1
|
Effect of Age on Heart Rate Variability in Patients with Mitral Valve Prolapse: An Observational Study. J Clin Med 2022; 12:jcm12010165. [PMID: 36614965 PMCID: PMC9820965 DOI: 10.3390/jcm12010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Age is an important determinant of heart rate variability (HRV) in healthy individuals. The incidence of arrhythmia is high in patients with mitral valve prolapse (MVP). However, the correlation of HRV in patients with MVP in different age groups is not well established. We presumed that increasing age would be prospectively associated with declining HRV measurement in MVP. Sixty patients with MVP and 120 control individuals were included and underwent 24 h HRV analysis. No significant difference was found in all parameters calculated in the time domain or in the frequency domain between the two groups. However, as patients' age increased, a significant time domain (SDNN, RMSSD, NN50, and pNN50) decline was found in the MVP group, but not in the control group. This suggests that patients with MVP may have autonomic nervous system involvement that increases the risk of arrhythmia and heart disease with increasing age.
Collapse
|
2
|
Mousa SA, Dehe L, Aboryag N, Shaqura M, Beyer A, Schäfer M, Treskatsch S. Identification of glucocorticoid receptors as potential modulators of parasympathetic and sympathetic neurons within rat intracardiac ganglia. Front Neuroanat 2022; 16:902738. [PMID: 36213610 PMCID: PMC9539283 DOI: 10.3389/fnana.2022.902738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Emerging evidences indicate that glucocorticoid receptors (GR) play a regulatory role in cardiac function, particularly with regard to the autonomic nervous system. Therefore, this study aimed to demonstrate the expression and the precise anatomical location of GR in relation to the parasympathetic and sympathetic innervations of the heart. Methods The present study used tissue samples from rat heart atria to perform conventional reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, and double immunofluorescence confocal analysis of GR with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) as well as the mineralocorticoid receptor (MR). Results Double immunofluorescence labeling revealed that GRs were co-expressed with VAChT in parasympathetic principal neuronal somata and nerve terminals innervating atrium. Also, GR colocalized with the sympathetic neuronal marker TH in a cluster of small intensely fluorescent (SIF) cells, on intracardiac nerve terminals and in the atrial myocardium. GR immunoreactivity was scarcely identified on CGRP-immunoreactive sensory nerve terminals. Approximately 20% of GR immunoreactive neuronal somata co-localized with MR. Finally, conventional RT-PCR and Western blot confirmed the presence of GR and MR in rat heart atria. Conclusion This study provides evidence for the existence of GR predominantly on cardiac parasympathetic neurons and TH-immunoreactive SIF cells suggesting a functional role of cardiac GR on cardiovascular function by modulation of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- Shaaban A. Mousa
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Lukas Dehe
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Noureddin Aboryag
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Mohammed Shaqura
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Antje Beyer
- Department of Anaesthesiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Schäfer
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité – University Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
3
|
Ragozzino FJ, Arnold RA, Kowalski CW, Savenkova MI, Karatsoreos IN, Peters JH. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling. Am J Physiol Cell Physiol 2020; 319:C1097-C1106. [PMID: 32966126 DOI: 10.1152/ajpcell.00190.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.
Collapse
Affiliation(s)
- Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Cody W Kowalski
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.,Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
4
|
Soto-Piña AE, Franklin C, Rani CSS, Fernandez E, Cardoso-Peña E, Benítez-Arciniega AD, Gottlieb H, Hinojosa-Laborde C, Strong R. Dexamethasone Causes Hypertension in Rats Even Under Chemical Blockade of Peripheral Sympathetic Nerves. Front Neurosci 2019; 13:1305. [PMID: 31866814 PMCID: PMC6909820 DOI: 10.3389/fnins.2019.01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022] Open
Abstract
Synthetic glucocorticoids (GCs) are widely used to treat inflammatory conditions. However, chronic use of GCs can lead to hypertension. The cause of this undesired side effect remains unclear. Previously, we developed an in vivo rat model to study the mechanisms underlying hypertension induced by the chronic administration of the potent synthetic GC, dexamethasone (DEX) and found that the catecholamine biosynthetic pathway plays an important role. In the current study, we used this model to investigate the role of the adrenal medulla, renal nerves, and other peripheral sympathetic nerves in DEX-induced hypertension. After 5 days of baseline telemetric recording of mean arterial pressure (MAP) and heart rate (HR), rats were subjected to one of the following treatments: renal denervation (RDNX), adrenal medullectomy (ADMX), 6-hydroxydopamine (6-OHDA, 20 mg/kg, i.p.) to induce chemical sympathectomy, or a combination of ADMX and 6-OHDA. On day 11, the animals received vehicle (VEH) or DEX in drinking water for 7 days, with the latter causing an increase in MAP in control animals. ADMX and RDNX by themselves exacerbated the pressor effect of DEX. In the chemical sympathectomy group, DEX still caused a rise in MAP but the response was lower (ΔMAP of 6-OHDA/DEX < VEH/DEX, p = 0.039). However, when ΔMAP was normalized to day 10, 6-OHDA + DEX did not show any difference from VEH + DEX, certainly not an increase as observed in DEX + ADMX or RDNX groups. This indicates that sympathetic nerves do not modulate the pressor effect of DEX. TH mRNA levels increased in the adrenal medulla in both VEH/DEX (p = 0.009) and 6-OHDA/DEX (p = 0.031) groups. In the 6-OHDA group, DEX also increased plasma levels of norepinephrine (NE) (p = 0.016). Our results suggest that the activation of catecholamine synthetic pathway could be involved in the pressor response to DEX in animals even under chemical sympathectomy with 6-OHDA.
Collapse
Affiliation(s)
| | - Cynthia Franklin
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - C S Sheela Rani
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elizabeth Fernandez
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Elías Cardoso-Peña
- Unidad de Medicina Familiar 220, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Helmut Gottlieb
- Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX, United States
| | - Carmen Hinojosa-Laborde
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Randy Strong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
5
|
Adlan AM, Veldhuijzen van Zanten JJCS, Lip GYH, Paton JFR, Kitas GD, Fisher JP. Acute hydrocortisone administration reduces cardiovagal baroreflex sensitivity and heart rate variability in young men. J Physiol 2018; 596:4847-4861. [PMID: 30129666 PMCID: PMC6187027 DOI: 10.1113/jp276644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS A surge in cortisol during acute physiological and pathophysiological stress may precipitate ventricular arrhythmia and myocardial infarction. Reduced cardiovagal baroreflex sensitivity and heart rate variability are observed during acute stress and are associated with an increased risk of acute cardiac events. In the present study, healthy young men received either a single iv bolus of saline (placebo) or hydrocortisone, 1 week apart, in accordance with a randomized, placebo-controlled, cross-over study design. Hydrocortisone acutely increased heart rate and blood pressure and reduced cardiovagal baroreflex sensitivity and heart rate variability in young men. These findings suggest that, by reducing cardiovagal baroreflex sensitivity and heart rate variability, acute surges in cortisol facilitate a pro-arrhythmic milieu and provide an important mechanistic link between stress and acute cardiac events ABSTRACT: Surges in cortisol concentration during acute stress may increase cardiovascular risk. To better understand the interactions between cortisol and the autonomic nervous system, we determined the acute effects of hydrocortisone administration on cardiovagal baroreflex sensitivity (BRS), heart rate variability (HRV) and cardiovascular reactivity. In a randomized, placebo-controlled, single-blinded cross-over study, 10 healthy males received either a single iv bolus of saline (placebo) or 200 mg of hydrocortisone, 1 week apart. Heart rate (HR), blood pressure (BP) and limb blood flow were monitored 3 h later, at rest and during the sequential infusion of sodium nitroprusside and phenylephrine (modified Oxford Technique), a cold pressor test and a mental arithmetic stress task. HRV was assessed using the square root of the mean of the sum of the squares of differences between successive R-R intervals (rMSSD). Hydrocortisone markedly increased serum cortisol 3 h following infusion and also compared to placebo. In addition, hydrocortisone elevated resting HR (+7 ± 4 beats min-1 ; P < 0.001) and systolic BP (+5 ± 5 mmHg; P = 0.008); lowered cardiovagal BRS [geometric mean (95% confidence interval) 15.6 (11.1-22.1) ms/mmHg vs. 26.2 (17.4--39.5) ms/mmHg, P = 0.011] and HRV (rMSSD 59 ± 29 ms vs. 84 ± 38 ms, P = 0.004) and increased leg vasoconstrictor responses to cold pressor test (Δ leg vascular conductance -45 ± 20% vs. -23 ± 26%; P = 0.023). In young men, an acute cortisol surge is accompanied by increases in HR and BP, as well as reductions in cardiovagal BRS and HRV, potentially providing a pro-arrhythmic milieu that may precipitate ventricular arrhythmia or myocardial infarction and increase cardiovascular risk.
Collapse
Affiliation(s)
- Ahmed M Adlan
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Julian F R Paton
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - George D Kitas
- Department of Rheumatology, Dudley Group NHS Foundation Trust, Russells Hall Hospital, Dudley, West Midlands, UK
| | - James P Fisher
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol (1985) 2017; 124:1233-1243. [PMID: 29357503 DOI: 10.1152/japplphysiol.00743.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol 124: 1233-1243, 2018. First published December 19, 2017; doi: 10.1152/japplphysiol.00743.2017 .- Acute intermittent hypoxia (AIH) repetitively activates the arterial chemoreflex and triggers a progressive increase of sympathetic nerve activity (SNA) and phrenic nerve activity (PNA) referred to as sympathetic and phrenic long-term facilitation (S-LTF and P-LTF), respectively. Neurons of the hypothalamic paraventricular nucleus (PVN) participate in the arterial chemoreflex, but their contribution to AIH-induced LTF is unknown. To determine this, anesthetized rats were vagotomized and exposed to 10 cycles of AIH, each consisting of ventilation for 3 min with 100% O2 followed by 3 min with 15% O2. Before AIH, rats received bilateral PVN injections of artificial cerebrospinal fluid (aCSF; vehicle) or the GABA-A receptor agonist muscimol (100 pmol in 50 nl) to inhibit neuronal activity. Thirty minutes after completing the AIH protocol, during which rats were continuously ventilated with 100% O2, S-LTF and P-LTF were quantified from recordings of integrated splanchnic SNA and PNA, respectively. PVN muscimol attenuated increases of SNA during hypoxic episodes occurring in later cycles (6-10) of AIH ( P < 0.03) and attenuated post-AIH S-LTF ( P < 0.001). Muscimol, however, did not consistently affect peak PNA responses during hypoxic episodes and did not alter AIH-induced P-LTF. These findings indicate that PVN neuronal activity contributes to sympathetic responses during AIH and to subsequent generation of S-LTF. NEW & NOTEWORTHY Neural circuits mediating acute intermittent hypoxia (AIH)-induced sympathetic and phrenic long-term facilitation (LTF) have not been fully elucidated. We found that paraventricular nucleus (PVN) inhibition attenuated sympathetic activation during episodes of AIH and reduced post-AIH sympathetic LTF. Neither phrenic burst patterning nor the magnitude of AIH-induced phrenic LTF was affected. Findings indicate that PVN neurons contribute to AIH-induced sympathetic LTF. Defining mechanisms of sympathetic LTF could improve strategies to reduce sympathetic activity in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Megan B Blackburn
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
7
|
Cottin F, Malcurat V, Zorgati H, Prieur F, Labsy Z, Do MC, Gagey O, Collomp K. Effect of oral glucocorticoid intake on autonomic cardiovascular control. SPRINGERPLUS 2015; 4:622. [PMID: 26543757 PMCID: PMC4627994 DOI: 10.1186/s40064-015-1378-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Abstract
This study analyzed baroreflex sensitivity, heart rate and systolic blood pressure variabilities during an oral 1 week administration of prednisone. This study examined the hypothesis that prednisone might change both systolic blood pressure level and baroreflex sensitivity. Twelve physically active male subjects participated to a double-blind, randomized cross-over study consisting of two 1-week periods of treatment separated by a 4-week drug-free washout period: placebo (PLA) or prednisone (PRED). Trials were performed by each subject four times on the second (D2) and seventh (D7) day of each treatment period. ECG and blood pressure were continuously recorded to compute heart rate variability, systolic blood pressure variability and baroreflex sensitivity components with the smoothed pseudo Wigner Ville distribution and baroreflex analysis. Following D2 prednisone treatment, both HR (PLA: 60.8 ± 10.5 vs. PRED: 65.8 ± 9.1 beats min(-1), p = 0.008) and low frequency component of systolic blood pressure variability (D2: 3.09 ± 0.19 vs. D7: 2.34 ± 0.19, p < 0.041) increased whereas other components did not change. Over 7 days of treatment, LF-SBP amplitude increased (D2: 2.71 ± 0.89 vs. D7: 3.87 ± 0.6 mmHg, p = 0.037). A slight increase in both HR and LF-SBPV were observed suggesting a potential sympathetic cardiovascular stimulus. Although we found a significant effect of the 1-week prednisone treatment on heart rate and low frequency power of systolic blood pressure variability, we reported neither an increase in the systolic blood pressure level nor a decrease in the baroreflex sensitivity. Therefore, the fragility of our results cannot support a deleterious effect of 1-week administration of prednisone on the autonomic cardiovascular control which might be involved in cardiovascular diseases.
Collapse
Affiliation(s)
- F Cottin
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - V Malcurat
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France ; Ecole supérieure d'ostéopathie, ESO Paris SUPOSTEO, Champs sur Marne, France
| | - H Zorgati
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - F Prieur
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - Z Labsy
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - M C Do
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - O Gagey
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - K Collomp
- CIAMS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France ; CIAMS, Université d'Orléans, 45067 Orléans, France ; Département des analyses, AFLD, Châtenay-Malabry, France
| |
Collapse
|
8
|
Erdos B, Backes I, McCowan ML, Hayward LF, Scheuer DA. Brain-derived neurotrophic factor modulates angiotensin signaling in the hypothalamus to increase blood pressure in rats. Am J Physiol Heart Circ Physiol 2015; 308:H612-22. [PMID: 25576628 DOI: 10.1152/ajpheart.00776.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli including stress and hyperosmolarity. However, it is unclear whether BDNF in the PVN contributes to increases in blood pressure (BP). We tested the hypothesis that increased BDNF levels within the PVN would elevate baseline BP and heart rate (HR) and cardiovascular stress responses by altering central angiotensin signaling. BP was recorded using radiotelemetry in male Sprague-Dawley rats after bilateral PVN injections of adeno-associated viral vectors expressing green fluorescent protein (GFP) or myc epitope-tagged BDNF fusion protein. Cardiovascular responses to acute stress were evaluated 3 to 4 wk after injections. Additional GFP and BDNF-treated animals were equipped with osmotic pumps for intracerebroventricular infusion of saline or the angiotensin type-1 receptor (AT1R) inhibitor losartan (15 μg·0.5 μl(-1)·h(-1)). BDNF treatment significantly increased baseline BP (121 ± 3 mmHg vs. 99 ± 2 mmHg in GFP), HR (394 ± 9 beats/min vs. 314 ± 4 beats/min in GFP), and sympathetic tone indicated by HR- and BP-variability analysis and adrenomedullary tyrosine hydroxylase protein expression. In contrast, body weight and BP elevations to acute stressors decreased. BDNF upregulated AT1R mRNA by ∼80% and downregulated Mas receptor mRNA by ∼50% in the PVN, and losartan infusion partially inhibited weight loss and increases in BP and HR in BDNF-treated animals without any effect in GFP rats. Our results demonstrate that BDNF overexpression in the PVN results in sympathoexcitation, BP and HR elevations, and weight loss that are mediated, at least in part, by modulating angiotensin signaling in the PVN.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida; Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont; and
| | - Iara Backes
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
9
|
Zhao R, Li D, Zuo P, Bai R, Zhou Q, Fan J, Li C, Wang L, Yang X. Influences of age, gender, and circadian rhythm on deceleration capacity in subjects without evident heart diseases. Ann Noninvasive Electrocardiol 2014; 20:158-66. [PMID: 25112779 PMCID: PMC4407920 DOI: 10.1111/anec.12189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Deceleration capacity (DC) is a newly found predictor of mortality after myocardial infarction. Age‐, gender‐, and circadian rhythm–related differences in DC may limit its predictive value, which should be considered in clinical settings. Methods DC, average heart rate, and HRV parameters, including 24 hours, awaking state (15:00–20:00) and sleeping mode (00:00–05:00) strips from 24 hours Holter recordings in 636 subjects without heart diseases were examined. Heart rate variability was analyzed in time domains (standard deviation of all normal‐to‐normal intervals [SDNN], normal‐to‐normal RR intervals in all 5‐minute segments [SDANN], and root mean square successive difference [RMSSD]). Results The DC, SDNN, SDANN, RMSSD, and heart rate decreased with age. Deceleration capacity was significantly lower in patients greater than 50 years of age. The largest decrease of SDNN, SDANN, and RMSSD occurred in patients 30–39 years of age. The values of SDNN, SDANN, and DC of women were lower than that of men in the young and middle‐aged groups, but age‐related decrease of DC in men was greater than that in women. Heart rate of women was significantly higher than that of men in younger subjects, especially in a sleeping mode. There were higher values of DC and RMSSD during sleeping than that during a waking state. Conclusions The age, gender, and circadian rhythm may be useful when evaluating cardiac autonomic function and need to be considered when evaluating DC and HRV in clinical and scientific researches.
Collapse
Affiliation(s)
- Ruifu Zhao
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cui F, Gao L, Yuan F, Dong ZF, Zhou ZN, Kline DD, Zhang Y, Li DP. Hypobaric intermittent hypoxia attenuates hypoxia-induced depressor response. PLoS One 2012; 7:e41656. [PMID: 22848558 PMCID: PMC3407201 DOI: 10.1371/journal.pone.0041656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/25/2012] [Indexed: 11/17/2022] Open
Abstract
Background Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia. Methodology/Principal Findings Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats. Conclusions/Significance Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.
Collapse
Affiliation(s)
- Fang Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Chronic stress causes elevations in glucocorticoid secretion and also increases the incidence of hypertension and other manifestations of cardiovascular disease. The extent to which the elevated glucocorticoids mediate the stress-associated increase in cardiovascular disease risk is unknown. Chronically elevated glucocorticoids can cause hypertension by acting in the periphery, but their effects within the brain on blood pressure regulation remain largely unexplored. We developed a method to produce selective chronic increases in the endogenous glucocorticoid corticosterone or the glucocorticoid receptor antagonist mifepristone within the hindbrain region, which includes a key cardiovascular regulatory area, the nucleus of the solitary tract (NTS). Experiments were performed in male Sprague-Dawley, Wistar-Kyoto (WKY) and borderline hypertensive rats (BHR). The results indicate that elevated exogenous corticosterone can act within the hindbrain to enhance the arterial pressure response to novel restraint stress and to reduce the gain and increase the mid-point of the arterial baroreflex. Basal levels of endogenous corticosterone have no effect on the arterial pressure response to stress in normotensive rats but enhance this response in BHR. Chronic stress-induced increases in baseline corticosterone enhance the arterial pressure response to stress in BHR but attenuate the adaptation of the response in WKY rats. Furthermore, an elevated corticosterone concentration within the hindbrain is necessary but not sufficient to cause glucocorticoid-induced hypertension. The effects of corticosterone within the hindbrain on blood pressure regulation are mediated in part by the glucocortiocid receptor, but are also likely to involve mineralocorticoid receptor-mediated effects and NTS catecholaminergic neurons. These data support the hypothesis that elevated glucocorticoids acting within the brain probably contribute to the adverse effects of stress on cardiovascular health in susceptible people.
Collapse
Affiliation(s)
- Deborah A Scheuer
- University of Florida, 1600 SW Archer Road, Room M552, PO Box 100274, Gainesville, FL 32610-0274, USA.
| |
Collapse
|
12
|
Bao S, Briscoe VJ, Tate DB, Davis SN. Effects of differing antecedent increases of plasma cortisol on counterregulatory responses during subsequent exercise in type 1 diabetes. Diabetes 2009; 58:2100-8. [PMID: 19509020 PMCID: PMC2731524 DOI: 10.2337/db09-0382] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Antecedent hypoglycemia can blunt neuroendocrine and autonomic nervous system responses to next-day exercise in type 1 diabetes. The aim of this study was to determine whether antecedent increase of plasma cortisol is a mechanism responsible for this finding. RESEARCH DESIGN AND METHODS For this study, 22 type 1 diabetic subjects (11 men and 11 women, age 27 +/- 2 years, BMI 24 +/- 1 kg/m(2), A1C 7.9 +/- 0.2%) underwent four separate randomized 2-day protocols, with overnight normalization of blood glucose. Day 1 consisted of morning and afternoon 2-h hyperinsulinemic- (9 pmol x kg(-1) x min(-1)) euglycemic clamps (5.1 mmol/l), hypoglycemic clamps (2.9 mmol/l), or euglycemic clamps with a physiologic low-dose intravenous infusion of cortisol to reproduce levels found during hypoglycemia or a high-dose infusion, which resulted in further twofold greater elevations of plasma cortisol. Day 2 consisted of 90-min euglycemic cycling exercise at 50% Vo(2max). RESULTS During exercise, glucose levels were equivalently clamped at 5.1 +/- 0.1 mmol/l and insulin was allowed to fall to similar levels. Glucagon, growth hormone, epinephrine, norepinephrine, and pancreatic polypeptide responses during day 2 exercise were significantly blunted following antecedent hypoglycemia, low- and high-dose cortisol, compared with antecedent euglycemia. Endogenous glucose production and lipolysis were also significantly reduced following day 1 low- and high-dose cortisol. CONCLUSIONS Antecedent physiologic increases in cortisol (equivalent to levels occurring during hypoglycemia) resulted in blunted neuroendocrine, autonomic nervous system, and metabolic counterregulatory responses during subsequent exercise in subjects with type 1 diabetes. These data suggest that prior elevations of cortisol may play a role in the development of exercise-related counterregulatory failure in those with type 1 diabetes.
Collapse
Affiliation(s)
- Shichun Bao
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vanessa J. Briscoe
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Donna B. Tate
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen N. Davis
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Administration Hospital, Nashville, Tennessee
- Corresponding author: Stephen N. Davis,
| |
Collapse
|
13
|
Mokra D, Tonhajzerova I, Mokry J, Drgova A, Petraskova M, Calkovska A, Javorka K. Rapid cardiovascular effects of dexamethasone in rabbits with meconium-induced acute lung injury. Can J Physiol Pharmacol 2008; 86:804-14. [DOI: 10.1139/y08-086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids may improve lung function in newborns with meconium aspiration syndrome (MAS), but information on the acute side effects of glucocorticoids in infants is limited. In this study using a rabbit model of MAS, we addressed the hypothesis that systemic administration of dexamethasone causes acute cardiovascular changes. Adult rabbits were treated with 2 intravenous doses of dexamethasone (0.5 mg/kg each) or saline at 0.5 h and 2.5 h after intratracheal instillation of human meconium or saline. Animals were oxygen-ventilated for 5 h after the first dose of treatment. Blood pressure, heart rate, and short-term heart rate variability (HRV) were analyzed during treatment, for 5 min immediately after each dose, and for the 5 h of the experiment. In the meconium-instilled animals, dexamethasone increased blood pressure, decreased heart rate, increased HRV parameters, and caused cardiac arrhythmia during and immediately after administration. In the saline-instilled animals, the effect of dexamethasone was inconsistent. In these animals, the acute effects of dexamethasone on blood pressure and cardiac rhythm were reversed after 30 min, whereas heart rate continued to decrease and HRV parameters continued to increase for 5 h after the first dose of dexamethasone. These effects were more pronounced in meconium-instilled animals. If systemic glucocorticoids are used in the treatment of MAS, cardiovascular side effects of glucocorticoids should be considered.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Juraj Mokry
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Anna Drgova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Maria Petraskova
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Kamil Javorka
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|
14
|
Li F, Wood CE, Keller-Wood M. Adrenalectomy alters regulation of blood pressure and endothelial nitric oxide synthase in sheep: modulation by estradiol. Am J Physiol Regul Integr Comp Physiol 2007; 293:R257-66. [PMID: 17459913 DOI: 10.1152/ajpregu.00082.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoadrenocorticism produces more severe hypotension during the peripartal period in pregnant ewes and women. We hypothesized that estradiol increases the severity of hypotension after withdrawal of corticosteroids and that this results from combined effects of adrenalectomy and estradiol to increase endothelial nitric oxide synthase (eNOS). In study I, blood pressure and eNOS mRNA and protein in aorta, uterine, renal, and mesenteric arteries were measured in intact ewes or adrenalectomized ewes 18–20 h after cessation of infusion of cortisol and aldosterone; half of each group ewes were treated with estradiol. In study II, adrenalectomized ewes were similarly studied 22–28 h after withdrawal of corticosteroids. Estradiol treatment in both studies significantly increased eNOS mRNA and protein in uterine artery, whereas corticosteroid withdrawal decreased expression of eNOS mRNA and protein in uterine artery. In both studies, adrenalectomy and steroid withdrawal decreased mean arterial pressure. In study II, four of six adrenalectomized ewes not treated with estradiol showed dramatic phasic variations in blood pressure and heart rate with a period of ∼20 s, developing within 22–28 h after corticosteroid withdrawal. Although there was no effect of estradiol on blood pressure in study I, in study II, ewes treated with estradiol did not develop this pattern. Estradiol also slowed both the decline in plasma sodium and the rise in plasma potassium after corticosteroid withdrawal. These results disprove the hypothesis that estradiol increases the severity of hypotension during hypoadrenocorticism. However, the study reveals an important effect of corticosteroid withdrawal on blood pressure, consistent with corticosteroid modulation of baroreflex responsiveness.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610-0487, USA
| | | | | |
Collapse
|
15
|
Scheuer DA, Bechtold AG, Vernon KA. Chronic activation of dorsal hindbrain corticosteroid receptors augments the arterial pressure response to acute stress. Hypertension 2006; 49:127-33. [PMID: 17088452 PMCID: PMC5730874 DOI: 10.1161/01.hyp.0000250088.15021.c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Augmented cardiovascular responses to acute stress can predict cardiovascular disease in humans. Chronic systemic increases in glucocorticoids produce enhanced cardiovascular responses to psychological stress; however, the site of action is unknown. Recent evidence indicates that glucocorticoids can act within the dorsal hindbrain to modulate cardiovascular function. Therefore, we tested the hypothesis that the endogenous glucocorticoid corticosterone can act in the dorsal hindbrain to enhance cardiovascular responses to restraint stress in conscious rats. Adrenal-intact animals with indwelling arterial catheters were treated for 4 or 6 days with 3- to 4-mg pellets of corticosterone or silastic (sham pellets) implanted on the dorsal hindbrain surface. Corticosterone pellets were also implanted either on the surface of the dura or subcutaneously to control for the systemic effects of corticosterone (systemic corticosterone). The integrated increase in arterial pressure during 1 hour of restraint stress was significantly (P<0.05) greater in dorsal hindbrain corticosterone (912+/-98 mm Hg per 60 minutes) relative to dorsal hindbrain sham (589+/-57 mm Hg per 60 minutes) or systemic corticosterone (592+/-122 mm Hg per 60 minutes) rats. The plasma glucose response after 10 minutes of stress was also significantly higher in dorsal hindbrain corticosterone-treated rats relative to both other groups. There were no significant between-group differences in the heart rate or corticosterone responses to stress. There were no differences in baseline values for any measured parameters. We conclude that corticosterone can act selectively in the dorsal hindbrain in rats with normal plasma corticosterone levels to augment the arterial pressure response to restraint stress.
Collapse
Affiliation(s)
- Deborah A Scheuer
- School of Medicine, University of Florida, Gainesville 32610-0274, USA.
| | | | | |
Collapse
|
16
|
Daubert DL, Brooks VL. Nitric oxide impairs baroreflex gain during acute psychological stress. Am J Physiol Regul Integr Comp Physiol 2006; 292:R955-61. [PMID: 17038446 DOI: 10.1152/ajpregu.00192.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psychological stress can suppress baroreflex function, but the mechanism has not been fully elucidated. Nitric oxide in the brain and in the adrenal cortex, as well as plasma glucocorticoids, increases during stress and has been shown to suppress reflex gain in unstressed animals. Therefore, the purpose of this study was to test the hypothesis that stress, caused by exposure to a novel environment, decreases baroreflex gain in rabbits through the actions of nitric oxide to increase corticosterone release. Baroreflex control of heart rate and plasma corticosterone levels was quantified before and after blockade of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 20 mg/kg iv) in conscious rabbits exposed to a novel environment and in the same rabbits once they had been conditioned to the environment. Stress significantly reduced baroreflex gain from -23.4 +/- 2 to -12.2 +/- 1.6 beats x min(-1) x mmHg(-1) (P < 0.05) and increased plasma corticosterone levels from 5.4 +/- 0.7 to 15.5 +/- 5.0 ng/ml (P < 0.05). NOS blockade increased gain in stressed animals (to -27.2 +/- 5.4 beats x min(-1) x mmHg(-1), P < 0.05) but did not alter gain in unstressed rabbits (-26.8 +/- 4.9 beats x min(-1) x mmHg(-1)) such that gain was equalized between the two states. NOS blockade increased plasma corticosterone levels in unstressed animals (to 14.3 +/- 2.1 ng/ml, P < 0.05) but failed to significantly alter levels in stressed rabbits (14.0 +/- 3.9 ng/ml). In conclusion, psychological stress may act via nitric oxide, independently of increases in corticosterone, to decrease baroreflex gain.
Collapse
Affiliation(s)
- Daisy L Daubert
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
17
|
Bechtold AG, Scheuer DA. Glucocorticoids act in the dorsal hindbrain to modulate baroreflex control of heart rate. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1003-11. [PMID: 16269575 PMCID: PMC5730876 DOI: 10.1152/ajpregu.00345.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3-4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 +/- 2 mmHg) relative to both DHB Sham (108 +/- 3 mmHg) and Dura Cort rats (109 +/- 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 +/- 2 mmHg) compared with DHB Sham (105 +/- 2 mmHg) and Dura Cort animals (106 +/- 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 +/- 0.12 beats x min(-1) x mmHg(-1)) relative to DHB Sham and Dura Cort rats (3.51 +/- 0.28 and 3.37 +/- 0.27 beats x min(-1) x mmHg(-1), P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.
Collapse
Affiliation(s)
- Andrea G Bechtold
- Division of Pharmacology, University of Missouri-Kansas City, Kansas City, Missouri 64108, USA
| | | |
Collapse
|
18
|
Vitela M, Herrera-Rosales M, Haywood JR, Mifflin SW. Baroreflex regulation of renal sympathetic nerve activity and heart rate in renal wrap hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R856-62. [PMID: 15793039 DOI: 10.1152/ajpregu.00620.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite its usefulness as a nongenetic model of hypertension, little information is available regarding baroreflex function in the Grollman, renal wrap model of hypertension in the rat. Baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) were studied in male, Sprague-Dawley rats hypertensive (HT) for 1 or 4-6 wk after unilateral nephrectomy and figure-8 ligature around the remaining kidney or normotensive (NT) after sham surgery. Rats were anesthetized with Inactin and RSNA, and HR was recorded during intravenous infusions of sodium nitroprusside or phenylephrine to lower or raise mean arterial pressure (MAP). Response curves were analyzed using a logistic sigmoid function. In 1- and 4-wk HT rats the midpoints of RSNA and HR reflex curves were shifted to the right (P < 0.05). Comparing NT to 1- or 4-wk HT rats, the gain of RSNA-MAP curves was no different; however, gain was reduced in the HR-MAP curves at both 1 and 4 wk in HT rats (P < 0.05). In anesthetized rats the HR range was small; therefore, MAP and HR were measured in conscious rats during intravenous injections of three doses of phenylephrine and three doses of sodium nitroprusside. Linear regressions revealed a reduced slope in both 1- and 4-wk HT rats compared with NT rats (P < 0.05). The results indicate that baroreflex curves are shifted to the right, to higher pressures, in hypertension. After 1-4 wk of hypertension the gain of baroreflex regulation of RSNA is not altered; however, the gain of HR regulation is reduced.
Collapse
Affiliation(s)
- M Vitela
- Dept. of Pharmacology, Mail Code 7764, Univ. of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
19
|
Scheuer DA, Bechtold AG, Shank SS, Akana SF. Glucocorticoids act in the dorsal hindbrain to increase arterial pressure. Am J Physiol Heart Circ Physiol 2004; 286:H458-67. [PMID: 14512285 DOI: 10.1152/ajpheart.00824.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid receptors (GRs) are present at a high density in the nucleus of the solitary tract (NTS), an area of the dorsal hindbrain (DHB) that is critical for blood pressure regulation. However, whether these receptors play any role in the regulation of blood pressure is unknown. We tested the hypothesis that glucocorticoids act in the DHB to increase arterial pressure using two experimental strategies. In one approach, we implanted pellets of corticosterone (Cort) or sham pellets onto the DHB over the NTS. Compared with rats with sham pellets, rats with DHB Cort pellets had an increased ( P < 0.05) mean arterial pressure (111 ± 2 vs. 104 ± 1 mmHg) and heart rate (355 ± 9 vs. 326 ± 5 beats/min) after 4 days. In the second approach, we implanted subcutaneous Cort pellets to increase the systemic Cort concentration and then subsequently implanted pellets of the GR antagonist mifepristone (Mif; previously RU-38486) or sham pellets onto the DHB. Two days of DHB Mif treatment reduced ( P < 0.05) mean arterial pressure in those rats with elevated plasma Cort levels (118 ± 2 vs. 108 ± 1 mmHg for sham vs. Mif DHB pellets). Cort and Mif pellets placed on the dura had no effects on arterial pressure or heart rate, ruling out systemic cardiovascular effects of the steroids. DHB Cort treatment had no effects on plasma Cort concentration or adrenal weight, indicating that the contents of the DHB Cort pellet did not diffuse into the systemic circulation or into the forebrain areas that regulate plasma Cort concentration in concentrations sufficient to produce physiological effects. Immunohistochemistry for the occupied GRs demonstrated that the Cort and Mif from the DHB pellets were delivered to the DHB with minimal diffusion to the ventral hindbrain or forebrain. We conclude that glucocorticoids act in the DHB to increase arterial pressure.
Collapse
Affiliation(s)
- Deborah A Scheuer
- Dept. of Pharmacology, Univ. of Missouri-Kansas City, 2411 Holmes St., Rm. MG 111, Kansas City, MO 64108, USA.
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Harald M Stauss
- Dept. of Exercise Science, The Univ. of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
21
|
Sato T, Kawada T, Inagaki M, Shishido T, Sugimachi M, Sunagawa K. Dynamics of sympathetic baroreflex control of arterial pressure in rats. Am J Physiol Regul Integr Comp Physiol 2003; 285:R262-70. [PMID: 12794000 DOI: 10.1152/ajpregu.00692.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By a white noise approach, we characterized the dynamics of the sympathetic baroreflex system in 11 halothane-anesthetized rats. We measured sympathetic nerve activity (SNA) and systemic arterial pressure (SAP), while carotid sinus baroreceptor pressure (BRP) was altered randomly. We estimated the transfer functions from BRP to SNA (mechanoneural arc), from SNA to SAP (neuromechanical arc), and from BRP to SAP (total arc). The gain of the mechanoneural arc gradually increased about threefold as the frequency of BRP change increased from 0.01 to 0.8 Hz. In contrast, the gain of the neuromechanical arc rapidly decreased to 0.4% of the steady-state gain as the frequency increased from 0.01 to 1 Hz. Although the total arc also had low-pass characteristics, the rate of attenuation in its gain was significantly slower than that of the neuromechanical arc, reflecting the compensatory effect of the mechanoneural arc for the sluggish response of the neuromechanical arc. We conclude that the quantitative estimation of the baroreflex dynamics is vital for an integrative understanding of baroreflex function in rats.
Collapse
Affiliation(s)
- Takayuki Sato
- Dept. of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Shank SS, Scheuer DA. Glucocorticoids reduce responses to AMPA receptor activation and blockade in nucleus tractus solitarius. Am J Physiol Heart Circ Physiol 2003; 284:H1751-61. [PMID: 12531728 DOI: 10.1152/ajpheart.01033.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that glucocorticoids attenuate changes in arterial pressure and renal sympathetic nerve activity (RSNA) in response to activation and blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors within the nucleus of the solitary tract (NTS). Experiments were performed in Inactin-anesthetized male Sprague-Dawley rats treated for 7 +/- 1 days with a subcutaneous corticosterone (Cort) pellet or in control rats. Baseline mean arterial pressure (MAP) was significantly higher in Cort-treated rats (109 +/- 2 mmHg, n = 39) than in control rats (101 +/- 1 mmHg, n = 48, P < 0.05). In control rats, microinjection of AMPA (0.03, 0.1, and 0.3 pmol/100 nl) into the NTS significantly decreased MAP at all doses and decreased RSNA at 0.1 and 0.3 pmol/100 nl. Responses to AMPA in Cort-treated rats were attenuated at all doses of AMPA (P < 0.05). Responses to the AMPA-kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were also significantly reduced in Cort-treated rats relative to control rats. Blockade of glucocorticoid type II receptors with mifepristone significantly enhanced responses to CNQX in both control and Cort rats. We conclude that glucocorticoids attenuate MAP and RSNA responses to activation and blockade of AMPA receptors in the NTS.
Collapse
Affiliation(s)
- Sylvan S Shank
- Department of Pharmacology, The University of Missouri, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | |
Collapse
|
23
|
Segar JL, Van Natta T, Smith OJ. Effects of fetal ovine adrenalectomy on sympathetic and baroreflex responses at birth. Am J Physiol Regul Integr Comp Physiol 2002; 283:R460-7. [PMID: 12121859 DOI: 10.1152/ajpregu.00056.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were performed to test the hypothesis that the absence of adrenal glucocorticoids late in gestation alters sympathetic and baroreflex responses before and immediately after birth. Fetal sheep at 130-131 days gestation (term 145 days) were subjected to bilateral adrenalectomy before the normal prepartum increase in plasma cortisol levels. One group of fetuses (n = 5) received physiological cortisol replacement with a continuous infusion of hydrocortisone (2 mg x day(-1) x kg(-1) for 10 days), whereas the other group received 0.9% NaCl vehicle (n = 5). All animals underwent a second surgery 48 h before the study for placement of a renal nerve recording electrode. Heart rate (HR), mean arterial blood pressure (MABP), renal sympathetic nerve activity (RSNA), and baroreflex control of HR and RSNA were studied before and after cesarean section delivery. At the time of study (140-141 days gestation), fetal plasma cortisol concentration was undetectable in adrenalectomized (ADX) fetuses and 58 +/- 9 ng/ml in animals receiving cortisol replacement (ADX + F). Fetal and newborn MABP was significantly greater in ADX + F relative to ADX animals. One hour after delivery, MABP increased 13 +/- 3 mmHg and RSNA increased 91 +/- 12% above fetal values in ADX + F (both P < 0.05) but remained unchanged in ADX lambs. The midpoint pressures of the fetal HR and RSNA baroreflex function curves were significantly greater in ADX + F (54 +/- 3 and 56 +/- 3 mmHg for HR and RSNA curves, respectively) than ADX fetuses (45 +/- 2 and 46 +/- 3 mmHg). After delivery, the baroreflex curves reset toward higher pressure in ADX + F but not ADX lambs. These results suggest that adrenal glucocorticoids contribute to cardiovascular regulation in the late-gestation fetus and newborn by modulating arterial baroreflex function and sympathetic activity.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Department of Pediatrics, Cardiovascular Center, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
24
|
Scheuer DA, Bechtold AG. Glucocorticoids modulate baroreflex control of heart rate in conscious normotensive rats. Am J Physiol Regul Integr Comp Physiol 2002; 282:R475-83. [PMID: 11792657 DOI: 10.1152/ajpregu.00300.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of glucocorticoids on arterial baroreceptor reflex control of heart rate (HR) was determined in conscious rats. Corticosterone (Cort) treatment for 4-6 days doubled plasma Cort in Cort-treated relative to control rats. Cort had no significant effect on mean arterial pressure (MAP) or HR. Ramped changes in MAP were produced using infusions of phenylephrine and nitroprusside. Baroreflex control of HR was analyzed using a four-parameter logistic function. The midpoint of the baseline baroreflex function curve was significantly increased in Cort-treated (n = 14) relative to control (n = 14) rats (112 +/- 2 vs. 98 +/- 2 mmHg, n = 14), and the slope was significantly decreased (0.065 +/- 0.002 vs. 0.091 +/- 0.007). Three hours after the glucocorticoid type II receptor antagonist mifepristone (Mif) was administered to Cort-treated rats (n = 8), the midpoint of the baroreflex function was significantly reduced from 113 +/- 4 to 99 +/- 2 mmHg, and the slope was significantly increased from 0.061 +/- 0.004 to 0.083 +/- 0.005. Mif decreased HR in Cort-treated rats from 355 +/- 17 to 330 +/- 14 beats/min (P = 0.04) but did not alter MAP (111 +/- 2 to 107 +/- 3 mmHg, P = 0.14). Mif had no significant effects on baroreflex function in control rats. Therefore, a moderate elevation in Cort for several days causes pressure-independent modulation of baroreflex control of HR.
Collapse
Affiliation(s)
- Deborah A Scheuer
- Department of Pharmacology, The University of Missouri-Kansas City, Kansas City, Missouri 64108, USA.
| | | |
Collapse
|