1
|
Zieg J, Ghose S, Raina R. Electrolyte disorders related emergencies in children. BMC Nephrol 2024; 25:282. [PMID: 39215244 PMCID: PMC11363364 DOI: 10.1186/s12882-024-03725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
This article provides a comprehensive overview of electrolyte and water homeostasis in pediatric patients, focusing on some of the common serum electrolyte abnormalities encountered in clinical practice. Understanding pathophysiology, taking a detailed history, performing comprehensive physical examinations, and ordering basic laboratory investigations are essential for the timely proper management of these conditions. We will discuss the pathophysiology, clinical manifestations, diagnostic approaches, and treatment strategies for each electrolyte disorder. This article aims to enhance the clinical approach to pediatric patients with electrolyte imbalance-related emergencies, ultimately improving patient outcomes.Trial registration This manuscript does not include a clinical trial; instead, it provides an updated review of literature.
Collapse
Affiliation(s)
- Jakub Zieg
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Shaarav Ghose
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Rupesh Raina
- Department of Pediatric Nephrology, Akron Children's Hospital, Cleveland, OH, USA
- Cleveland Clinic, Akron General Medical Center, Akron, OH, USA
| |
Collapse
|
2
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
3
|
McDonough AA, Fenton RA. Potassium homeostasis: sensors, mediators, and targets. Pflugers Arch 2022; 474:853-867. [PMID: 35727363 PMCID: PMC10163916 DOI: 10.1007/s00424-022-02718-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022]
Abstract
Transmembrane potassium (K) gradients are key determinants of membrane potential that can modulate action potentials, control muscle contractility, and influence ion channel and transporter activity. Daily K intake is normally equal to the amount of K in the entire extracellular fluid (ECF) creating a critical challenge - how to maintain ECF [K] and membrane potential in a narrow range during feast and famine. Adaptations to maintain ECF [K] include sensing the K intake, sensing ECF [K] vs. desired set-point and activating mediators that regulate K distribution between ECF and ICF, and regulate renal K excretion. In this focused review, we discuss the basis of these adaptions, including (1) potential mechanisms for rapid feedforward signaling to kidney and muscle after a meal (before a rise in ECF [K]), (2) how skeletal muscles sense and respond to changes in ECF [K], (3) effects of K on aldosterone biosynthesis, and (4) how the kidney responds to changes in ECF [K] to modify K excretion. The concepts of sexual dimorphisms in renal K handling adaptation are introduced, and the molecular mechanisms that can account for the benefits of a K-rich diet to maintain cardiovascular health are discussed. Although the big picture of K homeostasis is becoming more clear, we also highlight significant pieces of the puzzle that remain to be solved, including knowledge gaps in our understanding of initiating signals, sensors and their connection to homeostatic adjustments of ECF [K].
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Gritter M, Rotmans JI, Hoorn EJ. Role of Dietary K + in Natriuresis, Blood Pressure Reduction, Cardiovascular Protection, and Renoprotection. Hypertension 2019; 73:15-23. [PMID: 30571564 DOI: 10.1161/hypertensionaha.118.11209] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin Gritter
- From the Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.G., E.J.H.)
| | - Joris I Rotmans
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, the Netherlands (J.I.R.)
| | - Ewout J Hoorn
- From the Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands (M.G., E.J.H.)
| |
Collapse
|
5
|
Epstein M, Lifschitz MD. The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney Int Rep 2016; 1:43-56. [PMID: 29142913 PMCID: PMC5678840 DOI: 10.1016/j.ekir.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the classic and well-established "feedback control" of potassium balance, increasing investigative attention has focused on a novel and not widely recognized complementary regulatory paradigm for maintaining potassium homeostasis-the "feed-forward control" of potassium balance. This regulatory mechanism, initially defined in rumen, has recently been validated in normal human subjects. Studies are being conducted to determine the location for this putative potassium sensor and to evaluate potential signals, which might increase renal potassium excretion. Awareness of this more updated integrative control mechanism for potassium homeostasis is ever more relevant today, when the medical community is increasingly focused on the challenges of managing the hyperkalemia provoked by renin-angiotensin-aldosterone system inhibitors (RAASis). Recent studies have demonstrated a wide gap between RAASi prescribing guidelines and real-world experience and have highlighted that this gap is thought to be attributable in great part to hyperkalemia. Consequently we require a greater knowledge of the complexities of the regulatory mechanisms subserving potassium homeostasis. Sodium polystyrene sulfonate has long been the mainstay for treating hyperkalemia, but its administration is fraught with challenges related to patient discomfort and colonic necrosis. The current and imminent availability of newer potassium binders with better tolerability and more predictive dose-response potassium removal should enhance the management of hyperkalemia. Consequently it is essential to better understand the intricacies of mammalian colonic K+ handling. We discuss colonic transport of K+ and review evidence for potassium (BK) channels being responsible for increased stool K+ in patients with diseases such as ulcerative colitis.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, South Florida Veterans Affairs Foundation for Research and Education (SFVAFRE), Miami, Florida, USA
| | - Meyer D. Lifschitz
- Adult Nephrology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
6
|
Epstein M, Lifschitz MD. Potassium homeostasis and dyskalemias: the respective roles of renal, extrarenal, and gut sensors in potassium handling. Kidney Int Suppl (2011) 2016; 6:7-15. [PMID: 30675414 PMCID: PMC6340905 DOI: 10.1016/j.kisu.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
Integrated mechanisms controlling the maintenance of potassium homeostasis are well established and are defined by the classic "feedback control" of potassium balance. Recently, increasing investigative attention has focused on novel physiological paradigms that increase the complexity and precision of homeostasis. This review briefly considers the classic and well-established feedback control of potassium and then considers subsequent investigations that inform on an intriguing and not widely recognized complementary paradigm: the "feed-forward control of potassium balance." Feed-forward control refers to a pathway in a homeostatic system that responds to a signal in the environment in a predetermined manner, without responding to how the system subsequently reacts (i.e., without responding to feedback). Studies in several animal species, and recently in humans, have confirmed the presence of a feed-forward control mechanism that is capable of mediating potassium excretion independent of changes in serum potassium concentration and aldosterone. Knowledge imparted by this update of potassium homeostasis hopefully will facilitate the clinical management of hyperkalemia in patients with chronic and recurrent hyperkalemia. Awareness of this updated integrative control mechanism for potassium homeostasis is more relevant today when the medical community is increasingly focused on leveraging and expanding established renin-angiotensin-aldosterone system inhibitor treatment regimens and on successfully coping with the challenges of managing hyperkalemia provoked by renin-angiotensin-aldosterone system inhibitors. These new insights are relevant to the future design of clinical trials delineating renal potassium handling.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Meyer D. Lifschitz
- Adult Nephrology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
7
|
Khositseth S, Uawithya P, Somparn P, Charngkaew K, Thippamom N, Hoffert JD, Saeed F, Michael Payne D, Chen SH, Fenton RA, Pisitkun T. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus. Sci Rep 2015; 5:18311. [PMID: 26674602 PMCID: PMC4682130 DOI: 10.1038/srep18311] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.
Collapse
Affiliation(s)
- Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University Klong Luang, Pathumthani, 12120, Thailand
| | - Panapat Uawithya
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 10700, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, 10700, Thailand
| | - Nattakan Thippamom
- Department of Pediatrics, Faculty of Medicine, Thammasat University Klong Luang, Pathumthani, 12120, Thailand
| | - Jason D. Hoffert
- National Institute of Diabetes and Digestive and Kidney, Bethesda MD 20892, United States
| | - Fahad Saeed
- Department of Electrical & Computer Engineering and Department of Computer Science, Western Michigan University Kalamazoo, 49008, United States
| | - D. Michael Payne
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Robert A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, 8000, Denmark
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, 8000, Denmark
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda MD 20892, United States
| |
Collapse
|
8
|
Abstract
It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the past century clearly shows that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the regulation mechanism of renal potassium transport by the circadian clock is warranted to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
9
|
Abstract
Extracellular K(+) homeostasis has been explained by feedback mechanisms in which changes in extracellular K(+) concentration drive renal K(+) excretion directly or indirectly via stimulating aldosterone secretion. However, this cannot explain meal-induced kaliuresis, which often occurs without increases in plasma K(+) or aldosterone concentrations. Recent studies have produced evidence supporting a feedforward control in which gut sensing of dietary K(+) increases renal K(+) excretion (and extrarenal K(+) uptake) independent of plasma K(+) concentrations, namely, a gut factor. This review focuses on these new findings and discusses the role of gut factor in acute and chronic regulation of extracellular K(+) as well as in the beneficial effects of high K(+) intake on the cardiovascular system.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9142, USA.
| |
Collapse
|
10
|
Oh YT, Kim J, Youn JH. Role of pituitary in K+ homeostasis: impaired renal responses to altered K+ intake in hypophysectomized rats. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1166-74. [PMID: 23594607 DOI: 10.1152/ajpregu.00495.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kidneys maintain extracellular K⁺ homeostasis by altering K⁺ excretion to match K⁺ intake. Because this can occur without changes in plasma K⁺ concentrations ([K⁺]), how the kidneys sense K⁺ intake is unclear. We tested the hypothesis that the pituitary plays a critical role in signaling K⁺ intake to the kidneys. If this hypothesis is true, hypophysectomy would impair kidney responses to altered K⁺ intake. Hypophysectomized (Hypox) and sham-operated control rats (n = 8 each) were compared for their abilities to adjust K⁺ excretion during a transition from normal to reduced (to one-third of normal) K⁺ intake, followed by a reversal to normal K⁺ intake. Food was provided only at night, and renal K⁺ excretion was determined both for absorptive (night or feeding) and postabsorptive (day or nonfeeding) periods. In normal rats, both absorptive and postabsorptive renal K⁺ excretion were changed in parallel to the changes in K⁺ intake, indicating a rapid adaptation of normal kidneys to altered K⁺ intake. In Hypox rats, whereas absorptive renal K⁺ excretion was changed in response to changes in K⁺ intake, postabsorptive K⁺ excretion was not responsive (P < 0.001), indicating impaired renal responses to altered K⁺ intake. In addition, Hypox rats, compared with control rats, showed K⁺ intolerance (increases in plasma [K⁺]) upon feeding (i.e., K⁺ intake) at night or following an intravenous K⁺ infusion (P < 0.01), indicating an impairment of acute renal responses to K⁺ intake. These data support that the pituitary plays a key role in the signaling of K⁺ intake to the kidneys (and kidney responses to altered K⁺ intake).
Collapse
Affiliation(s)
- Young Taek Oh
- Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
11
|
Abstract
The liver, well known for its role in metabolism, clearance and storage can also be regarded as a sensory organ. The liver is an ideal place to monitor the quality and quantity of absorbed substances, because portal blood delivers substances absorbed from the intestine to the liver and these substances circulate in the hepatic vasculature before substances enter the systemic circulation. Sodium (Na(+))-sensitive mechanism exists in the liver; it is stimulated by the increase in Na(+) concentration in the portal vein, and then hepatorenal reflex is triggered. Renal sympathetic nerve activity is reflexively decreased and urinary Na(+) excretion is increased. This Na(+)-sensitive hepatorenal reflex has a significant role in post-prandial natriuresis. However, the long-term role of this reflex in Na(+) homeostasis may be less important, probably because of the desensitization of Na(+)-sensitive mechanisms. Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) is involved in the hepatoportal Na(+)-sensitive mechanism, and NKCC1 expression is reduced if the hepatoportal region is exposed to high Na(+) concentrations for a long time. This situation occurs when animals intake a high-sodium chloride diet for a long time. Liver cirrhosis also impairs the Na(+)-sensitive hepatorenal reflex. Hepatoportal baroreceptor-induced renal sympathetic excitation and the impaired Na(+)-sensitive hepatorenal reflex may partially explain the Na(+) retention in liver cirrhosis.
Collapse
|
12
|
Unwin RJ, Luft FC, Shirley DG. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol 2011; 7:75-84. [PMID: 21278718 DOI: 10.1038/nrneph.2010.175] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potassium (K(+)) ions are the predominant intracellular cations. K(+) homeostasis depends on external balance (dietary intake [typically 100 mmol per day] versus excretion [95% via the kidney; 5% via the colon]) and internal balance (the distribution of K(+) between intracellular and extracellular fluid compartments). The uneven distribution of K(+) across cell membranes means that a mere 1% shift in its distribution can cause a 50% change in plasma K(+) concentration. Hormonal mechanisms (involving insulin, β-adrenergic agonists and aldosterone) modulate K(+) distribution by promoting rapid transfer of K(+) across the plasma membrane. Extrarenal K(+) losses from the body are usually small, but can be marked in individuals with chronic diarrhea, severe burns or prolonged sweating. Under normal circumstances, the kidney's distal nephron secretes K(+) and determines final urinary excretion. In patients with hypokalemia (plasma K(+) concentration <3.5 mmol/l), after the exclusion of extrarenal causes, alterations in sodium ion delivery to the distal nephron, mineralocorticoid status, or a specific inherited or acquired defect in distal nephron function (each of which affects distal nephron K(+) secretion), should be considered. Clinical management of hypokalemia should establish the underlying cause and alleviate the primary disorder. This Review aims to inform clinicians about the pathophysiology and appropriate treatment for hypokalemia.
Collapse
Affiliation(s)
- Robert J Unwin
- Centre for Nephrology, Royal Free Hospital, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | |
Collapse
|
13
|
Oliver JA, Verna EC. Afferent mechanisms of sodium retention in cirrhosis and hepatorenal syndrome. Kidney Int 2010; 77:669-80. [PMID: 20147888 DOI: 10.1038/ki.2010.4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cirrhosis induces extra-cellular fluid volume expansion, which when the disease is advanced can be severe and poorly responsive to therapy. Prevention and/or effective therapy for cirrhotic edema requires understanding the stimulus that initiates and maintains sodium retention. Despite much study, this stimulus remains unknown. Work over the last several years has shown that signals originating in the liver can influence a variety of systemic functions, including extra-cellular fluid volume control. We review work on the afferent mechanisms triggering sodium retention in cirrhosis and suggest that the data are most consistent with the existence of a sensor in the hepatic circulation that contributes to normal extra-cellular fluid volume control (that is, a 'volume' sensor) and that in cirrhosis, the sensor is pathologically activated by the hepatic circulatory abnormalities caused by the disease. Detailed analysis of the hepatic circulation in normal conditions and cirrhosis is needed.
Collapse
Affiliation(s)
- Juan A Oliver
- Department of Medicine, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
14
|
Youn JH, McDonough AA. Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 2009; 71:381-401. [PMID: 18759636 DOI: 10.1146/annurev.physiol.010908.163241] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The potassium homeostatic system is very tightly regulated. Recent studies have shed light on the sensing and molecular mechanisms responsible for this tight control. In addition to classic feedback regulation mediated by a rise in extracellular fluid (ECF) [K(+)], there is evidence for a feedforward mechanism: Dietary K(+) intake is sensed in the gut, and an unidentified gut factor is activated to stimulate renal K(+) excretion. This pathway may explain renal and extrarenal responses to altered K(+) intake that occur independently of changes in ECF [K(+)]. Mechanisms for conserving ECF K(+) during fasting or K(+) deprivation have been described: Kidney NADPH oxidase activation initiates a cascade that provokes the retraction of K(+) channels from the cell membrane, and muscle becomes resistant to insulin stimulation of cellular K(+) uptake. How these mechanisms are triggered by K(+) deprivation remains unclear. Cellular AMP kinase-dependent protein kinase activity provokes the acute transfer of K(+) from the ECF to the ICF, which may be important in exercise or ischemia. These recent advances may shed light on the beneficial effects of a high-K(+) diet for the cardiovascular system.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, California 90089-9142, USA.
| | | |
Collapse
|
15
|
Greenlee M, Wingo CS, McDonough AA, Youn JH, Kone BC. Narrative review: evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med 2009; 150:619-25. [PMID: 19414841 PMCID: PMC4944758 DOI: 10.7326/0003-4819-150-9-200905050-00008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humans are intermittently exposed to large variations in potassium intake, which range from periods of fasting to ingestion of potassium-rich meals. These fluctuations would abruptly alter plasma potassium concentration if not for rapid mechanisms, primarily in skeletal muscle and the liver, that buffer the changes in plasma potassium concentration by means of transcellular potassium redistribution and feedback control of renal potassium excretion. However, buffers have capacity limits, and even robust feedback control mechanisms require that the perturbation occur before feedback can initiate corrective action. In contrast, feedforward control mechanisms sense the effect of disturbances on the system's homeostasis. This review highlights recent experimental insights into the participation of feedback and feedforward control mechanisms in potassium homeostasis. New data make clear that feedforward homeostatic responses activate when decreased potassium intake is sensed, even when plasma potassium concentration is still within the normal range and before frank hypokalemia ensues, in addition to the classic feedback activation of renal potassium conservation when plasma potassium concentration decreases. Given the clinical importance of dyskalemias in patients, these novel experimental paradigms invite renewed clinical inquiry into this important area.
Collapse
Affiliation(s)
- Megan Greenlee
- University of Florida College of Medicine and Department of Veterans Affairs Medical Center, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
16
|
Michell A, Debnam E, Unwin R. Regulation of Renal Function by the Gastrointestinal Tract: Potential Role of Gut-Derived Peptides and Hormones. Annu Rev Physiol 2008; 70:379-403. [DOI: 10.1146/annurev.physiol.69.040705.141330] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- A.R. Michell
- Department of Biochemical Pharmacology, William Harvey Research Institute, St. Bartholomew's Hospital Medical School, London EC1M 6BQ, United Kingdom;
| | - E.S. Debnam
- Department of Physiology, Royal Free and University College Medical School, London NW3 2PF, United Kingdom;
| | - R.J. Unwin
- Department of Physiology, Royal Free and University College Medical School, London NW3 2PF, United Kingdom;
- Centre for Nephrology, Royal Free and University College Medical School, London NW3 2PF, United Kingdom;
| |
Collapse
|
17
|
Abstract
We tested the hypothesis that K+ intake is sensed by putative K+ sensors in the splanchnic areas, and renal K+ handling is regulated by this signal. K+ was infused for 2 h into overnight-fasted rats via the jugular vein (systemic infusion), hepatic portal vein (intraportal infusion), or stomach (intragastric infusion) ( n = 5 each), and plasma K+ concentration ([K+]) and renal K+ excretion were measured during the 2-h preinfusion, 2-h K+ infusion, and 3-h washout periods. During systemic K+ infusion, plasma [K+] increased by ∼1.3 mM ( P < 0.05), and, on cessation of the K+ infusion, plasma [K+] fell to the preinfusion level within 1–2 h. Renal K+ excretion changed in proportion to the changes in plasma [K+]. During intraportal or intragastric K+ infusion, plasma [K+] and renal K+ excretion profiles were similar to those with systemic infusion. The effects of K+ infusions via the different routes ( n = 5 or 6 each) were also studied during simultaneous feeding of overnight-fasted rats with a K+-deficient diet. During the meal, intraportal infusion resulted in increases in plasma [K+] similar to those with the systemic K+ infusion, while intragastric K+ infusion did not significantly increase plasma [K+]. Thus, when the intragastric K+ infusion was combined with a meal, there was marked enhancement of clearance of the K+ infused, which was associated with an apparent increase in renal efficiency of K+ excretion. These data suggest that there may be a gut factor that enhances renal efficiency of K+ excretion during meal (or dietary K+) intake.
Collapse
Affiliation(s)
- Felix N Lee
- Dept. of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1333 San Pablo St., MMR 626, Los Angeles, CA 90089-9142, USA
| | | | | | | |
Collapse
|
18
|
Chen P, Guzman JP, Leong PKK, Yang LE, Perianayagam A, Babilonia E, Ho JS, Youn JH, Wang WH, McDonough AA. Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration. Am J Physiol Cell Physiol 2005; 290:C1355-63. [PMID: 16354756 DOI: 10.1152/ajpcell.00501.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular K(+) concentration ([K(+)]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K(+) was moderately reduced from a control diet (1.0% K(+)) to a 0.33% K(+) diet for 15 days. Although body weight and baseline plasma [K(+)] (4.0 mM) were not reduced in the 0.33% K(+) group, regulatory responses to conserve plasma [K(+)] were evident in both muscle and kidney. Insulin-stimulated clearance of K(+) from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin.(50 mU.kg(-1).min(-1)), plasma [K(+)] level fell to 3.2 +/- 0.1 mM in the 1.0% K(+) diet group and to only 3.47 +/- 0.07 mM in the 0.33% K(+) diet group (P < 0.01) with no reduction in urinary K(+) excretion, which is evidence of insulin resistance to cellular K(+) uptake. Insulin-stimulated cellular K(+) uptake was quantitated by measuring the K(+) infusion rate necessary to clamp plasma K(+) at baseline (in micromol.kg(-1).min(-1)) during 5 mU of insulin.kg(-1).min(-1) infusion: 9.7 +/- 1.5 in 1% K(+) diet was blunted to 5.2 +/- 1.7 in the 0.33% K(+) diet group (P < 0.001). Muscle [K(+)] and Na(+)-K(+)-ATPase activity and abundance were unchanged during the 0.33% K(+) diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 +/- 10.5 micromol/h/animal (1% K(+) diet) to 24.2 +/- 1.7 micromol/h/animal (0.33% K(+) diet) (P < 0.001). There was no significant change in total abundance of key renal K(+) transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K(+) vs. 1% K(+) diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K(+)] can be maintained during modest K(+) restriction due to a decrease in insulin-stimulated cellular K(+) uptake as well as renal K(+) conservation mediated by inactivation of ROMK, both without a detectable change in plasma [K(+)]. The error signals inciting and maintaining these responses remain to be identified.
Collapse
Affiliation(s)
- Pei Chen
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, 1333 San Pablo St., Los Angeles, CA 90089-9142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H. Effect of high-NaCl or high-KCl diet on hepatic Na+- and K+-receptor sensitivity and NKCC1 expression in rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R591-6. [PMID: 14656769 DOI: 10.1152/ajpregu.00559.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that the bumetanide-sensitive Na+-K+-2Cl-cotransporter (NKCC1) is involved in the hepatic Na+and K+sensor mechanism. In the present study, we examined the effects of a high-NaCl or high-KCl diet on hepatic Na+and K+receptor sensitivity and NKCC1 expression in the liver of Sprague-Dawley rats. RT-PCR and Western blots were used to measure NKCC1 mRNA and protein expression, respectively. Infusion of hypertonic NaCl or isotonic KCl + NaCl solutions into the portal vein increased hepatic afferent nerve activity (HANA) in a Na+or K+dose-dependent manner. After 4 wk on a high-NaCl or high-KCl diet, HANA responses were attenuated compared with animals fed a normal diet, and NKCC1 expression was reduced. These results show that a high-NaCl or high-KCl diet decreases NKCC1 expression in the liver, and it might cause a reduction in hepatic Na+- and K+-receptor sensitivity.
Collapse
Affiliation(s)
- You Tsuchiya
- Department of Physiology, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | |
Collapse
|
20
|
Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H. Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats. Am J Physiol Regul Integr Comp Physiol 2003; 286:R25-30. [PMID: 14500268 DOI: 10.1152/ajpregu.00458.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gravity acts on the circulatory system to decrease arterial blood pressure (AP) by causing blood redistribution and reduced venous return. To evaluate roles of the baroreflex and vestibulosympathetic reflex (VSR) in maintaining AP during gravitational stress, we measured AP, heart rate (HR), and renal sympathetic nerve activity (RSNA) in four groups of conscious rats, which were either intact or had vestibular lesions (VL), sinoaortic denervation (SAD), or VL plus SAD (VL + SAD). The rats were exposed to 3 G in dorsoventral axis by centrifugation for 3 min. In rats in which neither reflex was functional (VL + SAD group), RSNA did not change, but the AP showed a significant decrease (-8 +/- 1 mmHg vs. baseline). In rats with a functional baroreflex, but no VSR (VL group), the AP did not change and there was a slight increase in RSNA (25 +/- 10% vs. baseline). In rats with a functional VSR, but no baroreflex (SAD group), marked increases in both AP and RSNA were observed (AP 31 +/- 6 mmHg and RSNA 87 +/- 10% vs. baseline), showing that the VSR causes an increase in AP in response to gravitational stress; these marked increases were significantly attenuated by the baroreflex in the intact group (AP 9 +/- 2 mmHg and RSNA 38 +/- 7% vs. baseline). In conclusion, AP is controlled by the combination of the baroreflex and VSR. The VSR elicits a huge pressor response during gravitational stress, preventing hypotension due to blood redistribution. In intact rats, this AP increase is compensated by the baroreflex, resulting in only a slight increase in AP.
Collapse
Affiliation(s)
- Taro Miyahara Gotoh
- Department of Physiology, Gifu University School of Medicine, 40 Tsukasa-Machi, Gifu 500-8705, Japan.
| | | | | | | | | |
Collapse
|
21
|
Meyer JW, Flagella M, Sutliff RL, Lorenz JN, Nieman ML, Weber CS, Paul RJ, Shull GE. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Heart Circ Physiol 2002; 283:H1846-55. [PMID: 12384462 DOI: 10.1152/ajpheart.00083.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) functions in the maintenance of cellular electrolyte and volume homeostasis. NKCC1-deficient (Nkcc1(-/-)) mice were used to examine its role in cardiac function and in the maintenance of blood pressure and vascular tone. Tail-cuff measurements demonstrated that awake Nkcc1(-/-) mice had significantly lower systolic blood pressure than wild-type (Nkcc1(+/+)) mice (114.5 +/- 2.2 and 131.8 +/- 2.5 mmHg, respectively). Serum aldosterone levels were normal, indicating that extracellular fluid-volume homeostasis was not impaired. Studies using pressure transducers in the femoral artery and left ventricle showed that anesthetized Nkcc1(-/-) mice have decreased mean arterial pressure and left ventricular pressure, whereas myocardial contraction parameters were not significantly different from those of Nkcc1(+/+) mice. When stimulated with phenylephrine, aortic smooth muscle from Nkcc1(+/+) and Nkcc1(-/-) mice exhibited no significant differences in maximum contractility and only moderate dose-response shifts. In phasic portal vein smooth muscle from Nkcc1(-/-) mice, however, a sharp reduction in mechanical force was noted. These results indicate that NKCC1 can be important for the maintenance of normal blood pressure and vascular tone.
Collapse
Affiliation(s)
- Jamie W Meyer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|