2021; 28:e12661. [PMID: 33025626 PMCID: PMC9990864 DOI: 10.1111/micc.12661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Kidneys are highly vascular organs that despite their relatively small size receive 20% of the cardiac output. The highly intricate, delicately organized structure of renal microcirculation is essential to enable renal function and glomerular filtration rate through the local modulation of renal blood flow and intraglomerular pressure. Not surprisingly, the dysregulation of blood flow within the microvessels (abnormal vasoreactivity), fibrosis driven by disordered vascular-renal cross talk, or the loss of renal microvasculature (rarefaction) is associated with kidney disease. In addition, kidney disease can cause microcirculatory dysfunction in distant organs such as the heart and brain, mediated by mechanisms that remain to be elucidated. The objective of this review is to highlight the role of renal microvasculature in kidney disease. The overview will outline the impetus to study renal microvasculature, the bidirectional relationship between kidney disease and microvascular dysfunction, the key pathways driving microvascular diseases such as vasoreactivity, the cell dynamics coordinating fibrosis, and vessel rarefaction. Finally, we will also briefly highlight new therapies targeting the renal microvasculature to improve renal function.
Collapse
Affiliation(s)
- Suraj Krishnan
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ariana D Suarez-Martinez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Pooneh Bagher
- Department of Medical Physiology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Rajesh Mohandas
- Division of Nephrology, Hypertension & Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
7
|
Hussain Lodhi A, Ahmad FUD, Furwa K, Madni A. Role of Oxidative Stress and Reduced Endogenous Hydrogen Sulfide in Diabetic Nephropathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1031-1043. [PMID: 33707940 PMCID: PMC7943325 DOI: 10.2147/dddt.s291591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
Purpose Persistent hyperglycemia lead towards depletion of hydrogen sulfide (H2S) resulting in generation of oxidative stress and diabetic nephropathy. The aim of the current study was to explore the antioxidant potential of H2S and captopril, a -SH containing compound in streptozotocin (STZ)-induced diabetic nephropathy. Methods Fifty four Wistar-Kyoto (WKY) rats male (200-250g) were divided into nine groups (n=6) with each group injected once with STZ (60mg/kg i.p) except normal control. After 3 weeks of induction of diabetes, groups were assigned as normal control, diabetic control, diabetic-captopril, diabetic-NaHS, diabetic-captopril-NaHS, diabetic-spironolactone, diabetic-metformin, diabetic-metformin-NaHS and diabetic-vitamin-c. All the animals were served with normal saline (N/S 4mL/kg p.o), captopril (50mg/kg/day p.o), sodium hydrosulfide (NaHS) (56µmol/kg i.p), spironolactone (50mg/kg/day s.c), metformin (500mg/kg/day p.o) and vitamin-c (50mg/kg p.o) on daily basis for next 4 weeks, respectively. Metabolic studies, H2S levels, renal hemodynamics and oxidative stress markers were analyzed at 0, 14 and 28 days followed by histopathological analysis of renal tissues. Results The results showed decreased H2S levels, body weight, sodium to potassium ratio, glutathione (GSH), superoxide dismutase (SOD), total antioxidant assay (T-AOC) with malondialdehyde (MDA) and blood glucose levels significantly increased among diabetic rats. Treatment with captopril, NaHS, metformin, spironolactone and vitamin C showed significant improvement among renal hemodynamics and oxidative stress markers, respectively. But treatment groups like NaHS in combination with captopril and metformin showed more pronounced effects. Conclusion The observations suggest that H2S mediated protective effects on STZ-induced diabetic nephropathy may be associated with reduced oxidative stress via augmenting the antioxidant effect.
Collapse
Affiliation(s)
- Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-Ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kainat Furwa
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
8
|
Stannov SU, Brasen JC, Salomonsson M, Holstein‐Rathlou N, Sorensen CM. Interactions between renal vascular resistance and endothelium-derived hyperpolarization in hypertensive rats in vivo. Physiol Rep 2019; 7:e14168. [PMID: 31368238 PMCID: PMC6669277 DOI: 10.14814/phy2.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelium derived signaling mechanisms play an important role in regulating vascular tone and endothelial dysfunction is often found in hypertension. Endothelium-derived hyperpolarization (EDH) plays a significant role in smaller renal arteries and arterioles, but its significance in vivo in hypertension is unresolved. The aim of this study was to characterize the EDH-induced renal vasodilation in normotensive and hypertensive rats during acute intrarenal infusion of ACh. Our hypothesis was that the increased renal vascular resistance (RVR) found early in hypertension would significantly correlate with reduced EDH-induced vasodilation. In isoflurane-anesthetized 12-week-old normo- and hypertensive rats blood pressure and renal blood flow (RBF) was measured continuously. RBF responses to acute intrarenal ACh infusions were measured before and after inhibition of NO and prostacyclin. Additionally, RVR was decreased or increased using inhibition or activation of adrenergic receptors or by use of papaverine and angiotensin II. Intrarenal infusion of ACh elicited a larger increase in RBF in hypertensive rats compared to normotensive rats suggesting that endothelial dysfunction is not present in 12-week-old hypertensive rats. The EDH-induced renal vasodilation (after inhibition of NO and prostacyclin) was similar between normo- and hypertensive rats. Reducing RVR by inhibition of α1 -adrenergic receptors significantly increased the renal EDH response in hypertensive rats, but a similar increase was found after activating α-adrenergic receptors using norepinephrine. The results show that renal EDH is present and functional in 12-week-old normo- and hypertensive rats. Interestingly, both activation and inactivation of α1 -adrenergic receptors elicited an increase in the renal EDH-induced vasodilation.
Collapse
Affiliation(s)
- Søs U. Stannov
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
| | - Jens Christian Brasen
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
- Department of Electrical EngineeringTechnical University of DenmarkLyngbyDenmark
| | | | | | - Charlotte M. Sorensen
- Institute of Biomedical Sciences, Heart, Renal and CirculationUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
10
|
Braun D, Zollbrecht C, Dietze S, Schubert R, Golz S, Summer H, Persson PB, Carlström M, Ludwig M, Patzak A. Hypoxia/Reoxygenation of Rat Renal Arteries Impairs Vasorelaxation via Modulation of Endothelium-Independent sGC/cGMP/PKG Signaling. Front Physiol 2018; 9:480. [PMID: 29773995 PMCID: PMC5943512 DOI: 10.3389/fphys.2018.00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Ischemia/reperfusion injury holds a key position in many pathological conditions such as acute kidney injury and in the transition to chronic stages of renal damage. We hypothesized that besides a reported disproportional activation of vasoconstrictor response, hypoxia/reoxygenation (H/R) adversely affects endothelial dilatory systems and impairs relaxation in renal arteries. Rat renal interlobar arteries were studied under isometric conditions. Hypoxia was induced by application of 95% N2, 5% CO2 for 60 min to the bath solution, followed by a 10 min period of reoxygenation (95% O2, 5% CO2). The effect of H/R on relaxation was assessed using various inhibitors of endothelial dilatory systems. mRNA expression of phosphodiesterase 5 (PDE5), NADPH oxidases (NOX), and nitric oxide synthase (NOS) isoforms were determined using qRT-PCR; cGMP was assayed with direct cGMP ELISA. Acetylcholine induced relaxation was impaired after H/R. Inhibition of the NOS isoforms with L-NAME, and cyclooxygenases (COXs) by indomethacin did not abolish the H/R effect. Moreover, blocking the calcium activated potassium channels KCa3.1 and KCa2.1, the main mediators of the endothelium-derived hyperpolarizing factor, with TRAM34 and UCL1684, respectively, showed similar effects in H/R and control. Arterial stiffness did not differ comparing H/R with controls, indicating no impact of H/R on passive vessel properties. Moreover, superoxide was not responsible for the observed H/R effect. Remarkably, H/R attenuated the endothelium-independent relaxation by sodium nitroprusside, suggesting endothelium-independent mechanisms of H/R action. Investigating the signaling downstream of NO revealed significantly decreased cGMP and impaired relaxation during PDE5 inhibition with sildenafil after H/R. Inhibition of PKG, the target of cGMP, did not normalize SNP-induced relaxation following H/R. However, the soluble guanylyl cyclase (sGC) inhibitor ODQ abolished the H/R effect on relaxation. The mRNA expressions of the endothelial and the inducible NOS were reduced. NOX and PDE5 mRNA were similarly expressed in H/R and control. Our results provide new evidence that impaired renal artery relaxation after H/R is due to a dysregulation of sGC leading to decreased cGMP levels. The presented mechanism might contribute to an insufficient renal reperfusion after ischemia and should be considered in its pathophysiology.
Collapse
Affiliation(s)
- Diana Braun
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christa Zollbrecht
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Dietze
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim, Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Pontus B Persson
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marion Ludwig
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Patzak
- Renal Vessel Physiology Group, Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Salomonsson M, Brasen JC, Sorensen CM. Role of renal vascular potassium channels in physiology and pathophysiology. Acta Physiol (Oxf) 2017; 221:14-31. [PMID: 28371470 DOI: 10.1111/apha.12882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/10/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
The control of renal vascular tone is important for the regulation of salt and water balance, blood pressure and the protection against damaging elevated glomerular pressure. The K+ conductance is a major factor in the regulation of the membrane potential (Vm ) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm via its effect on the opening probability of voltage-operated Ca2+ channels (VOCC) in VSMC. When K+ conductance increases Vm becomes more negative and vasodilation follows, while deactivation of K+ channels leads to depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by endothelium-derived vasodilation. Therefore, by regulating the tone of renal resistance vessels, K+ channels have a potential role in the control of fluid homoeostasis and blood pressure as well as in the protection of the renal parenchyma. The main classes of K+ channels (calcium activated (KCa ), inward rectifier (Kir ), voltage activated (Kv ) and ATP sensitive (KATP )) have been found in the renal vessels. In this review, we summarize results available in the literature and our own studies in the field. We compare the ambiguous in vitro and in vivo results. We discuss the role of single types of K+ channels and the integrated function of several classes. We also deal with the possible role of renal vascular K+ channels in the pathophysiology of hypertension, diabetes mellitus and sepsis.
Collapse
Affiliation(s)
| | - J. C. Brasen
- Department of Electrical Engineering; Technical University of Denmark; Kgs. Lyngby Denmark
| | - C. M. Sorensen
- Department of Biomedical Sciences; Division of Renal and Vascular Physiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
12
|
Coleman HA, Tare M, Parkington HC. Nonlinear effects of potassium channel blockers on endothelium-dependent hyperpolarization. Acta Physiol (Oxf) 2017; 219:324-334. [PMID: 27639255 DOI: 10.1111/apha.12805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/12/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
Abstract
In a number of published studies on endothelium-dependent hyperpolarization and relaxation, the results of the effects of K+ blockers have been difficult to interpret. When the effects of two blockers have been studied, often either blocker by itself had little effect, whereas the two blockers combined tended to abolish the responses. Explanations suggested in the literature include an unusual pharmacology of the K+ channels, and possible blocker binding interactions. In contrast, when we applied the same blockers to segments of small blood vessels under voltage clamp, the blockers reduced the endothelium-dependent K+ current in a linearly additive manner. Resolution of these contrasting results is important as endothelium-derived hyperpolarization (EDH) makes its greatest contribution to vasorelaxation in arterioles and small resistance arteries, where it can exert a significant role in tissue perfusion and blood pressure regulation. Furthermore, EDH is impaired in various diseases. Here, we consider why the voltage-clamp results differ from earlier free-running membrane potential and contractility studies. We fitted voltage-clamp-derived current-voltage relationships with mathematical functions and considered theoretically the effects of partial and total block of endothelium-derived K+ -currents on the membrane potential of small blood vessels. When the K+ -conductance was partially reduced, equivalent to applying a single blocker, the effect on EDH was small. Total block of the endothelium-dependent K+ conductance abolished the hyperpolarization, in agreement with various published studies. We conclude that nonlinear summation of the hyperpolarizing response evoked by endothelial stimulation can explain the variable effectiveness of individual K+ channel blockers on endothelium-dependent hyperpolarization and resulting relaxation.
Collapse
Affiliation(s)
- H. A. Coleman
- Department of Physiology; Biomedicine Discovery Institute; Cardiovascular Disease Program; Monash University; Clayton Vic. Australia
| | - M. Tare
- Department of Physiology; Biomedicine Discovery Institute; Cardiovascular Disease Program; Monash University; Clayton Vic. Australia
| | - H. C. Parkington
- Department of Physiology; Biomedicine Discovery Institute; Cardiovascular Disease Program; Monash University; Clayton Vic. Australia
| |
Collapse
|
13
|
|
14
|
Rasmussen KMB, Braunstein TH, Salomonsson M, Brasen JC, Sorensen CM. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro. Pflugers Arch 2016; 468:1139-1149. [PMID: 26965146 DOI: 10.1007/s00424-016-1805-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 01/20/2023]
Abstract
We investigated the mechanisms behind the endothelial-derived hyperpolarization (EDH)-induced renal vasodilation in vivo and in vitro in rats. We assessed the role of Ca(2+)-activated K(+) channels and whether K(+) released from the endothelial cells activates inward rectifier K(+) (Kir) channels and/or the Na(+)/K(+)-ATPase. Also, involvement of renal myoendothelial gap junctions was evaluated in vitro. Isometric tension in rat renal interlobar arteries was measured using a wire myograph. Renal blood flow was measured in isoflurane anesthetized rats. The EDH response was defined as the ACh-induced vasodilation assessed after inhibition of nitric oxide synthase and cyclooxygenase using L-NAME and indomethacin, respectively. After inhibition of small conductance Ca(2+)-activated K(+) channels (SKCa) and intermediate conductance Ca(2+)-activated K(+) channels (IKCa) (by apamin and TRAM-34, respectively), the EDH response in vitro was strongly attenuated whereas the EDH response in vivo was not significantly reduced. Inhibition of Kir channels and Na(+)/K(+)-ATPases (by ouabain and Ba(2+), respectively) significantly attenuated renal vasorelaxation in vitro but did not affect the response in vivo. Inhibition of gap junctions in vitro using carbenoxolone or 18α-glycyrrhetinic acid significantly reduced the endothelial-derived hyperpolarization-induced vasorelaxation. We conclude that SKCa and IKCa channels are important for EDH-induced renal vasorelaxation in vitro. Activation of Kir channels and Na(+)/K(+)-ATPases plays a significant role in the renal vascular EDH response in vitro but not in vivo. The renal EDH response in vivo is complex and may consist of several overlapping mechanisms some of which remain obscure.
Collapse
Affiliation(s)
- Kasper Moller Boje Rasmussen
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Hartig Braunstein
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Christian Brasen
- Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads 349, 2800, Kgs. Lyngby, Denmark.
| | - Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascular Physiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Kobuchi S, Miura K, Iwao H, Ayajiki K. Nitric oxide modulation of endothelium-derived hyperpolarizing factor in agonist-induced depressor responses in anesthetized rats. Eur J Pharmacol 2015; 762:26-34. [DOI: 10.1016/j.ejphar.2015.04.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
16
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
17
|
Dautzenberg M, Just A. Temporal characteristics of nitric oxide-, prostaglandin-, and EDHF-mediated components of endothelium-dependent vasodilation in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R987-98. [DOI: 10.1152/ajpregu.00526.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasodilation is mediated by nitric oxide (NO), prostaglandins (PG), and endothelium-derived hyperpolarizing factor (EDHF). We studied the contributions and temporal characteristics of these components in the renal vasodilator responses to acetylcholine (ACh) and bradykinin (BK) and in the buffering of vasoconstrictor responses to norepinephrine (NE) and angiotensin II (ANG II). Renal blood flow (RBF) and vascular conductance (RVC) were studied in anesthetized rats in response to renal arterial bolus injections before and after inhibition of NO-synthase ( NG-nitro-l-arginine methyl ester, l-NAME), cyclooxygenase (indomethacin, INDO), or both. ACh increased RVC peaking at maximal time ( tmax) = 29 s. l-NAME ( n = 8) diminished the integrated response and made it substantially faster ( tmax = 18 s). The point-by-point difference caused by l-NAME (= NO component) integrated to 74% of control and was much slower ( tmax = 38 s). INDO ( n = 9) reduced the response without affecting tmax (36 vs. 30 s). The difference (= PG) reached 21% of the control with tmax = 25 s. l-NAME+INDO ( n = 17) reduced the response to 18% and markedly accelerated tmax to 16s (= EDHF). Results were similar for BK with slightly more PG and less NO contribution than for ACh. Constrictor responses to NE and ANG II were augmented and decelerated by l-NAME and l-NAME+INDO. The calculated difference (= buffering by NO or NO+PG) was slower than the constriction. It is concluded that NO, PG, and EDHF contribute >50%, 20–40%, and <20% to the renal vasodilator effect of ACh and BK, respectively. EDHF acts substantially faster and less sustained ( tmax = 16 s) than NO and PG ( tmax = 30 s). Constrictor buffering by NO and PG is not constant over time, but renders the constriction less sustained.
Collapse
Affiliation(s)
- Marcel Dautzenberg
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| | - Armin Just
- Physiologisches Institut der Universität Freiburg, Germany; and
- Freiburg Institute for Advanced Studies (FRIAS), Universität Freiburg, Germany
| |
Collapse
|
18
|
Simonet S, Isabelle M, Bousquenaud M, Clavreul N, Félétou M, Vayssettes-Courchay C, Verbeuren TJ. KCa 3.1 channels maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats after chronic inhibition of NOS. Br J Pharmacol 2013; 167:854-67. [PMID: 22646737 DOI: 10.1111/j.1476-5381.2012.02062.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose of the study was to investigate renal endothelium-dependent vasodilatation in a model of severe hypertension associated with kidney injury. EXPERIMENTAL APPROACH Changes in perfusion pressure were measured in isolated, perfused kidneys taken from 18-week-old Wistar-Kyoto rat (WKY), spontaneously hypertensive rats (SHR) and SHR treated for 2 weeks with N(ω) -nitro-L-arginine methyl ester in the drinking water (L-NAME-treated SHR, 6 mg·kg(-1) ·day(-1) ). KEY RESULTS Acetylcholine caused similar dose-dependent renal dilatation in the three groups. In vitro administration of indomethacin did not alter the vasodilatation, while the addition of N(w) -nitro-L-arginine (L-NA) produced a differential inhibition of the vasodilatation, (inhibition in WKY > SHR > L-NAME-treated SHR). Further addition of ODQ, an inhibitor of soluble guanylyl cyclase, abolished the responses to sodium nitroprusside but did not affect the vasodilatation to acetylcholine. However, the addition of TRAM-34 (or charybdotoxin) inhibitors of Ca(2+) -activated K(+) channels of intermediate conductance (K(Ca) 3.1), blocked the vasodilatation to acetylcholine, while apamin, an inhibitor of Ca(2+) -activated K(+) channels of small conductance (K(Ca) 2.3), was ineffective. Dilatation induced by an opener of K(Ca) 3.1/K(Ca) 2.3 channels, NS-309, was also blocked by TRAM-34, but not by apamin. The magnitude and duration of NS-309-induced vasodilatation and the renal expression of mRNA for K(Ca) 3.1, but not K(Ca) 2.3, channels followed the same ranking order (WKY < SHR < L-NAME-treated SHR). CONCLUSIONS AND IMPLICATIONS In SHR kidneys, an EDHF-mediated response, involving activation of K(Ca) 3.1 channels, contributed to the mechanism of endothelium-dependent vasodilatation. In kidneys from L-NAME-treated SHR, up-regulation of this pathway fully compensated for the decrease in NO availability.
Collapse
|
19
|
Ritchie RH, Leo CH, Qin C, Stephenson EJ, Bowden MA, Buxton KD, Lessard SJ, Rivas DA, Koch LG, Britton SL, Hawley JA, Woodman OL. Low intrinsic exercise capacity in rats predisposes to age-dependent cardiac remodeling independent of macrovascular function. Am J Physiol Heart Circ Physiol 2012; 304:H729-39. [PMID: 23262135 DOI: 10.1152/ajpheart.00638.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats selectively bred for low (LCR) or high (HCR) intrinsic running capacity simultaneously present with contrasting risk factors for cardiovascular and metabolic disease. However, the impact of these phenotypes on left ventricular (LV) morphology and microvascular function, and their progression with aging, remains unresolved. We tested the hypothesis that the LCR phenotype induces progressive age-dependent LV remodeling and impairments in microvascular function, glucose utilization, and β-adrenergic responsiveness, compared with HCR. Hearts and vessels isolated from female LCR (n = 22) or HCR (n = 26) were studied at 12 and 35 wk. Nonselected N:NIH founder rats (11 wk) were also investigated (n = 12). LCR had impaired glucose tolerance and elevated plasma insulin (but not glucose) and body-mass at 12 wk compared with HCR, with early LV remodeling. By 35 wk, LV prohypertrophic and glucose transporter GLUT4 gene expression were up- and downregulated, respectively. No differences in LV β-adrenoceptor expression or cAMP content between phenotypes were observed. Macrovascular endothelial function was predominantly nitric oxide (NO)-mediated in both phenotypes and remained intact in LCR for both age-groups. In contrast, mesenteric arteries microvascular endothelial function, which was impaired in LCR rats regardless of age. At 35 wk, endothelial-derived hyperpolarizing factor-mediated relaxation was impaired whereas the NO contribution to relaxation is intact. Furthermore, there was reduced β2-adrenoceptor responsiveness in both aorta and mesenteric LCR arteries. In conclusion, diminished intrinsic exercise capacity impairs systemic glucose tolerance and is accompanied by progressive development of LV remodeling. Impaired microvascular perfusion is a likely contributing factor to the cardiac phenotype.
Collapse
|
20
|
Sorensen CM, Braunstein TH, Holstein-Rathlou NH, Salomonsson M. Role of vascular potassium channels in the regulation of renal hemodynamics. Am J Physiol Renal Physiol 2012; 302:F505-18. [DOI: 10.1152/ajprenal.00052.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K+ conductance is a major determinant of membrane potential ( Vm) in vascular smooth muscle (VSMC) and endothelial cells (EC). The vascular tone is controlled by Vm through the action of voltage-operated Ca2+ channels (VOCC) in VSMC. Increased K+ conductance leads to hyperpolarization and vasodilation, while inactivation of K+ channels causes depolarization and vasoconstriction. K+ channels in EC indirectly participate in the control of vascular tone by several mechanisms, e.g., release of nitric oxide and endothelium-derived hyperpolarizing factor. In the kidney, a change in the activity of one or more classes of K+ channels will lead to a change in hemodynamic resistance and therefore of renal blood flow and glomerular filtration pressure. Through these effects, the activity of renal vascular K+ channels influences renal salt and water excretion, fluid homeostasis, and ultimately blood pressure. Four main classes of K+ channels [calcium activated (KCa), inward rectifier (Kir), voltage activated (KV), and ATP sensitive (KATP)] are found in the renal vasculature. Several in vitro experiments have suggested a role for individual classes of K+ channels in the regulation of renal vascular function. Results from in vivo experiments are sparse. We discuss the role of the different classes of renal vascular K+ channels and their possible role in the integrated function of the renal microvasculature. Since several pathological conditions, among them hypertension, are associated with alterations in K+ channel function, the role of renal vascular K+ channels in the control of salt and water excretion deserves attention.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| | - Thomas Hartig Braunstein
- Danish National Research Foundation Center for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Salomonsson
- Institute of Biomedical Sciences, Division of Renal and Vascuar Physiology, The Panum Institute, and
| |
Collapse
|
21
|
Taslıpınar A, Yaman H, Yılmaz MI, Demırbas S, Saglam M, Taslıpınar MY, Agıllı M, Kurt YG, Sonmez A, Azal O, Bolu E, Yenıcesu M, Kutlu M. The relationship between inflammation, endothelial dysfunction and proteinuria in patients with diabetic nephropathy. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 71:606-12. [DOI: 10.3109/00365513.2011.598944] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
|
24
|
Mechanisms involved in the adenosine-induced vasorelaxation to the pig prostatic small arteries. Purinergic Signal 2011; 7:413-25. [PMID: 21567127 DOI: 10.1007/s11302-011-9238-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/04/2011] [Indexed: 10/18/2022] Open
Abstract
Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A(2A) and A(3) receptor expression was observed in the arterial wall and A(2A)-immunoreactivity was identified in the adventitia-media junction and endothelium. A(1) and A(2B) receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A(2A) antagonist, reduced NECA relaxations that were not modified by A(1), A(2B), and A(3) receptor antagonists. Neuronal voltage-gated Ca(2+) channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IK(Ca))- and small (SK(Ca))-conductance Ca(2+)-activated K(+) channels. Inhibition of cyclooxygenase (COX), large-conductance Ca(2+)-activated-, ATP-dependent-, and voltage-gated-K(+) channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A(2A) purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IK(Ca) and SK(Ca) channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.
Collapse
|
25
|
Modulation of retinal blood flow by kinin B₁ receptor in Streptozotocin-diabetic rats. Exp Eye Res 2011; 92:482-9. [PMID: 21420952 DOI: 10.1016/j.exer.2011.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/22/2011] [Accepted: 03/08/2011] [Indexed: 11/20/2022]
Abstract
The vasoactive kinin B₁ receptor (B₁R) is overexpressed in the retina of diabetic rats in response to hyperglycemia and oxidative stress. The aim of the present study was to determine whether B₁R could contribute to the early retinal blood flow changes occurring in diabetes. Male Wistar rats were rendered diabetic with a single i.p. injection of Streptozotocin (STZ) and studied 4 days or 6 weeks after diabetes induction. The presence of B₁R in the retina was confirmed by Western blot. The impact of oral administration of the B₁R selective antagonist SSR240612 (10mg/kg) was measured on alteration of retinal perfusion in awake diabetic rats by quantitative autoradiography. Data showed that B₁R was upregulated in the STZ-diabetic retina at 4 days and 6 weeks. Retinal blood flow was not altered in 4-day diabetic rats compared with age-matched controls but was significantly decreased following SSR240612 treatment. In 6-week diabetic rats, retinal blood flow was markedly reduced compared to control rats and SSR240612 did not further decrease the blood flow. These results suggest that B₁R is upregulated in STZ-diabetic retina and has a protective compensatory role on retinal microcirculation at 4 days but not at 6 weeks following diabetes induction.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Diabetes mellitus is the primary cause of end-stage renal disease, yet the mechanisms underlying diabetic nephropathy remain ill-defined. The widely accepted opinion holds that events occurring early during the course of diabetes engender the eventual decline in renal function. This review will summarize recent advances (published January 2008 through June 2009) regarding the renal vascular and glomerular functional changes that occur during the early stage of diabetes. RECENT FINDINGS Reduced C-peptide levels and increased cyclooxygenase-2 activity both seem to promote diabetic hyperfiltration, presumably via effects on afferent arteriolar tone. In addition, exaggerated tonic influences of K+ channels on afferent arteriolar function likely act in concert with impaired Ca2+ influx responses to changes in membrane potential to promote vasodilation. Mechanisms underlying these changes remain largely speculative. Diabetes may also alter autoregulation of renal blood flow and glomerular filtration rate, as well as provoke afferent arteriolar dilation secondary to alterations in proximal tubular reabsorption; however, conflicting evidence continues to flood the literature concerning these events. SUMMARY New evidence has expanded our appreciation of the complexity of events that promote preglomerular vasodilation during the early stage of diabetes; however, it seems that the more we know, the less we understand.
Collapse
|
27
|
Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol 2010; 37:e58-69. [DOI: 10.1111/j.1440-1681.2009.05233.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|