1
|
Clarke GS, Li H, Heshmati E, Nicholas LM, Gatford KL, Page AJ. Pregnancy and a high-fat, high-sugar diet each attenuate mechanosensitivity of murine gastric vagal afferents, with no additive effects. J Physiol 2025; 603:1461-1481. [PMID: 40023799 PMCID: PMC11908482 DOI: 10.1113/jp286115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the CNS to initiate meal termination. Pregnancy and diet-induced obesity are independently associated with dampened GVA mechanosensitivity and increased food intake. Whether a high-fat, high-sugar diet (HFHSD) impacts pregnancy-related adaptations in GVA signalling is unknown and was investigated in this study. Three-week-old female Glu Venus-expressing mice, on a C57BL/6 background, were fed standard laboratory diet (SLD) or HFHSD for 12 weeks, and then half of each group were mated to generate late pregnant (Day 17.5; P-SLD N = 12, P-HFHSD N = 14) or non-pregnant (NP-SLD N = 12, NP-HFHSD N = 16) groups. Body weight and food intake were monitored in Promethion metabolic cages from before mating until Day 17.5 of pregnancy or equivalent ages in non-pregnant mice, prior to tissue collection at 07.00 h for in vitro single fibre GVA recording and gene expression analysis. Pregnant mice gained more weight than non-pregnant mice but weight gain was unaffected by diet. By mid-pregnancy, light-phase food intake (kJ and g) was higher in pregnant than in non-pregnant mice (each P < 0.001) due to larger meals (kJ and g, each P < 0.001), irrespective of diet. Pregnancy and HFHSD-feeding reduced tension-sensitive GVA mechanosensitivity (each P < 0.01), but pregnancy did not further downregulate GVA stretch responses within HFHSD mice (P = 0.652). Nodose ganglia growth hormone receptor mRNA abundance was upregulated in pregnancy, possibly contributing to lower GVA mechanosensitivity during pregnancy in SLD mice. Larger light-phase meals in pregnant compared to non-pregnant HFHSD mice may therefore reflect the downregulation of other satiety pathways. KEY POINTS: Gastric vagal afferents (GVAs) regulate food intake by sensing the arrival and quantity of food and communicating this information to the brain. In standard laboratory diet (SLD) mice, gastric tension-sensitive vagal afferent mechanosensitivity was attenuated in pregnant compared to non-pregnant mice, which is concurrent with increases in total food intake and meal size. Nodose ganglia growth hormone receptor mRNA abundance was increased in pregnancy, possibly accounting for attenuated GVA mechanosensitivity in pregnant SLD mice. In non-pregnant mice, tension-sensitive GVA mechanosensitivity was selectively attenuated in high-fat, high-sugar diet (HFHSD) compared to SLD mice. Despite this, HFHSD mice ate less food and smaller meals compared to the SLD mice, suggesting other satiety mechanisms are limiting food intake. Despite higher food intake, there was no further reduction in mechanosensitivity in pregnant HFHSD mice compared to non-pregnant HFHSD mice and further studies are required to increase understanding of food intake regulation across pregnancy.
Collapse
Affiliation(s)
- Georgia S. Clarke
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Hui Li
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Elaheh Heshmati
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Lisa M. Nicholas
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Centre for EpigeneticsThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Kathryn L. Gatford
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Robinson Research InstituteThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| | - Amanda J. Page
- School of BiomedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research InstituteSAHMRIAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Gastroparesis in pregnancy. Am J Obstet Gynecol 2022; 228:382-394. [PMID: 36088986 DOI: 10.1016/j.ajog.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023]
Abstract
Gastroparesis is a functional gastrointestinal disorder that more commonly affects women, with most cases being diagnosed during childbearing age. However, there is a paucity of data and guidelines to specifically highlight the epidemiology, disease course, maternal and fetal impact, and the management of existing gastroparesis during pregnancy. Apart from metoclopramide, there is no approved therapy specifically indicated for gastroparesis. More importantly, pregnant and breastfeeding women are excluded from clinical trials evaluating pharmacologic agents in the management of gastroparesis. This poses a real challenge to healthcare providers in counseling and managing patients with gastroparesis. In this systematic review, we summarize the current available literature and the knowledge gaps in the impact of pregnancy on gastroparesis and vice versa. We also highlight the efficacy and safety profiles of available pharmacologic and nonpharmacologic therapies in the management of patients with gastroparesis, with emphasis on judicious use of dietary approaches that are deemed relatively safe during pregnancy.
Collapse
|
3
|
Dysregulation of the Enteric Nervous System in the Mid Colon of Complement Component 3 Knockout Mice with Constipation Phenotypes. Int J Mol Sci 2022; 23:ijms23126862. [PMID: 35743302 PMCID: PMC9225043 DOI: 10.3390/ijms23126862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/01/2023] Open
Abstract
Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic elimination under normal and disease conditions of the brain, even though it has not been studied in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism of ENS during C3 deficiency-induced constipation, the changes in the markers of neuronal and interstitial cells of Cajal (ICCs), the markers for excitatory and inhibitory transmission of ENS, and expression of C3 receptors were analyzed in the mid colon of C3 knockout (KO) mice at 16 weeks of age. Prominent constipation phenotypes, including the decrease in stool parameters, changes in the histological structure, and suppression of mucin secretion, were detected in C3 KO mice compared to wildtype (WT) mice. The expression levels of the neuron specific enolase (NSE), protein gene product 9.5 (PGP9.5), and C-kit markers for myenteric neurons and ICCs were lower in the mid colon of C3 KO mice than WT mice. Excitatory transmission analysis revealed similar suppression of the 5-hydroxytryptamine (5-HT) concentration, expression of 5-HT receptors, acetylcholine (ACh) concentration, ACh esterase (AChE) activity, and expression of muscarinic ACh receptors (mAChRs), despite the mAChRs downstream signaling pathway being activated in the mid colon of C3 KO mice. In inhibitory transmission analysis, C3 KO mice showed an increase in the nitric oxide (NO) concentration and inducible nitric oxide synthase (iNOS) expression, while neuronal NOS (nNOS) expression, cholecystokinin (CCK), and gastrin concentration were decreased in the same mice. Furthermore, the levels of C3a receptor (C3aR) and C3bR expression were enhanced in the mid colon of C3 KO mice compared to the WT mice during C3 deficiency-induced constipation. Overall, these results indicate that a dysregulation of the ENS may play an important role in C3 deficiency-induced constipation in the mid colon of C3 KO mice.
Collapse
|
4
|
Balasuriya GK, Nugapitiya SS, Hill-Yardin EL, Bornstein JC. Nitric Oxide Regulates Estrus Cycle Dependent Colonic Motility in Mice. Front Neurosci 2021; 15:647555. [PMID: 34658750 PMCID: PMC8511480 DOI: 10.3389/fnins.2021.647555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Women are more susceptible to functional bowel disorders than men and the severity of their symptoms such as diarrhea, constipation, abdominal pain and bloating changes over the menstrual cycle, suggesting a role for sex hormones in gastrointestinal function. Nitric oxide (NO) is a major inhibitory neurotransmitter in the gut and blockade of nitric oxide synthase (NOS; responsible for NO synthesis) increases colonic motility in male mice ex vivo. We assessed the effects of NOS inhibition on colonic motility in female mice using video imaging analysis of colonic motor complexes (CMCs). To understand interactions between NO and estrogen in the gut, we also quantified neuronal NOS and estrogen receptor alpha (ERα)-expressing myenteric neurons in estrus and proestrus female mice using immunofluorescence. Mice in estrus had fewer CMCs under control conditions (6 ± 1 per 15 min, n = 22) compared to proestrus (8 ± 1 per 15 min, n = 22, One-way ANOVA, p = 0.041). During proestrus, the NOS antagonist N-nitro-L-arginine (NOLA) increased CMC numbers compared to controls (189 ± 46%). In contrast, NOLA had no significant effect on CMC numbers during estrus. During estrus, we observed more NOS-expressing myenteric neurons (48 ± 2%) than during proestrus (39 ± 1%, n = 3, p = 0.035). Increased nuclear expression of ERα was observed in estrus which coincided with an altered motility response to NOLA in contrast with proestrus when ERα was largely cytoplasmic. In conclusion, we confirm a cyclic and sexually dimorphic effect of NOS activity in female mouse colon, which could be due to genomic effects of estrogens via ERα.
Collapse
Affiliation(s)
- Gayathri K Balasuriya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Saseema S Nugapitiya
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Li H, Clarke GS, Christie S, Ladyman SR, Kentish SJ, Young RL, Gatford KL, Page AJ. Pregnancy-related plasticity of gastric vagal afferent signals in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G183-G192. [PMID: 33206550 DOI: 10.1152/ajpgi.00357.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric vagal afferents (GVAs) sense food-related mechanical stimuli and signal to the central nervous system, to integrate control of meal termination. Pregnancy is characterized by increased maternal food intake, which is essential for normal fetal growth and to maximize progeny survival and health. However, it is unknown whether GVA function is altered during pregnancy to promote food intake. This study aimed to determine the mechanosensitivity of GVAs and food intake during early, mid-, and late stages of pregnancy in mice. Pregnant mice consumed more food compared with nonpregnant mice, notably in the light phase during mid- and late pregnancy. The increased food intake was predominantly due to light-phase increases in meal size across all stages of pregnancy. The sensitivity of GVA tension receptors to gastric distension was significantly attenuated in mid- and late pregnancy, whereas the sensitivity of GVA mucosal receptors to mucosal stroking was unchanged during pregnancy. To determine whether pregnancy-associated hormonal changes drive these adaptations, the effects of estradiol, progesterone, prolactin, and growth hormone on GVA tension receptor mechanosensitivity were determined in nonpregnant female mice. The sensitivity of GVA tension receptors to gastric distension was augmented by estradiol, attenuated by growth hormone, and unaffected by progesterone or prolactin. Together, the data indicate that the sensitivity of GVA tension receptors to tension is reduced during pregnancy, which may attenuate the perception of gastric fullness and explain increased food intake. Further, these adaptations may be driven by increases in maternal circulating growth hormone levels during pregnancy.NEW & NOTEWORTHY This study provides first evidence that gastric vagal afferent signaling is attenuated during pregnancy and inversely associated with meal size. Growth hormone attenuated mechanosensitivity of gastric vagal afferents, adding support that increases in maternal growth hormone may mediate adaptations in gastric vagal afferent signaling during pregnancy. These findings have important implications for the peripheral control of food intake during pregnancy.
Collapse
Affiliation(s)
- Hui Li
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Georgia S Clarke
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Stewart Christie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sharon R Ladyman
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Stephen J Kentish
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Richard L Young
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kathryn L Gatford
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Amanda J Page
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
6
|
Akt phosphorylation of neuronal nitric oxide synthase regulates gastrointestinal motility in mouse ileum. Proc Natl Acad Sci U S A 2019; 116:17541-17546. [PMID: 31405982 DOI: 10.1073/pnas.1905902116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) is a major inhibitory neurotransmitter that mediates nonadrenergic noncholinergic (NANC) signaling. Neuronal NO synthase (nNOS) is activated by Ca2+/calmodulin to produce NO, which causes smooth muscle relaxation to regulate physiologic tone. nNOS serine1412 (S1412) phosphorylation may reduce the activating Ca2+ requirement and sustain NO production. We developed and characterized a nonphosphorylatable nNOSS1412A knock-in mouse and evaluated its enteric neurotransmission and gastrointestinal (GI) motility to understand the physiologic significance of nNOS S1412 phosphorylation. Electrical field stimulation (EFS) of wild-type (WT) mouse ileum induced nNOS S1412 phosphorylation that was blocked by tetrodotoxin and by inhibitors of the protein kinase Akt but not by PKA inhibitors. Low-frequency depolarization increased nNOS S1412 phosphorylation and relaxed WT ileum but only partially relaxed nNOSS1412A ileum. At higher frequencies, nNOS S1412 had no effect. nNOSS1412A ileum expressed less phosphodiesterase-5 and was more sensitive to relaxation by exogenous NO. Under non-NANC conditions, peristalsis and segmentation were faster in the nNOSS1412A ileum. Together these findings show that neuronal depolarization stimulates enteric nNOS phosphorylation by Akt to promote normal GI motility. Thus, phosphorylation of nNOS S1412 is a significant regulatory mechanism for nitrergic neurotransmission in the gut.
Collapse
|
7
|
Li Y, Cong J, Fei F, Zhang Z, Yu Y, Xu C, Zhang X, Zhang S. Use of high-resolution colonic manometry to establish etiology and direct treatment in patients with constipation: Case series with correlation to histology. J Gastroenterol Hepatol 2018; 33:1864-1872. [PMID: 29791059 DOI: 10.1111/jgh.14287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/09/2018] [Accepted: 04/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Different clinical treatments are available to treat patients with constipation. We aimed to study the etiology and direct treatment in a case series of patients with constipation by the use of high-resolution colonic manometry (HRCM). METHODS High-resolution colonic manometry was used to record the colorectal peristaltic contractions of the entire colon in patients. Based on the results of HRCM, 151 patients with constipation were classified into groups and received different clinical treatment such as a total or subtotal colectomy, local excision, or conservative treatment. Paraffin-embedded samples obtained after resection were studied using hematoxylin and eosin, as well as immunohistochemical staining. RESULTS All patients underwent HRCM over 24 h. Based on the amplitude, intensity, and trends in peristaltic contractions recorded by HRCM, we observed 117 patients with slow-transit constipation and 34 with functional outlet obstruction constipation. After an overall evaluation of the results of HRCM and anorectal function, 26, 23, 27, and 75 patients were treated with total colectomy, subtotal colectomy, local excision, and conservative treatment, respectively. Furthermore, histological examination of surgical samples showed vacuolar degeneration of nerve plexuses as well as of the muscularis propria, which also showed fibrosis in its outer layers in patients with constipation. CONCLUSION Different types of constipation showed different colonic motility patterns and morphological changes in the colonic wall. HRCM plays an important role in the diagnosis and classification of patients with constipation. Furthermore, HRCM can accurately identify the diseased colonic segments and help to choose the appropriate treatment.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jiying Cong
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chen Xu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
8
|
Li Y, Yu Y, Li S, Zhang M, Zhang Z, Zhang X, Shi Y, Zhang S. Isobaric tags for relative and absolute quantification-based proteomic analysis that reveals the roles of progesterone receptor, inflammation, and fibrosis for slow-transit constipation. J Gastroenterol Hepatol 2018; 33:385-392. [PMID: 28699285 DOI: 10.1111/jgh.13873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/14/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Progesterone receptor, inflammation, neurotransmitter expression, and fibrosis are involved in slow-transit constipation. The aim of the present study was to examine whether patients with slow-transit constipation have an overexpression of progesterone receptor and serotonin, which may impair the fibrosis of muscularis propria in colorectal wall. METHODS High-resolution colon manometry was used to record the colorectal peristaltic contractions of the proximal ascending and sigmoid colon in patients. Protein samples prepared from frozen sigmoid colon tissue and the proximal margin of the ascending colon of four female patients were compared using isobaric tags for relative and absolute quantification labeling technique coupled to 2D liquid chromatography-tandem mass spectrometry analysis. Immunohistochemical staining of progesterone receptor, serotonin, and fibronectin was performed in paraffin-embedded sigmoid colon tissues and the proximal margin of the ascending colon or ileum from 43 patients with slow-transit constipation. RESULTS Among these differentially regulated proteins based on isobaric tags for relative and absolute quantification and liquid chromatography-tandem mass spectrometry analysis, 56 proteins involved in the response to progesterone, inflammation, matrix remodeling, fibrosis, and muscle metabolism. Immunohistochemical staining confirmed that there was significantly higher expression of progesterone receptor (t = 19.19, P = 0.000) and serotonin (t = 13.52, P = 0.004) in sigmoid colon than in the proximal margin of the ascending colon and ileum. Progesterone receptor and fibronectin expression in the outer layer of muscularis propria were higher than in the middle layer. CONCLUSIONS These results demonstrate that progesterone receptor, along with inflammation and fibrosis, may take part in slow-transit constipation development.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuyuan Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mingqing Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yang Shi
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
9
|
Zielińska M, Fichna J, Bashashati M, Habibi S, Sibaev A, Timmermans JP, Storr M. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain. Neurogastroenterol Motil 2017; 29. [PMID: 28191706 DOI: 10.1111/nmo.13025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. METHODS Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. KEY RESULTS GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. CONCLUSIONS AND INFERENCES GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy.
Collapse
Affiliation(s)
- M Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - J Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - M Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA.,Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - S Habibi
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - A Sibaev
- Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - J-P Timmermans
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - M Storr
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University of Munich, Munich, Germany
| |
Collapse
|
10
|
Sex Differences in Gastrointestinal Physiology and Diseases. SEX DIFFERENCES IN PHYSIOLOGY 2016. [DOI: 10.1016/b978-0-12-802388-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Oh JE, Kim YW, Park SY, Kim JY. Estrogen rather than progesterone cause constipation in both female and male mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:423-6. [PMID: 24227943 PMCID: PMC3823955 DOI: 10.4196/kjpp.2013.17.5.423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 12/16/2022]
Abstract
Females are more often affected by constipation than males, especially during pregnancy, which is related to the menstrual cycle. Although still controversial, alterations of progesterone and estrogen may be responsible. Therefore, this study was conducted in order to determine whether the female sex steroid hormone itself is responsible for development of constipation in both female and male mice. Administration of estrogen resulted in a decrease in weight of accumulated feces on days 2, 3, 4, and 5 in male mice and on day 5 in female mice, compared with the control group, but progesterone administration did not. Administration of estrogen resulted in a decrease in gastrointestinal movement, compared to normal; however, no significant change was observed by administration of progesterone. In conclusion, estrogen, rather than progesterone, may be a detrimental factor of constipation via decreased bowel movement in mice.
Collapse
Affiliation(s)
- Ji-Eun Oh
- Obesity-Diabetes Advanced Research Center, School of Medicine, Yeungnam University, Daegu 705-717, Korea
| | | | | | | |
Collapse
|
12
|
Crowell SR, Sharma AK, Amin S, Soelberg JJ, Sadler NC, Wright AT, Baird WM, Williams DE, Corley RA. Impact of pregnancy on the pharmacokinetics of dibenzo[def,p]chrysene in mice. Toxicol Sci 2013; 135:48-62. [PMID: 23744095 PMCID: PMC3748759 DOI: 10.1093/toxsci/kft124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring. We present pharmacokinetic data of DBC in pregnant and nonpregnant mice. Pregnant (gestational day 17) and nonpregnant female B6129SF1/J mice were exposed to 15mg/kg DBC by oral gavage. Subgroups of mice were sacrificed up to 48h postdosing, and blood, excreta, and tissues were analyzed for DBC and its major diol and tetrol metabolites. Elevated maximum concentrations and areas under the curve of DBC and its metabolites were observed in blood and tissues of pregnant animals compared with naïve mice. Using a physiologically based pharmacokinetic (PBPK) model, we found observed differences in pharmacokinetics could not be attributed solely to changes in tissue volumes and blood flows that occur during pregnancy. Measurement of enzyme activity in naïve and pregnant mice by activity-based protein profiling indicated a 2- to 10-fold reduction in activities of many of the enzymes relevant to PAH metabolism. Incorporating this reduction into the PBPK model improved model predictions. Concentrations of DBC in fetuses were one to two orders of magnitude below maternal blood concentrations, whereas metabolite concentrations closely resembled those observed in maternal blood.
Collapse
Affiliation(s)
- Susan Ritger Crowell
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gangula PRR, Sekhar KR, Mukhopadhyay S. Gender bias in gastroparesis: is nitric oxide the answer? Dig Dis Sci 2011; 56:2520-7. [PMID: 21559738 PMCID: PMC3170494 DOI: 10.1007/s10620-011-1735-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/18/2011] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that gender-related differences are prominent in gastric motility functions in both health and disease. Women are more susceptible to gastroparesis than men. Though the mechanism(s) involved are not fully understood, impairment of the nitrergic system is one of the main factors responsible for the disease. Uncoupling of neuronal nitric oxide synthase (nNOS) causes a decreased synthesis of NO leading to a reduction in smooth muscle relaxation. Tetrahydrobiopterin (BH(4)) (an essential cofactor for nNOS) is a key regulator of nNOS activity for stomach dysfunction and gastroparesis. In addition, BH(4) has been shown to be a potent antioxidant and anti-inflammatory agent. Well established by results from our laboratory, a diminished intracellular (BH(4):total biopterin) ratio in diabetic female rats significantly impairs nNOS activity and function. Recent research has been focused on BH(4) biosynthesis and gastroparesis because reduced BH(4) cofactor levels can alter the production of NO by nNOS. Researchers are now paying more attention to the possibility of using BH(4) as a therapeutic strategy in gastroparesis. The purpose of this review is to provide an overview of the regulation and function of nNOS by sex hormones and BH(4) and its potential role in the treatment of gastroparesis.
Collapse
Affiliation(s)
- P R R Gangula
- Department of Physiology, Center for Women's Health Research, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd, Nashville, TN 37208, USA.
| | | | | |
Collapse
|
14
|
Hogan AM, Collins D, Baird AW, Winter DC. Estrogen and its role in gastrointestinal health and disease. Int J Colorectal Dis 2009; 24:1367-75. [PMID: 19655153 DOI: 10.1007/s00384-009-0785-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION While the concept of a role of estrogen in gastrointestinal (in particular, colonic) malignancy has generated excitement in recent years, no review has examined the role of this potent and omnipresent steroid hormone in physiological states or its contribution to the development of benign pathological processes. Understanding these effects (and mechanisms therein) may provide a platform for a deeper understanding of more complex disease processes. METHODS A literature search was conducted using the PubMed database and the search terms were "estrogen," "estrogen AND gastrointestinal tract," "estrogen AND colon," "estrogen AND esophagus," "estrogen AND small intestine," "estrogen AND stomach," "estrogen AND gallbladder," and "estrogen AND motility." Bibliographies of extracted studies were further cross-referenced. In all, 136 full-text articles were selected for review. A logical organ-based approach was taken to enable extraction of data of clinical relevance and meaningful interpretation thereof. Insight is provided into the hypotheses, theories, controversies, and contradictions generated over the last five decades by extensive investigation of estrogen in human, animal, and cell models using techniques as diverse as autoradiographic studies of baboons to human population analysis. CONCLUSIONS Effects from esophagus through to the colon and rectum are summarized in this first concise collection of data pertaining to estrogenic actions in gastrointestinal health and disease. Mechanisms of these actions are discussed where possible. Undoubtedly, this hormone exerts many actions yet to be elucidated, and its potential therapeutic applications remain, as yet, largely unexplored.
Collapse
Affiliation(s)
- Aisling M Hogan
- Institute for Clinical Outcomes Research and Education (iCORE), St. Vincent's University Hospital, Dublin, 4, Ireland.
| | | | | | | |
Collapse
|
15
|
Kuo P, Gentilcore D, Nair N, Stevens JE, Wishart JM, Lange K, Gilja OH, Hausken T, Horowitz M, Jones KL, Rayner CK. The nitric oxide synthase inhibitor, Ng-nitro-L-arginine-methyl-ester, attenuates the delay in gastric emptying induced by hyperglycaemia in healthy humans. Neurogastroenterol Motil 2009; 21:1175-e103. [PMID: 19460102 DOI: 10.1111/j.1365-2982.2009.01321.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to determine whether the nitric oxide (NO) synthase inhibitor, N(g)-nitro-L-arginine-methyl-ester (L-NAME), reverses the effects of acute hyperglycaemia on gastric emptying and antropyloroduodenal (APD) motility. The study had a four-way randomized crossover (hyperglycaemia vs euglycaemia; L-NAME vs placebo) design in a clinical laboratory setting. Seven healthy volunteers [four males; age 30.3 +/- 3.8 years; body mass index (BMI) 23.6 +/- 1.2 kg m(-2)] were the study subjects. After positioning a transnasal manometry catheter across the pylorus, the blood glucose concentration was maintained at either 15 or 5 mmol L(-1) using a glucose/insulin clamp. An intravenous infusion of L-NAME (180 microg kg(-1 )h(-1)) or placebo (0.9% saline) was commenced (T = -30 min) and continued for 150 min. At T = -2 min, subjects ingested a drink containing 50 g of glucose made up to 300 mL with water. Gastric emptying was measured using 3D ultrasound, and APD motility using manometry. Hyperglycaemia slowed gastric emptying (P < 0.05), and this effect was abolished by L-NAME. L-NAME had no effect on gastric emptying during euglycaemia. Hyperglycaemia suppressed fasting antral motility [motility index: 3.9 +/- 0.8 (hyperglycaemia) vs 6.5 +/- 0.6 (euglycaemia); P < 0.01]; l-NAME suppressed postprandial antral motility [motility index: 3.6 +/- 0.2 (L-NAME) vs 5.1 +/- 0.2 (placebo); P < 0.001]. Postprandial basal pyloric pressure was higher during hyperglycaemia (P < 0.001), and lower after administration of L-NAME (P < 0.001). Slowing of gastric emptying induced by hyperglycaemia is mediated by NO, and may involve the modulation of tonic pyloric activity.
Collapse
Affiliation(s)
- P Kuo
- Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Keller J, Frederking D, Layer P. The spectrum and treatment of gastrointestinal disorders during pregnancy. ACTA ACUST UNITED AC 2008; 5:430-43. [DOI: 10.1038/ncpgasthep1197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/29/2008] [Indexed: 02/08/2023]
|
17
|
Wang F, Zheng TZ, Li W, Qu SY, He DY. Action of progesterone on contractile activity of isolated gastric strips in rats. World J Gastroenterol 2003; 9:775-8. [PMID: 12679930 PMCID: PMC4611448 DOI: 10.3748/wjg.v9.i4.775] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of progesterone on contractile activity of isolated gastric strips in rats.
METHODS: Wistar rats were sacrificed to remove whole stomach. Then, the stomach was opened and the mucosal layer was removed. Parellel to either the circular or the longitudial fibers, muscle strips were cut from fundus, body, antrum and pylorus. Each muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution. Then the motility of gastric strips in tissue chambers was simultaneously recorded. The preparations were subjected to 1 g load tension and washed with 5 ml Krebs solution every 20 min. After 1 h equilibration, progesterone or antagonists were added in the tissue chamber separately. The antagonists were added 3 min before using progesterone (50 µmol·L-1).
RESULTS: Progesterone decreased the resting tension of fundus and body longitudinal muscle (LM) (P < 0.05). It inhibited the mean contractile amplitude of body and antrum LM and circular muscle (CM), and the motility index of pyloric CM (P < 0.05). The inhibition of progesterone on the mean contractile amplitude could be partially blocked by phentolamine in LM of the stomach body (the mean contractile amplitude of body LM decreased from -7.5 ± 5.5 to -5.2 ± 4.5 P < 0.01), and by phentolamine or indomethacin in CM of body (The inhibition of progesterone on the mean contractile amplitude of body CM decreased from -5.6 ± 3.0 to -3.6 ± 2.7 by phentolamine and from -5.6 ± 3.0 to -3.5 ± 2.5 by indomethacin, P < 0.01). Hexamethonium, propranolol and L-NNA (inhibitor of NO synthetase) didn’t affect the action of progesterone (P > 0.05).
CONCLUSION: The study suggested that progesterone can inhibit the contractile activity of isolated gastric strips in rats and the mechanism seems to be a direct one except that the action on gastric body is mediated through prostaglandin and adrenergic α receptor partly.
Collapse
Affiliation(s)
- Fang Wang
- Insititute of Infectious Diseases, the Third Military Medical University Afflicated Southwest Hospital, Chongqing 400038, China.
| | | | | | | | | |
Collapse
|
18
|
Granger JP. Maternal and fetal adaptations during pregnancy: lessons in regulatory and integrative physiology. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1289-92. [PMID: 12429557 DOI: 10.1152/ajpregu.00562.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi, Jackson, Mississippi 39216, USA.
| |
Collapse
|
19
|
Chen YM, Qian ZM, Zhang J, Chang YZ, Duan XL. Distribution of constitutive nitric oxide synthase in the jejunum of adult rat. World J Gastroenterol 2002; 8:537-9. [PMID: 12046087 PMCID: PMC4656438 DOI: 10.3748/wjg.v8.i3.537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the distribution of the constitutive nitric oxide synthase (NOS) in the jejunum of adult rat.
METHODS: The distribution of endothelial NOS (eNOS) was detected by immunohistochemistry. Immunofluorescence histochemical dual staining technique were used for studying the distribution of neuronal NOS (nNOS) and eNOS. The dual stained slides were observed under a confocal laser scanning microscope.
RESULTS: Positive neuronal NOS (nNOS) and endothelial NOS (eNOS) cells were found to be distributed in lamina propria of villi, and the epithelial cell was not stained. eNOS was mainly located in submucosal vascular endothelia, while nNOS was mainly situated in myenteric plexus. Some cells in the villi had both nNOS and eNOS. More than 80% of the cells were positive for both nNOS and eNOS, the rest cells were positive either for nNOS or for eNOS.
CONCLUSION: The two constitutive nitric oxide synthases are distributed differently in the jejunum of rat. nNOS distributed in myenteric plexus is a neurotransmitter in the non-adrenergic non-cholinergic (NANC) inhibitory nerves. eNOS distributed in endothelial and smooth muscle cells of blood vessels plays vasodilator role. eNOS and nNOS are coexpressed in some cells of lamina propria of villi. NO generated by those NOS is very important in the physiological and pathological process of small intestine.
Collapse
Affiliation(s)
- Yan-Min Chen
- Life Science College, Hebei Normal University, Shijiazhuang 050016, Hebei Province, China
| | | | | | | | | |
Collapse
|
20
|
Bani D, Baccari MC, Quattrone S, Nistri S, Calamai F, Bigazzi M, Bani Sacchi T. Relaxin depresses small bowel motility through a nitric oxide-mediated mechanism. Studies in mice. Biol Reprod 2002; 66:778-84. [PMID: 11870086 DOI: 10.1095/biolreprod66.3.778] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gastrointestinal motility is reduced and the incidence of functional gastrointestinal disorders is increased in pregnancy, possibly due to hormonal influences. This study aims to clarify whether the hormone relaxin, which attains high circulating levels during pregnancy and has a nitric oxide-mediated relaxant action on vascular and uterine smooth muscle, also reduces bowel motility and, if it does, whether nitric oxide is involved. Female mice in proestrous or estrous were treated for 18 h with relaxin (1 microg s.c.) or vehicle (controls). Isolated ileal preparations from both groups were used to record contractile activity, either basal or after acute administration of relaxin (5 x 10(-8) M). Drugs inhibiting nitric oxide biosynthesis or neurotransmission were used in combination with relaxin. Expression of nitric oxide synthase isoforms by the ileum was assessed by immunocytochemistry and Western blot analysis. Relaxin caused a clear-cut decay of muscle tension and a reduction in amplitude of spontaneous contractions upon either chronic administration to mice or acute addition to isolated ileal preparations. These effects were significantly blunted by N(G)-nitro-L-arginine, but not by the neural blockers we used. Moreover, relaxin increased the expression of nitric oxide synthases II and III, but not synthase I. Relaxin markedly inhibits ileal motility in mice by exerting a direct action on smooth muscle through the activation of intrinsic nitric oxide biosynthesis.
Collapse
Affiliation(s)
- Daniele Bani
- Department of Anatomy, Histology, and Forensic Medicine, University of Florence, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shah S, Nathan L, Singh R, Fu YS, Chaudhuri G. E2 and not P4 increases NO release from NANC nerves of the gastrointestinal tract: implications in pregnancy. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1546-54. [PMID: 11294780 DOI: 10.1152/ajpregu.2001.280.5.r1546] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In women, during pregnancy, there is decreased motility of the gastrointestinal tract leading to a delay in gastric emptying and an increase in colonic transit time. Whether the rise in estradiol (E2) or progesterone (P4) is responsible for this effect is controversial. As the nitrergic component of the nonadrenergic, noncholinergic (NANC) nerves is responsible for modulating gastrointestinal motility in vivo, the purpose of this study was to evaluate whether the increased release of nitric oxide (NO) from the nitrergic component of the NANC nerves innervating the gastric fundus and colon that occurs during late pregnancy in rats is mediated by E2 or P4. Ovariectomized rats treated with E2 or P4 alone or in combination were used for our studies. We also wanted to assess the cellular and molecular mechanisms involved. The NANC activity was studied by assessing changes in tone after application of electric field stimulation (EFS). The role of NO was determined by observing the effects of EFS in the presence and absence of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) and the reversibility of the effects of L-NAME by L-arginine. Our studies indicated that there was increased magnitude of relaxation of isolated strips of rat gastric fundus and rat colon after application of EFS to tissues obtained from animals treated with E2 alone or a combination of E2 + P4 but not from those treated with P4 alone. L-NAME attenuated relaxation responses in E2- and E2 + P4-treated animals. To elucidate whether the increased NO release may be due to an increase in neuronal NOS (nNOS) protein, we used both Western blot analysis and immunohistochemistry. We also used RT-PCR to determine whether there was an increase in nNOS mRNA after treatment with sex steroids. In nonpregnant animals, nNOS was detected by Western blot in the fundus and the colon and was barely detectable in the ileum. In pregnancy, there was an increase in nNOS in both the gastric fundus and the colon. The nNOS protein was also increased in ovariectomized animals treated with either E2 alone or E2 + P4 but not P4 alone when compared with ovariectomized animals receiving vehicle. Our results indicated that there was an increase in nNOS protein that was localized to the neurons of the myenteric plexus in the gastric fundus and colon in E2- and E2 + P4-treated animals, but this increase was not observed in animals treated with P4 alone. This increase in nNOS protein was accompanied by an increase in nNOS mRNA. These results suggest the possibility that E2, rather than P4, may be responsible for the delay in gastric emptying and increase in colonic transit time observed in pregnancy.
Collapse
Affiliation(s)
- S Shah
- Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|