1
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Abouelfetouh MM, Salah E, Liu L, Ding M, Ding Y. Intrathecal adenosine enhances the antinociception of Xylazine in goats. BMC Vet Res 2022; 18:105. [PMID: 35300701 PMCID: PMC8928627 DOI: 10.1186/s12917-022-03193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background The role of adenosine (AD) in neuromodulation of nociceptive signaling at the level of the spinal cord has been established in both preclinical and clinical models. Recently, the signaling pathway that involves adenosine 5-monophosphate activated protein kinase has been reported to mediate the antinociceptive effects of xylazine (XYL). The objective of this study was to investigate the antinociceptive, cardiorespiratory and hematological effects of intrathecal administration of combined XYL-AD in goats as compared to XYL alone. Six clinically healthy adult goats weighing 25 ± 2 kg were randomly assigned to one of three groups in a cross-over design. Goats were sedated with XYL (0.05 mg/kg, IM) in all groups. Ten min later, 0.9% saline solution [SAL group], XYL (0.05 mg/kg) [XYL group] or a combination of XYL (0.05 mg/kg) and AD (2000 µg) [XYL-AD group] was injected intrathecally. Antinociception scores and both cardiorespiratory and hematological parameters were measured before XYL sedation and intrathecal injection (baseline), and at 5, 10, 15, 30, 60, 90, 120 and 150 min thereafter. Results The XYL-AD group showed significantly earlier onset of antinociception [5 (5–7) min] than XYL [13 (12–14.25] min (P = 0.031). The duration of complete antinociception in goats that received XYL-AD was significantly longer (P = 0.031) than that received XYL alone [65 (58.75–66.25) and 47.5 (43.75–51.25) min, respectively]. In both XYL and XYL-AD groups, heart rate (HR), arterial blood pressure (SAP, MAP and DAP) were significantly decreased (P < 0.05) compared to the baseline. Compared to the SAL group, a statistically significant reduction in HR from 10 to 150 min (P < 0.05) was detected in the XYL group contrary to the XYL-AD group. Differences in the hematological parameters among different groups were insignificant. Conclusions AD injected intrathecally interacts synergistically with XYL to promote antinociception in goats. This discovery supports the use of AD in combination with XYL in clinical trials.
Collapse
Affiliation(s)
- Mahmoud M Abouelfetouh
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.,Department of Surgery, Radiology and Anaesthesiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Eman Salah
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Lingling Liu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.,Clinical Veterinary Laboratory, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan Province, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
3
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
4
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
5
|
Koupenova M, Ravid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. J Cell Physiol 2013; 228:1703-1712. [PMID: 23460239 PMCID: PMC3849123 DOI: 10.1002/jcp.24352] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/09/2013] [Accepted: 02/12/2013] [Indexed: 01/12/2023]
Abstract
Adenosine is an endogenous metabolite that is released from all tissues and cells including liver, pancreas, muscle and fat, particularly under stress, intense exercise, or during cell damage. The role of adenosine in glucose homeostasis has been attributed to its ability to regulate, through its membrane receptors, processes such as insulin secretion, glucose release and clearance, glycogenolysis, and glycogenesis. Additionally, adenosine and its multiple receptors have been connected to lipid metabolism by augmenting insulin-mediated inhibition of lipolysis, and the subsequent increase in free fatty acids and glycerol levels. Furthermore, adenosine was reported to control liver cholesterol synthesis, consequently affecting plasma levels of cholesterol and triglycerides, and the amount of fat tissue. Alterations in the balance of glucose and lipid homeostasis have implications in both cardiovascular disease and diabetes. The ability of different adenosine receptors to activate and inhibit the same signaling cascades has made it challenging to study the influence of adenosine, adenosine analogs and their receptors in health and disease. This review focuses on the role and significance of different adenosine receptors in mediating the effect of adenosine on glucose and lipid homeostasis. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Boston University School of Medicine, Boston, MA; Department of Biochemistry, Boston University School of Medicine, Boston, MA; Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | | |
Collapse
|
6
|
Abdelmoneim SS, Hagen ME, Mendrick E, Pattan V, Wong B, Norby B, Roberson T, Szydel T, Basu R, Basu A, Mulvagh SL. Acute hyperglycemia reduces myocardial blood flow reserve and the magnitude of reduction is associated with insulin resistance: a study in nondiabetic humans using contrast echocardiography. Heart Vessels 2012. [PMID: 23180239 DOI: 10.1007/s00380-012-0305-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of acute hyperglycemia per se on coronary perfusion in humans is undefined. We evaluated the effects of short-term hyperglycemia on myocardial blood flow reserve (MBFR) in healthy nondiabetic volunteers. Twenty-one nondiabetic volunteers (76 % females, mean ± SD, age 48 ± 5 years) had noninvasive MBFR assessment while exposed to pancreatic clamp with somatostatin and replacement glucagon and growth hormone infusions, with frequent interval plasma glucose (PG) monitoring. Insulin was infused at 0.75 mU/kg/min to mimic postprandial plasma insulin concentrations, and glucose was infused to maintain euglycemia (PG 93.9 ± 7.3 mg/dl) followed by hyperglycemia (PG 231.5 ± 18.1 mg/dl). Myocardial contrast echocardiography (MCE) was performed during each glycemic steady state using continuous infusion of Definity at rest and during regadenoson (Lexiscan 5 ml (400 μg) intravenous bolus) infusion to quantify myocardial blood flow (MBF) and determine MBFR. Insulin resistance (IR) was assessed by glucose infusion rate (GIR; mg/kg/min) at euglycemia. Median stress MBF, MBFR, and β reserve were significantly reduced during acute hyperglycemia versus euglycemia (stress MBF 3.9 vs 5.4, P = 0.02; MBFR 2.0 vs 2.7, P < 0.0001; β reserve 1.45 vs 2.4, P = 0.007). Using a median threshold GIR of 5 mg/kg/min, there was a correlation between GIR and hyperglycemic MBFR (r = 0.506, P = 0.019). MBFR, as determined noninvasively by MCE, is significantly decreased during acute hyperglycemia in nondiabetic volunteers, and the magnitude of this reduction is modulated by IR.
Collapse
Affiliation(s)
- Sahar S Abdelmoneim
- Mayo Clinic, Division of Cardiovascular Diseases and Internal Medicine, 200 First street SW, Rochester, MN, 55905, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K. The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 2012; 7:e40584. [PMID: 22848385 PMCID: PMC3405065 DOI: 10.1371/journal.pone.0040584] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/09/2012] [Indexed: 02/06/2023] Open
Abstract
Background High fat diet and its induced changes in glucose homeostasis, inflammation and obesity continue to be an epidemic in developed countries. The A2b adenosine receptor (A2bAR) is known to regulate inflammation. We used a diet-induced obesity murine knockout model to investigate the role of this receptor in mediating metabolic homeostasis, and correlated our findings in obese patient samples. Methodology/Principal Findings Administration of high fat, high cholesterol diet (HFD) for sixteen weeks vastly upregulated the expression of the A2bAR in control mice, while A2bAR knockout (KO) mice under this diet developed greater obesity and hallmarks of type 2 diabetes (T2D), assessed by delayed glucose clearance and augmented insulin levels compared to matching control mice. We identified a novel link between the expression of A2bAR, insulin receptor substrate 2 (IRS-2), and insulin signaling, determined by Western blotting for IRS-2 and tissue Akt phosphorylation. The latter is impaired in tissues of A2bAR KO mice, along with a greater inflammatory state. Additional mechanisms involved include A2bAR regulation of SREBP-1 expression, a repressor of IRS-2. Importantly, pharmacological activation of the A2bAR by injection of the A2bAR ligand BAY 60-6583 for four weeks post HFD restores IRS-2 levels, and ameliorates T2D. Finally, in obese human subjects A2bAR expression correlates strongly with IRS-2 expression. Conclusions/Significance Our study identified the A2bAR as a significant regulator of HFD-induced hallmarks of T2D, thereby pointing to its therapeutic potential.
Collapse
Affiliation(s)
- Hillary Johnston-Cox
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Milka Koupenova
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dan Yang
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara Corkey
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Noyan Gokce
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa G. Farb
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nathan LeBrasseur
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Katya Ravid
- Departments of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
By Y, Jacquin L, Franceschi F, Durand-Gorde JM, Condo J, Michelet P, Guieu R, Ruf J. Fall in oxygen tension of culture medium stimulates the adenosinergic signalling of a human T cell line. Purinergic Signal 2012; 8:661-7. [PMID: 22331499 DOI: 10.1007/s11302-012-9295-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/01/2012] [Indexed: 10/28/2022] Open
Abstract
We examined the short-course expression of various parameters involved in the adenosinergic signalling of a human T cell line during in vitro decrease of the medium culture oxygen tension mimicking in vivo hypoxia. Fall of 92 mmHg in oxygen tension of culture medium induced in CEM, a CD4+ human T cell line, a continuous production of hypoxia-inducing factor-1α with a plateau value at 9 h, a rapid increase in adenosine production peaking at 3 h and a decrease in adenosine deaminase peaking at 6 h. The adenosine A(2A) receptor (A(2A)R) protein level of CEM cells was enhanced with a peak at 6 h. Intracellular 3',5'-cyclic adenosine monophosphate accumulated in CEM cells with a maximal level at 9 h. These results show that a human-cultured T cells line can upregulate its own adenosine production and A(2A)R expression during exposure to acute hypoxia. Hypoxia-increased stimulation of the adenosinergic signalling of T cells may have immunosuppressive properties and, consequently, A(2A)R agonists may have therapeutic relevance.
Collapse
Affiliation(s)
- Youlet By
- UMR MD2 P2COE, Aix-Marseille Univ, Faculté de Médecine, Timone, 27, Boulevard Jean Moulin, F-13385, Marseille Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, Ravid K. A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 2011; 125:354-63. [PMID: 22144568 DOI: 10.1161/circulationaha.111.057596] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The cAMP-elevating A(2b) adenosine receptor (A(2b)AR) controls inflammation via its expression in bone marrow cells. METHODS AND RESULTS Atherosclerosis induced by a high-fat diet in apolipoprotein E-deficient mice was more pronounced in the absence of the A(2b)AR. Bone marrow transplantation experiments indicated that A(2b)AR bone marrow cell signals alone were not sufficient to elicit this effect. Intriguingly, liver expression of the A(2b)AR in wild-type mice was vastly augmented by a high-fat diet, raising the possibility that this upregulation is of functional significance. A(2b)AR genetic ablation led to elevated levels of liver and plasma cholesterol and triglycerides and to fatty liver pathology typical of steatosis, assessed by enzymatic assays and analysis of liver sections. Western blotting and quantitative polymerase chain reaction revealed elevated expression of the following molecules in the liver of A(2b)AR-null mice: the transcription factor sterol regulatory element binding protein-1 (SREBP-1) and its 2 downstream targets and regulators of lipogenesis, acetyl CoA carboxylase and fatty acid synthase. Pharmacological activation or inhibition of A(2b)AR in primary hepatocytes confirmed the regulation of SREBP-1 by this receptor. A(2b)AR-mediated changes in cAMP were found to regulate levels of the transcriptionally active form of SREBP-1. Finally, adenovirally mediated restoration of the A(2b)AR in the liver of A(2b)AR-null mice reduced the lipid profile and atherosclerosis. Similarly, in vivo administration of the A(2b)AR ligand BAY 60-6853 in control mice on a high-fat diet reduced the lipid profile and atherosclerosis. CONCLUSION This study provides the first evidence that the A(2b)AR regulates liver SREBP-1, hyperlipidemia, and atherosclerosis, suggesting that this receptor may be an effective therapeutic target.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Boston University School of Medicine, 700 Albany St, CVI, W-601, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, Huang Y, Chen M, Briggs JP, Gavrilova O, Schnermann JB. Impaired glucose tolerance in the absence of adenosine A1 receptor signaling. Diabetes 2011; 60:2578-87. [PMID: 21831968 PMCID: PMC3178298 DOI: 10.2337/db11-0058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The role of adenosine (ADO) in the regulation of glucose homeostasis is not clear. In the current study, we used A1-ADO receptor (A1AR)-deficient mice to investigate the role of ADO/A1AR signaling for glucose homeostasis. RESEARCH DESIGN AND METHODS After weaning, A1AR(-/-) and wild-type mice received either a standard diet (12 kcal% fat) or high-fat diet (HFD; 45 kcal% fat). Body weight, fasting plasma glucose, plasma insulin, and intraperitoneal glucose tolerance tests were performed in 8-week-old mice and again after 12-20 weeks of subsequent observation. Body composition was quantified by magnetic resonance imaging and epididymal fat-pad weights. Glucose metabolism was investigated by hyperinsulinemic-euglycemic clamp studies. To describe pathophysiological mechanisms, adipokines and Akt phosphorylation were measured. RESULTS A1AR(-/-) mice were significantly heavier than wild-type mice because of an increased fat mass. Fasting plasma glucose and insulin were significantly higher in A1AR(-/-) mice after weaning and remained higher in adulthood. An intraperitoneal glucose challenge disclosed a significantly slower glucose clearance in A1AR(-/-) mice. An HFD enhanced this phenotype in A1AR(-/-) mice and unmasked a dysfunctional insulin secretory mechanism. Insulin sensitivity was significantly impaired in A1AR(-/-) mice on the standard diet shortly after weaning. Clamp studies detected a significant decrease of net glucose uptake in A1AR(-/-) mice and a reduced glucose uptake in muscle and white adipose tissue. Effects were not triggered by leptin deficiency but involved a decreased Akt phosphorylation. CONCLUSIONS ADO/A1AR signaling contributes importantly to insulin-controlled glucose homeostasis and insulin sensitivity in C57BL/6 mice and is involved in the metabolic regulation of adipose tissue.
Collapse
Affiliation(s)
- Robert Faulhaber-Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Koos BJ. Adenosine A₂a receptors and O₂ sensing in development. Am J Physiol Regul Integr Comp Physiol 2011; 301:R601-22. [PMID: 21677265 DOI: 10.1152/ajpregu.00664.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O₂ sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5'-nucleotidase and the resulting activation of adenosine A(₂A) receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A(₂A) receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A(₂A) receptors mediate hypoxic inhibition of breathing and rapid eye movements. A(₂A) receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A(₂A) receptors play virtually no role in O₂ sensing by the carotid bodies, but brain A(₂A) receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A(₂A) receptors have been implicated in O₂ sensing by carotid glomus cells, while central A(₂A) receptors likely blunt hypoxic hyperventilation. In conclusion, A(₂A) receptors are crucially involved in the transduction mechanisms of O₂ sensing in fetal carotid bodies and brains. Postnatally, central A(₂A) receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O₂ sensing in carotid chemoreceptors, particularly in developing lambs.
Collapse
Affiliation(s)
- Brian J Koos
- Department of Obstetrics and Gynecology; Brain Research Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
12
|
Catecholamines mediate multiple fetal adaptations during placental insufficiency that contribute to intrauterine growth restriction: lessons from hyperthermic sheep. J Pregnancy 2011; 2011:740408. [PMID: 21773031 PMCID: PMC3135098 DOI: 10.1155/2011/740408] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/11/2011] [Indexed: 01/22/2023] Open
Abstract
Placental insufficiency (PI) prevents adequate delivery of nutrients to the developing fetus and creates a chronic state of hypoxemia and hypoglycemia. In response, the malnourished fetus develops a series of stress hormone-mediated metabolic adaptations to preserve glucose for vital tissues at the expense of somatic growth. Catecholamines suppress insulin secretion to promote glucose sparing for insulin-independent tissues (brain, nerves) over insulin-dependent tissues (skeletal muscle, liver, and adipose). Likewise, premature induction of hepatic gluconeogenesis helps maintain fetal glucose and appears to be stimulated by both norepinephrine and glucagon. Reduced glucose oxidation rate in PI fetuses creates a surplus of glycolysis-derived lactate that serves as substrate for hepatic gluconeogenesis. These adrenergically influenced adaptive responses promote in utero survival but also cause asymmetric intrauterine growth restriction and small-for-gestational-age infants that are at greater risk for serious metabolic disorders throughout postnatal life, including obesity and type II diabetes.
Collapse
|
13
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|