1
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
2
|
Savić B, Martin A, Mecawi AS, Bukumirić Z, Antunes-Rodrigues J, Murphy D, Šarenac O, Japundžić-Žigon N. Vasopressin and v1br gene expression is increased in the hypothalamic pvn of borderline hypertensive rats. Hypertens Res 2020; 43:1165-1174. [PMID: 32415179 DOI: 10.1038/s41440-020-0469-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Vasopressin (VP) is a neurohypophyseal peptide best known for its role in maintaining osmotic and cardiovascular homeostasis. The main sources of VP are the supraoptic and paraventricular (PVN) nuclei of the hypothalamus, which coexpress the vasopressin V1a and V1b receptors (V1aR and V1bR). Here, we investigated the level of expression of VP and VP receptors in the PVN of borderline hypertensive rats (BHRs), a key integrative nucleus for neuroendocrine cardiovascular control. Experiments were performed in male BHRs and Wistar rats (WRs) equipped with a radiotelemetry device for continuous hemodynamic recording under baseline conditions and after saline load without or with stress. Autonomic control of the circulation was evaluated by spectral analysis of blood pressure (BP) and heart rate (HR) variability and baroreceptor reflex sensitivity (BRS) using the sequence method. Plasma VP was determined by radioimmunoassay, and VP, V1aR, and V1bR gene expression was determined by RT-qPCR. Under baseline conditions, BHRs had higher BP, lower HR, and stronger BRS than WRs. BP and HR variability was unchanged. In the PVN, overexpression of the VP and V1bR genes was found, and plasma VP was increased. Saline load downregulated V1bR mRNA expression without affecting VP mRNA expression or plasma VP and BP. Adding stress increased BP, HR, and low-frequency sympathetic spectral markers and decreased plasma VP without altering the level of expression of VP and VP receptors in the PVN. It follows that overexpression of VP and V1bR in the PVN is a characteristic trait of BHRs and that sympathetic hyperactivity underlies stress-induced hypertension.
Collapse
Affiliation(s)
- Bojana Savić
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Andrew Martin
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Andre Souza Mecawi
- Paulista Medical School, Department of Biophysics, Laboratory of Neuroendocrinology, Federal University of São Paulo, São Paulo, Brazil
| | - Zoran Bukumirić
- Faculty of Medicine, Institute for Medical Statics and Informatics, University of Belgrade, Belgrade, Serbia
| | - José Antunes-Rodrigues
- Faculty of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Olivera Šarenac
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Nina Japundžić-Žigon
- Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Japundžić-Žigon N, Lozić M, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol 2020; 18:14-33. [PMID: 31544693 PMCID: PMC7327933 DOI: 10.2174/1570159x17666190717150501] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023] Open
Abstract
Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.
Collapse
Affiliation(s)
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Šarenac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Marvar PJ, Hendy EB, Cruise TD, Walas D, DeCicco D, Vadigepalli R, Schwaber JS, Waki H, Murphy D, Paton JFR. Systemic leukotriene B 4 receptor antagonism lowers arterial blood pressure and improves autonomic function in the spontaneously hypertensive rat. J Physiol 2016; 594:5975-5989. [PMID: 27230966 DOI: 10.1113/jp272065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response, but its mode of action is poorly understood. In the SHR, we observed an increase in T cells and macrophages in the brainstem; in addition, gene expression profiling data showed that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. When LTB4 receptor 1 (BLT1) receptors were blocked with CP-105,696, arterial pressure was reduced in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in systolic blood pressure (BP) indicators. These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension. ABSTRACT Accumulating evidence indicates an association between hypertension and chronic systemic inflammation in both human hypertension and experimental animal models. Previous studies in the spontaneously hypertensive rat (SHR) support a role for leukotriene B4 (LTB4 ), a potent chemoattractant involved in the inflammatory response. However, the mechanism for LTB4 -mediated inflammation in hypertension is poorly understood. Here we report in the SHR, increased brainstem infiltration of T cells and macrophages plus gene expression profiling data showing that LTB4 production, degradation and downstream signalling in the brainstem of the SHR are dynamically regulated during hypertension. Chronic blockade of the LTB4 receptor 1 (BLT1) receptor with CP-105,696, reduced arterial pressure in the SHR compared to the normotensive control and this reduction was associated with a significant decrease in low and high frequency spectra of systolic blood pressure, and an increase in spontaneous baroreceptor reflex gain (sBRG). These data provide new evidence for the role of LTB4 as an important neuro-immune pathway in the development of hypertension and therefore may serve as a novel therapeutic target for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology and Physiology Washington, The George Washington University School of Medical and Health Sciences, Washington, DC, USA
| | - Emma B Hendy
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Thomas D Cruise
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dawid Walas
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Danielle DeCicco
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hidefumi Waki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
5
|
Smith JA, Pati D, Wang L, de Kloet AD, Frazier CJ, Krause EG. Hydration and beyond: neuropeptides as mediators of hydromineral balance, anxiety and stress-responsiveness. Front Syst Neurosci 2015; 9:46. [PMID: 25873866 PMCID: PMC4379895 DOI: 10.3389/fnsys.2015.00046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Challenges to body fluid homeostasis can have a profound impact on hypothalamic regulation of stress responsiveness. Deficiencies in blood volume or sodium concentration leads to the generation of neural and humoral signals relayed through the hindbrain and circumventricular organs that apprise the paraventricular nucleus of the hypothalamus (PVH) of hydromineral imbalance. Collectively, these neural and humoral signals converge onto PVH neurons, including those that express corticotrophin-releasing factor (CRF), oxytocin (OT), and vasopressin, to influence their activity and initiate compensatory responses that alleviate hydromineral imbalance. Interestingly, following exposure to perceived threats to homeostasis, select limbic brain regions mediate behavioral and physiological responses to psychogenic stressors, in part, by influencing activation of the same PVH neurons that are known to maintain body fluid homeostasis. Here, we review past and present research examining interactions between hypothalamic circuits regulating body fluid homeostasis and those mediating behavioral and physiological responses to psychogenic stress.
Collapse
Affiliation(s)
- Justin A. Smith
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Dipanwita Pati
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Lei Wang
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Annette D. de Kloet
- Laboratory of Dr. Colin Sumners, Department of Physiology and Functional Genomics, College of Medicine, University of FloridaGainesville, FL, USA
| | - Charles J. Frazier
- Laboratory of Dr. Charles Frazier, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| | - Eric G. Krause
- Laboratory of Dr. Eric Krause, Department of Pharmacodynamics, College of Pharmacy, University of FloridaGainesville, FL, USA
| |
Collapse
|
6
|
Milutinović-Smiljanić S, Šarenac O, Lozić-Djurić M, Murphy D, Japundžić-Žigon N. Evidence for involvement of central vasopressin V1b and V2 receptors in stress-induced baroreflex desensitization. Br J Pharmacol 2014; 169:900-8. [PMID: 23488898 DOI: 10.1111/bph.12161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE It is well recognized that vasopressin modulates the neurogenic control of the circulation. Here, we report the central mechanisms by which vasopressin modulates cardiovascular response to stress induced by immobilization. EXPERIMENTAL APPROACH Experiments were performed in conscious male Wistar rats equipped with radiotelemetric device for continuous measurement of haemodynamic parameters: systolic and diastolic BP and heart rate (HR). The functioning of the spontaneous baro-receptor reflex (BRR) was evaluated using the sequence method and the following parameters were evaluated: BRR sensitivity (BRS) and BRR effectiveness index (BEI). KEY RESULTS Under baseline physiological conditions intracerebroventricular injection of 100 and 500 ng of selective non-peptide V1a or V1b or V2 receptor antagonist did not modify BP, HR and BRR. Rats exposed to 15 min long stress by immobilization exhibited increase of BP, HR, reduction of BRS and no change in BEI. Pretreatment of rats with V1a receptor antagonist did not modulate the BP, HR, BRS and BEI response to stress. Pretreatment of rats with V1b receptor and V2 receptor antagonist, at both doses, prevented BRR desensitization and tachycardia, but failed to modulate stress-induced hypertension. CONCLUSIONS AND IMPLICATIONS Vasopressin by the stimulation of central V1b- and V2-like receptors mediates stress-induced tachycardia and BRR desensitization. If these mechanisms are involved, BRR desensitization in heart failure and hypertension associated with poor outcome, they could be considered as novel targets for cardiovascular drug development.
Collapse
|
7
|
Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 2013; 11:218-30. [PMID: 23997756 PMCID: PMC3637675 DOI: 10.2174/1570159x11311020008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/01/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022] Open
Abstract
Vasopressin (VP) and oxytocin (OT) are mainly synthesized in the magnocellular neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the hypothalamus. Axons from the magnocellular part of the PVN and SON project to neurohypophysis where VP and OT are released in blood to act like hormones. Axons from the parvocellular part of PVN project to extra-hypothalamic brain areas (median eminence, limbic system, brainstem and spinal cord) where VP and OT act like neurotransmitters/modulators. VP and OT act in complementary manner in cardiovascular control, both as hormones and neurotransmitters. While VP conserves water and increases circulating blood volume, OT eliminates sodium. Hyperactivity of VP neurons and quiescence of OT neurons in PVN underlie osmotic adjustment to pregnancy. In most vascular beds VP is a potent vasoconstrictor, more potent than OT, except in the umbilical artery at term. The vasoconstriction by VP and OT is mediated via V1aR. In some vascular beds, i.e. the lungs and the brain, VP and OT produce NO dependent vasodilatation. Peripherally, VP has been found to enhance the sensitivity of the baro-receptor while centrally, VP and OT increase sympathetic outflow, suppresse baro-receptor reflex and enhance respiration. Whilst VP is an important mediator of stress that triggers ACTH release, OT exhibits anti-stress properties. Moreover, VP has been found to contribute considerably to progression of hypertension and heart failure while OT has been found to decrease blood pressure and promote cardiac healing.
Collapse
Affiliation(s)
- Nina Japundžić-Žigon
- Professor of Basic and Clinical Pharmacology and Toxicology, University of Belgrade School of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, Dr Subotica 1, Belgrade, Republic of Serbia
| |
Collapse
|
8
|
Milutinović S, Murphy D, Japundzić-Zigon N. The role of central vasopressin receptors in the modulation of autonomic cardiovascular controls: a spectral analysis study. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1579-91. [PMID: 17085750 DOI: 10.1152/ajpregu.00764.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although it has been suggested that vasopressin (VP) acts within the central nervous system to modulate autonomic cardiovascular controls, the mechanisms involved are not understood. Using nonpeptide, selective V(1a), V(1b), and V(2) antagonists, in conscious rats, we assessed the roles of central VP receptors, under basal conditions, after the central application of exogenous VP, and after immobilization, on cardiovascular short-term variability. Equidistant sampling of blood pressure (BP) and heart rate (HR) at 20 Hz allowed direct spectral analysis in very-low frequency (VLF-BP), low-frequency (LF-BP), and high-frequency (HF-BP) blood pressure domains. The effect of VP antagonists and of exogenous VP on body temperature (T(b)) was also investigated. Under basal conditions, V(1a) antagonist increased HF-BP and T(b), and this was prevented by metamizol. V(1b) antagonist enhanced HF-BP without affecting T(b), and V(2) antagonist increased VLF-BP variability which could be prevented by quinapril. Immobilization increased BP, LF-BP, HF-BP, and HF-HR variability. V(1a) antagonist prevented BP and HR variability changes induced by immobilization and potentiated tachycardia. V(1b) antagonist prevented BP but not HR variability changes, whereas V(2) antagonist had no effect. Exogenous VP increased systolic arterial pressure (SAP) and HF-SAP variability, and this was prevented by V(1a) and V(1b) but not V(2) antagonist pretreatment. Our results suggest that, under basal conditions, VP, by stimulation of V(1a), V(1b), and cognate V(2) receptors, buffers BP variability, mostly due to thermoregulation. Immobilization and exogenous VP, by stimulation of V(1a) or V(1b), but not V(2) receptors, increases BP variability, revealing cardiorespiratory adjustment to stress and respiratory stimulation, respectively.
Collapse
Affiliation(s)
- Sanja Milutinović
- Laboratory for Cardiovascular Pharmacology, Institute of Pharmacology, Clinical Pharmacology and Toxicology, 11129 Belgrade, Serbia
| | | | | |
Collapse
|
9
|
Bealer SL. Increased dietary sodium inhibits baroreflex-induced bradycardia during acute sodium loading. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1211-9. [PMID: 15637167 DOI: 10.1152/ajpregu.00244.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of increased dietary sodium on the modification of cardiac baroreflex responses induced by acute sodium loading. Changes in blood pressure and heart rate during intravenous phenylephrine and nitroprusside administration were compared using a four-parameter sigmoid logistic function before and after a 30-min infusion of 0.6 or 1.0 M NaCl in conscious male Sprague-Dawley rats consuming only tap water (Tap) or isotonic saline (Iso) for 2-3 wk. In Tap animals, infusion of 1.0 M NaCl increased the baroreflex-induced heart rate minimum, reduced heart rate range, and increased the operating blood pressure. In contrast, infusion of 0.6 M NaCl in Tap rats reduced both heart rate minimum and maximum. However, infusion of 0.6 M NaCl in Iso animals produced responses similar to that shown in Tap rats infused with 1.0 M NaCl. In addition, the decreased heart rate minimum in Tap rats after infusion of 0.6 M NaCl was prevented by intravenous administration of a vasopressin V1-receptor antagonist. Furthermore, cardiac parasympathetic responses were similar in Tap and Iso rats before and after 0.6 M NaCl infusion. However, in animals receiving intravenous atropine, 0.6 M NaCl decreased heart rate minimum and maximum in Tap but did not alter the response parameters in Iso rats. These results demonstrate that the facilitation of cardiac baroreflex responses normally observed during moderate sodium loading is mediated by vasopressin and that increased dietary sodium ingestion reverses this facilitation by reducing sympathetic nervous system withdrawal.
Collapse
Affiliation(s)
- Steven L Bealer
- Dept. of Pharmacology/Toxicology, Univ. of Utah, 30 South 2000 East Rm. 201, Salt Lake City, UT 84112-5820, USA.
| |
Collapse
|
10
|
Vågnes B ØB, Hansen FH, Christiansen REF, Gjerstad C, Iversen BM. Age-dependent regulation of vasopressin V1areceptors in preglomerular vessels from the spontaneously hypertensive rat. Am J Physiol Renal Physiol 2004; 286:F997-1003. [PMID: 15075196 DOI: 10.1152/ajprenal.00399.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments were performed to get insight into the role of AVP receptor V1aregulation with age, i.e., during development and maintenance of high blood pressure. Previous studies showed an increased gene expression and renal vascular response to AVP in young spontaneously hypertensive rats (SHR). The age regulation of the V1areceptor was examined in preglomerular vessels from 5-, 10-, 20-, and 70-wk-old SHR using normotensive Wistar-Kyoto rats (WKY) as controls. Real-time PCR and ligand binding were used for analysis of receptor expression, and the change in cytosolic calcium concentration during stimulation of isolated preglomerular vessels with AVP was studied. Studies showed an increase of the V1areceptor protein and mRNA from 5-and 10-wk-old SHR compared with vessels from 20- and 70-wk-old SHR. In 5-wk-old SHR receptor density was 84 ± 13 fmol/mg protein, and 38 ± 11 fmol/mg protein in 70-wk-old SHR ( P < 0.05). mRNA in the 5- and 70-wk-old SHR was 15,854 ± 629 and 3,181 ± 224 V1amRNA/108 18S ribosomal RNA, respectively ( P < 0.001). Values from WKY at all ages were similar to 20- and 70-wk-old SHR. During stimulation with AVP, the change in cytosolic calcium in vessels from 5-wk-old SHR increased 234 ± 59 nM, whereas the increase was 89 ± 9 nM in 70-wk-old SHR ( P = 0.03). These results indicate that the V1areceptor is increased at protein and mRNA level during development of hypertension in SHR but is normalized when hypertension is established.
Collapse
Affiliation(s)
- Øyvind B Vågnes B
- Renal Research Group, Institue of Medicine, University of Bergen, N-5021 Haukeland sykehus, Bergen, Norway.
| | | | | | | | | |
Collapse
|