1
|
Cowley AW, Roman RJ, Mattson DL, Franchini KG, O'Connor PM, Makino A, Taylor NE, Evans LC, Mori T, Dickhout JG, Jin C, Miyata N, Nakanishi K, Szentiványi M, Park F, Skelton MM, Kurth T, Shimada S. Renal Medulla in Hypertension. Hypertension 2024; 81:2383-2394. [PMID: 39344517 DOI: 10.1161/hypertensionaha.124.21711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Studies have found that blood flow to the renal medulla is an important determinant of pressure-natriuresis and the long-term regulation of arterial pressure. First, a brief review of methods developed enabling the study of the medullary circulation is presented. Second, studies performed in rats are presented showing medullary blood flow plays a vital role in the pressure-natriuresis relationship and thereby in hypertension. Third, it is shown that chronic reduction of medullary blood flow results in hypertension and that enhancement of medullary blood flow reduces hypertension hereditary models of both salt-sensitive rats and salt-resistant forms of hypertension. The key role that medullary nitric oxide production plays in protecting this region from ischemic injury associated with circulating vasoconstrictor agents and reactive oxygen species is presented. The studies cited are largely the work of my students, research fellows, and colleagues with whom I have performed these studies dating from the late 1980s to more recent years.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
| | | | | | | | | | - Ayako Makino
- Herbert Wertheim University of Florida Scripps Institute; University of Florida, Jupsiter (A.M.)
| | | | | | - Takefumi Mori
- Tohoku Medical and Pharmaceutical University, Sendai, Japan (T.M.)
| | | | - Chunhua Jin
- University of Alabama School of Medicine, Birmingham (C.J.)
| | - Noriyuki Miyata
- Taisho Pharmaceutical Co, Ltd. Holdings, Tokyo, Japan (N.M.)
| | | | | | | | - Meredith M Skelton
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
| | - Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
- Medical College of Wisconsin, Milwaukee (A.W.C., M.M.S., T.K., S.S.)
| |
Collapse
|
2
|
Douvris A, Viñas J, Gutsol A, Zimpelmann J, Burger D, Burns K. miR-486-5p protects against rat ischemic kidney injury and prevents the transition to chronic kidney disease and vascular dysfunction. Clin Sci (Lond) 2024; 138:599-614. [PMID: 38739452 PMCID: PMC11130553 DOI: 10.1042/cs20231752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
AIM Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Jose L. Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Alexey Gutsol
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Joseph Zimpelmann
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Dylan Burger
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Kevin D. Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Musolino M, D’Agostino M, Zicarelli M, Andreucci M, Coppolino G, Bolignano D. Spice Up Your Kidney: A Review on the Effects of Capsaicin in Renal Physiology and Disease. Int J Mol Sci 2024; 25:791. [PMID: 38255865 PMCID: PMC10815060 DOI: 10.3390/ijms25020791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Capsaicin, the organic compound which attributes the spicy flavor and taste of red peppers and chili peppers, has been extensively studied for centuries as a potential natural remedy for the treatment of several illnesses. Indeed, this compound exerts well-known systemic pleiotropic effects and may thus bring important benefits against various pathological conditions like neuropathic pain, rhinitis, itching, or chronic inflammation. Yet, little is known about the possible biological activity of capsaicin at the kidney level, as this aspect has only been addressed by sparse experimental investigations. In this paper, we aimed to review the available evidence focusing specifically on the effects of capsaicin on renal physiology, as well as its potential benefits for the treatment of various kidney disorders. Capsaicin may indeed modulate various aspects of renal function and renal nervous activity. On the other hand, the observed experimental benefits in preventing acute kidney injury, slowing down the progression of diabetic and chronic kidney disease, ameliorating hypertension, and even delaying renal cancer growth may set the stage for future human trials of capsaicin administration as an adjuvant or preventive therapy for different, difficult-to-treat renal diseases.
Collapse
Affiliation(s)
- Michela Musolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Mario D’Agostino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
| | | | - Michele Andreucci
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Davide Bolignano
- Nephrology and Dialysis Unit, Magna Graecia University Hospital, 88100 Catanzaro, Italy; (M.M.); (M.D.); (M.A.); (G.C.)
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Ullah MM, Collett JA, Bacallao RL, Basile DP. Impaired hemodynamic renal reserve response following recovery from established acute kidney injury and improvement by hydrodynamic isotonic fluid delivery. Am J Physiol Renal Physiol 2024; 326:F86-F94. [PMID: 37881874 PMCID: PMC11194053 DOI: 10.1152/ajprenal.00204.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Renal reserve capacity may be compromised following recovery from acute kidney injury (AKI) and could be used to identify impaired renal function in the face of restored glomerular filtration rate (GFR) or plasma creatinine. To investigate the loss of hemodynamic renal reserve responses following recovery in a model of AKI, rats were subjected to left unilateral renal ischemia-reperfusion (I/R) injury and contralateral nephrectomy and allowed to recover for 5 wk. Some rats were treated 24 h post-I/R by hydrodynamic isotonic fluid delivery (AKI-HIFD) of saline through the renal vein, previously shown to improve recovery and inflammation relative to control rats that received saline through the vena cava (AKI-VC). At 5 wk after surgery, plasma creatinine and GFR recovered to levels observed in uninephrectomized sham controls. Baseline renal blood flow (RBF) was not different between AKI or sham groups, but infusion of l-arginine (7.5 mg/kg/min) significantly increased RBF in sham controls, whereas the RBF response to l-arginine was significantly reduced in AKI-VC rats relative to sham rats (22.6 ± 2.2% vs. 13.8 ± 1.8%, P < 0.05). RBF responses were partially protected in AKI-HIFD rats relative to AKI-VC rats (17.0 ± 2.2%) and were not significantly different from sham rats. Capillary rarefaction observed in AKI-VC rats was significantly protected in AKI-HIFD rats. There was also a significant increase in T helper 17 cell infiltration and interstitial fibrosis in AKI-VC rats versus sham rats, which was not present in AKI-HIFD rats. These data suggest that recovery from AKI results in impaired hemodynamic reserve and that associated CKD progression may be mitigated by HIFD in the early post-AKI period.NEW & NOTEWORTHY Despite the apparent recovery of renal filtration function following acute kidney injury (AKI) in rats, the renal hemodynamic reserve response is significantly attenuated, suggesting that clinical evaluation of this parameter may provide information on the potential development of chronic kidney disease. Treatments such as hydrodynamic isotonic fluid delivery, or other treatments in the early post-AKI period, could minimize chronic inflammation or loss of microvessels with the potential to promote a more favorable outcome on long-term function.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Jason A Collett
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Robert L Bacallao
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
5
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
6
|
Kurzhagen JT, Noel S, Lee K, Sadasivam M, Gharaie S, Ankireddy A, Lee SA, Newman-Rivera A, Gong J, Arend LJ, Hamad AR, Reddy SP, Rabb H. T Cell Nrf2/Keap1 Gene Editing Using CRISPR/Cas9 and Experimental Kidney Ischemia-Reperfusion Injury. Antioxid Redox Signal 2023; 38:959-973. [PMID: 36734409 PMCID: PMC10171956 DOI: 10.1089/ars.2022.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Johanna T. Kurzhagen
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjeev Noel
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungho Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sepideh Gharaie
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Sul A. Lee
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Newman-Rivera
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Gong
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lois J. Arend
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abdel R.A. Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
- Department of Pathology, and University of Illinois, Chicago, Illinois, USA
- University of Illinois Cancer Center, University of Illinois, Chicago, Illinois, USA
| | - Hamid Rabb
- Division of Nephrology and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Imig JD, Khan MAH, Stavniichuk A, Jankiewicz WK, Goorani S, Yeboah MM, El-Meanawy A. Salt-sensitive hypertension after reversal of unilateral ureteral obstruction. Biochem Pharmacol 2023; 210:115438. [PMID: 36716827 PMCID: PMC10107073 DOI: 10.1016/j.bcp.2023.115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The incidence of ureter obstruction is increasing and patients recovering from this kidney injury often progress to chronic kidney injury. There is evidence that a long-term consequence of recovery from ureter obstruction is an increased risk for salt-sensitive hypertension. A reversal unilateral ureteral obstruction (RUUO) model was used to study long-term kidney injury and salt-sensitive hypertension. In this model, we removed the ureteral obstruction at day 10 in mice. Mice were divided into four groups: (1) normal salt diet, (2) high salt diet, (3) RUUO normal salt diet, and (4) RUUO high salt diet. At day 10, the mice were fed a normal or high salt diet for 4 weeks. Blood pressure was measured, and urine and kidney tissue collected. There was a progressive increase in blood pressure in the RUUO high salt diet group. RUUO high salt group had decreased sodium excretion and glomerular injury. Renal epithelial cell injury was evident in RUUO normal and high salt mice as assessed by neutrophil gelatinase-associated lipocalin (NGAL). Kidney inflammation in the RUUO high salt group involved an increase in F4/80 positive macrophages; however, CD3+ positive T cells were not changed. Importantly, RUUO normal and high salt mice had decreased vascular density. RUUO was also associated with renal fibrosis that was further elevated in RUUO mice fed a high salt diet. Overall, these findings demonstrate long-term renal tubular injury, inflammation, decreased vascular density, and renal fibrosis following reversal of unilateral ureter obstruction that could contribute to impaired sodium excretion and salt-sensitive hypertension.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Md Abdul Hye Khan
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Stavniichuk
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wojciech K Jankiewicz
- Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Drug Discovery Center, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael M Yeboah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashraf El-Meanawy
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Hebert JF, Funahashi Y, Hutchens MP. Harm! foul! How acute kidney injury SHReDDs patient futures. Curr Opin Nephrol Hypertens 2023; 32:165-171. [PMID: 36683541 PMCID: PMC10079264 DOI: 10.1097/mnh.0000000000000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is increasingly accepted. Less well recognized, but supported by very similar data, is development of disease of other organ systems after AKI. Awareness of other-organ sequelae of AKI may inform efforts to improve the care of patients after AKI. RECENT FINDINGS Stroke, hypertension, reproductive risk, dementia, and death (SHReDD) are sequelae, which occur with increased risk relative to that of non-AKI within 6 months-3 years after AKI diagnosis, and which are supported by preclinical/mechanistic study. Adjusted hazard ratios for these sequelae are strikingly similar to that of AKI-CKD, ranging from 1.2 to 3.0. Mechanistic studies suggest kidney-centric mechanisms including sodium regulation, volume status regulation, and the renin-angiotensin system are drivers of long-term, extra-renal, change. SUMMARY Further clinical characterization and mechanistic insight is necessary, and may have considerable translational impact. Programs which screen or follow post-AKI patients may increase clinical utility if focus is expanded to include the SHReDD complications.
Collapse
Affiliation(s)
- Jessica F Hebert
- Department of Anesthesiology & Perioperative Medicine, Oregon Health and Science University
| | - Yoshio Funahashi
- Department of Anesthesiology & Perioperative Medicine, Oregon Health and Science University
| | - Michael P Hutchens
- Department of Anesthesiology & Perioperative Medicine, Oregon Health and Science University
- Operative Care Division, Portland Veterans Administration Medical Center, Portland, Oregon, USA
| |
Collapse
|
9
|
Ashraf UM, Atari E, Alasmari F, Waghulde H, Kumar V, Sari Y, Najjar SM, Jose PA, Kumarasamy S. Intrarenal Dopaminergic System Is Dysregulated in SS- Resp18mutant Rats. Biomedicines 2023; 11:111. [PMID: 36672619 PMCID: PMC9855394 DOI: 10.3390/biomedicines11010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The genetic and molecular basis of developing high blood pressure and renal disease are not well known. Resp18mutant Dahl salt-sensitive (SS-Resp18mutant) rats fed a 2% NaCl diet for six weeks have high blood pressure, increased renal fibrosis, and decreased mean survival time. Impairment of the dopaminergic system also leads to hypertension that involves renal and non-renal mechanisms. Deletion of any of the five dopamine receptors may lead to salt-sensitive hypertension. Therefore, we investigated the interaction between Resp18 and renal dopamine in SS-Resp18mutant and Dahl salt-sensitive (SS) rats. We found that SS-Resp18mutant rats had vascular dysfunction, as evidenced by a decrease in vasorelaxation in response to sodium nitroprusside. The pressure-natriuresis curve in SS-Resp18mutant rats was shifted down and to the right of SS rats. SS-Resp18mutant rats had decreased glomerular filtration rate and dopamine receptor subtypes, D1R and D5R. Renal dopamine levels were decreased, but urinary dopamine levels were increased, which may be the consequence of increased renal dopamine production, followed by secretion into the tubular lumen. The increased renal dopamine production in SS-Resp18mutant rats in vivo was substantiated by the increased dopamine production in renal proximal tubule cells treated with L-DOPA. Overall, our study provides evidence that targeted disruption of the Resp18 locus in the SS rat dysregulates the renal dopaminergic system.
Collapse
Affiliation(s)
- Usman M. Ashraf
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ealla Atari
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Harshal Waghulde
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Vikash Kumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy & Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Pedro A. Jose
- Department of Medicine, Division of Kidney Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
| | - Sivarajan Kumarasamy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
10
|
Elfakhrany A, Abo-Elsoud RAEA, Abd El Kareem HM, Samaka RM, Elfiky SR. Autophagy and Oxidative Balance Mediate the Effect of Carvedilol and Glibenclamide in a Rat Model of Renal Ischemia-Reperfusion Injury. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Reactive oxygen species and cytokines are the main players in the development of renal ischemia-reperfusion (I/R) injury.
AIM: The current study aimed to evaluate the effects of carvedilol and/or glibenclamide and the interaction between autophagy and oxidative stress.
METHODS: 50 male rats were divided into five groups: Control, IR injury (IRI), carvedilol pretreated, glibenclamide pretreated, and combined carvedilol and glibenclamide pretreated. Measurements of renal blood flow (RBF), creatinine clearance, serum blood urea nitrogen (BUN), histopathological, and immunohistochemical evaluation of autophagy marker Becl-1 in the rat kidney were performed. Beclin-1and light chain 3 (LC3) Mrna expression was detected by real time polymerase chain reaction.
RESULTS: IRI was associated with significant increases in BUN, tumor necrosis factor-alpha, nuclear factor κB, and histo (H) score value of Becl-1. However, there was a significant decrease in RBF, creatinine clearance, and glutathione peroxidase compared to the control group. There was significant increase in Beclin-1 and LC3 mRNA gene expression in carvedilol, glibenclamide, and combined treatment groups as compared to IRI and control groups. Combination of carvedilol and glibenclamide significantly restored IRI changes when compared with the other pretreated groups.
CONCLUSION: This study suggests that carvedilol and glibenclamide are promising reno-protective drugs to reduce renal injury induced by I/R through their antioxidant and autophagy stimulation.
Collapse
|
11
|
Potter JC, Whiles SA, Miles CB, Whiles JB, Mitchell MA, Biederman BE, Dawoud FM, Breuel KF, Williamson GA, Picken MM, Polichnowski AJ. Salt-Sensitive Hypertension, Renal Injury, and Renal Vasodysfunction Associated With Dahl Salt-Sensitive Rats Are Abolished in Consomic SS.BN1 Rats. J Am Heart Assoc 2021; 10:e020261. [PMID: 34689582 PMCID: PMC8751849 DOI: 10.1161/jaha.120.020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Abnormal renal hemodynamic responses to salt‐loading are thought to contribute to salt‐sensitive (SS) hypertension. However, this is based largely on studies in anesthetized animals, and little data are available in conscious SS and salt‐resistant rats. Methods and Results We assessed arterial blood pressure, renal function, and renal blood flow during administration of a 0.4% NaCl and a high‐salt (4.0% NaCl) diet in conscious, chronically instrumented 10‐ to 14‐week‐old Dahl SS and consomic SS rats in which chromosome 1 from the salt‐resistant Brown‐Norway strain was introgressed into the genome of the SS strain (SS.BN1). Three weeks of high salt intake significantly increased blood pressure (20%) and exacerbated renal injury in SS rats. In contrast, the increase in blood pressure (5%) was similarly attenuated in Brown‐Norway and SS.BN1 rats, and both strains were completely protected against renal injury. In SS.BN1 rats, 1 week of high salt intake was associated with a significant decrease in renal vascular resistance (−8%) and increase in renal blood flow (15%). In contrast, renal vascular resistance failed to decrease, and renal blood flow remained unchanged in SS rats during high salt intake. Finally, urinary sodium excretion and glomerular filtration rate were similar between SS and SS.BN1 rats during 0.4% NaCl and high salt intake. Conclusions Our data support the concept that renal vasodysfunction contributes to blood pressure salt sensitivity in Dahl SS rats, and that genes on rat chromosome 1 play a major role in modulating renal hemodynamic responses to salt loading and salt‐induced hypertension.
Collapse
Affiliation(s)
- Jacqueline C Potter
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Shannon A Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Conor B Miles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Jenna B Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Mark A Mitchell
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Brianna E Biederman
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Febronia M Dawoud
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Kevin F Breuel
- Department of Obstetrics and Gynecology Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago IL
| | - Maria M Picken
- Department of Pathology Loyola University Medical Center Maywood IL
| | - Aaron J Polichnowski
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN.,Center of Excellence in Inflammation, Infectious Disease and Immunity East Tennessee State University Johnson City TN
| |
Collapse
|
12
|
Wald R, Siew ED. Survival and kidney recovery among recipients of continuous renal replacement therapy. Semin Dial 2021; 34:495-500. [PMID: 34533863 DOI: 10.1111/sdi.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Continuous renal replacement therapy (CRRT) is widely used in the care of critically ill patients with acute kidney injury (AKI). Despite hopeful trends suggested by recent studies, mortality among CRRT recipients with severe AKI remains extremely high. Moreover, CRRT does not confer a reduction in mortality in trials comparing CRRT to intermittent RRT modalities. Among AKI survivors, some preliminary studies suggest a higher likelihood of kidney recovery and dialysis independence in CRRT recipients. AKI survivors are at risk for a broad array of adverse outcomes; strategies that may mitigate these risks are discussed.
Collapse
Affiliation(s)
- Ron Wald
- Division of Nephrology, St. Michael's Hospital, Toronto, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine and the Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI (VIP-AKI), Tennessee Valley Health System, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Soranno DE, Kirkbride-Romeo L, Wennersten SA, Ding K, Cavasin MA, Baker P, Altmann C, Bagchi RA, Haefner KR, Steinkühler C, Montford JR, Keith B, Gist KM, McKinsey TA, Faubel S. Acute Kidney Injury Results in Long-Term Diastolic Dysfunction That Is Prevented by Histone Deacetylase Inhibition. ACTA ACUST UNITED AC 2021; 6:119-133. [PMID: 33665513 PMCID: PMC7907538 DOI: 10.1016/j.jacbts.2020.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
This is the first long-term (1-year) study to evaluate both the kidney and systemic sequelae of acute kidney injury in mice. Serial kidney function was measured via transcutaneous glomerular filtration rate. AKI resulted in diastolic dysfunction, followed by hypertension. Ejection fraction was preserved. One year after AKI, cardiac ATP levels were reduced compared with sham controls. Mice treated with the histone deacetylase inhibitor, ITF2357, maintained normal diastolic function normal blood pressure, and normal cardiac ATP after AKI. Metabolomics data suggest that treatment with ITF2357 preserves pathways related to energy metabolism.
Growing epidemiological data demonstrate that acute kidney injury (AKI) is associated with long-term cardiovascular morbidity and mortality. Here, the authors present a 1-year study of cardiorenal outcomes following bilateral ischemia-reperfusion injury in male mice. These data suggest that AKI causes long-term dysfunction in the cardiac metabolome, which is associated with diastolic dysfunction and hypertension. Mice treated with the histone deacetylase inhibitor, ITF2357, had preservation of cardiac function and remained normotensive throughout the study. ITF2357 did not protect against the development of kidney fibrosis after AKI.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lara Kirkbride-Romeo
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Sara A Wennersten
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Kathy Ding
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Maria A Cavasin
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Peter Baker
- Department of Pediatrics, Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Christopher Altmann
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Korey R Haefner
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | | | - John R Montford
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Brysen Keith
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katja M Gist
- Department of Pediatrics, Pediatric Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Sarah Faubel
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
14
|
Ikizler TA, Parikh CR, Himmelfarb J, Chinchilli VM, Liu KD, Coca SG, Garg AX, Hsu CY, Siew ED, Wurfel MM, Ware LB, Faulkner GB, Tan TC, Kaufman JS, Kimmel PL, Go AS. A prospective cohort study of acute kidney injury and kidney outcomes, cardiovascular events, and death. Kidney Int 2021; 99:456-465. [PMID: 32707221 PMCID: PMC7374148 DOI: 10.1016/j.kint.2020.06.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) has been reported to be associated with excess risks of death, kidney disease progression and cardiovascular events although previous studies have important limitations. To further examine this, we prospectively studied adults from four clinical centers surviving three months and more after hospitalization with or without AKI who were matched on center, pre-admission CKD status, and an integrated priority score based on age, prior cardiovascular disease or diabetes mellitus, preadmission estimated glomerular filtration rate (eGFR) and treatment in the intensive care unit during the index hospitalization between December 2009-February 2015, with follow-up through November 2018. All participants had assessments of kidney function before (eGFR) and at three months and annually (eGFR and proteinuria) after the index hospitalization. Associations of AKI with outcomes were examined after accounting for pre-admission and three-month post-discharge factors. Among 769 AKI (73% Stage 1, 14% Stage 2, 13% Stage 3) and 769 matched non-AKI adults, AKI was associated with higher adjusted rates of incident CKD (adjusted hazard ratio 3.98, 95% confidence interval 2.51-6.31), CKD progression (2.37,1.28-4.39), heart failure events (1.68, 1.22-2.31) and all-cause death (1.78, 1.24-2.56). AKI was not associated with major atherosclerotic cardiovascular events in multivariable analysis (0.95, 0.70-1.28). After accounting for degree of kidney function recovery and proteinuria at three months after discharge, the associations of AKI with heart failure (1.13, 0.80-1.61) and death (1.29, 0.84-1.98) were attenuated and no longer significant. Thus, assessing kidney function recovery and proteinuria status three months after AKI provides important prognostic information for long-term clinical outcomes.
Collapse
Affiliation(s)
- T Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Vernon M Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kathleen D Liu
- Division of Nephrology, Department of Medicine, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Steven G Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Chi-Yuan Hsu
- Division of Nephrology, Department of Medicine, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark M Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Georgia Brown Faulkner
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Thida C Tan
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - James S Kaufman
- Renal Section, Veterans Affairs New York Harbor Health Care System and New York University School of Medicine, New York, New York, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan S Go
- Division of Nephrology, Department of Medicine, University of California, San Francisco School of Medicine, San Francisco, California, USA; Division of Research, Kaiser Permanente Northern California, Oakland, California, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA; Departments of Medicine (Nephrology), Health Research and Policy, Stanford University, Stanford, California, USA.
| |
Collapse
|
15
|
Yu SQ, Ma S, Wang DH. TRPV1 Activation Prevents Renal Ischemia-Reperfusion Injury-Induced Increase in Salt Sensitivity by Suppressing Renal Sympathetic Nerve Activity. Curr Hypertens Rev 2020; 16:148-155. [PMID: 31721716 PMCID: PMC7499355 DOI: 10.2174/1573402115666191112122339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/23/2022]
Abstract
Abstract: Background Salt sensitivity is increased following renal Ischemia-Reperfusion (I/R) injury. We tested the hypothesis that high salt intake induced increase in Renal Sympathetic Nerve Activity (RSNA) after renal I/R can be prevented by activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Methods Rats were fed a 0.4% NaCl diet for 5 weeks after renal I/R, followed by a 4% NaCl diet for 4 more weeks in four groups: sham, I/R, I/R +High Dose Capsaicin (HDC), and I/R+Low Dose Capsaicin (LDC). The low (1mg/kg) or high (100mg/kg) dose of capsaicin was injected subcutaneously before I/R to activate or desensitize TRPV1, respectively. Results Systolic blood pressure was gradually elevated after fed on a high-salt diet in the I/R and I/R+HDC groups but not in the I/R+LDC group, with a greater increase in the I/R+HDC group. Renal function was impaired in the I/R group and was further deteriorated in the I/R+HDC group but was unchanged in the I/R+LDC group. At the end of high salt treatment, afferent renal nerve activity in response to unilateral intra-pelvic administration of capsaicin was decreased in the I/R group and was further suppressed in the I/R+HDC group but was unchanged in the I/R+LDC group. RSNA in response to intrathecal administration of muscimol, a selective agonist of GABA-A receptors, was augmented in the I/R group and further intensified in the I/R+HDC group but was unchanged in the I/R+LDC group. Similarly, urinary norepinephrine levels were increased in the I/R group and were further elevated in the I/R+HDC group but unchanged in the I/R+LDC group. Conclusion These data suggest that TRPV1 activation prevents renal I/R injury-induced increase in salt sensitivity by suppressing RSNA.
Collapse
Affiliation(s)
- Shuang-Quan Yu
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| |
Collapse
|
16
|
Siew ED, Parr SK, Abdel-Kader K, Perkins AM, Greevy RA, Vincz AJ, Denton J, Wilson OD, Hung AM, Ikizler TA, Robinson-Cohen C, Matheny ME. Renin-angiotensin aldosterone inhibitor use at hospital discharge among patients with moderate to severe acute kidney injury and its association with recurrent acute kidney injury and mortality. Kidney Int 2020; 99:1202-1212. [PMID: 32916177 DOI: 10.1016/j.kint.2020.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
Abstract
Recurrent episodes of acute kidney injury (AKI) are common among AKI survivors. Renin-angiotensin aldosterone inhibitors (RAASi) are often indicated for these patients but may increase the risk for recurrent AKI. Here, we examined whether RAASi associates with a higher risk for recurrent AKI and mortality among survivors of moderate to severe AKI in a retrospective cohort of Veterans who survived Stage II or III AKI. The primary exposure was RAASi at hospital discharge and the primary endpoint was recurrent AKI within 12 months. Cox proportional hazards models were fit on a propensity score-weighted cohort to compare time to recurrent AKI and mortality by RAASi exposure. Among 96,983 patients, 40% were on RAASi at discharge. Compared to patients who continued RAASi use, those discontinuing use experienced no difference in risk for recurrent AKI but had a significantly higher risk of mortality [hazard ratio 1.33 (95% confidence interval1.26-1.41)]. No differences in recurrent AKI risk was observed for non-users started or not on RAASi compared to prevalent users who continued RAASi. Subgroup analyses among those with diabetes, chronic kidney disease, heart failure, and malignancy were similar with exception of a modest reduction in recurrent AKI risk among RAASi discontinuers with chronic kidney disease. Thus, RAASi use among survivors of moderate to severe AKI was associated with little to no difference in risk for recurrent AKI but was associated with improved survival. Reinitiating or starting RAASi among patients with strong indications is warranted but should be balanced with individual overall risk for recurrent AKI and with adequate monitoring.
Collapse
Affiliation(s)
- Edward D Siew
- VA Tennessee Valley, Health Services Research and Development, Nashville, Tennessee, USA; VA Geriatrics Research Education and Clinical Center (GRECC), Tennessee Valley Health System (THVS), Veteran's Health Administration, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Sharidan K Parr
- VA Tennessee Valley, Health Services Research and Development, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Khaled Abdel-Kader
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy M Perkins
- VA Geriatrics Research Education and Clinical Center (GRECC), Tennessee Valley Health System (THVS), Veteran's Health Administration, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert A Greevy
- VA Tennessee Valley, Health Services Research and Development, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley, Clinical Sciences Research and Development, Nashville, Tennessee, USA
| | - Andrew J Vincz
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jason Denton
- VA Tennessee Valley, Health Services Research and Development, Nashville, Tennessee, USA; VA Geriatrics Research Education and Clinical Center (GRECC), Tennessee Valley Health System (THVS), Veteran's Health Administration, Nashville, Tennessee, USA
| | - Otis D Wilson
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley, Clinical Sciences Research and Development, Nashville, Tennessee, USA
| | - Adriana M Hung
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley, Clinical Sciences Research and Development, Nashville, Tennessee, USA
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley, Clinical Sciences Research and Development, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael E Matheny
- VA Tennessee Valley, Health Services Research and Development, Nashville, Tennessee, USA; VA Geriatrics Research Education and Clinical Center (GRECC), Tennessee Valley Health System (THVS), Veteran's Health Administration, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Zhong B, Ma S, Wang DH. Knockout of TRPV1 Exacerbates Ischemia-reperfusion-induced Renal Inflammation and Injury in Obese Mice. In Vivo 2020; 34:2259-2268. [PMID: 32871748 DOI: 10.21873/invivo.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM Transient receptor potential vanilloid type 1 (TRPV1) has anti-inflammatory properties. The present study aimed to investigate the role of TRPV1 in renal inflammatory responses and tissue injury following renal ischemia-reperfusion (I/R) in diet-induced obese mice. MATERIALS AND METHODS TRPV1 knockout and wild type mice were fed a normal or western diet (WD) for 23 weeks and were then subjected to renal I/R injury. RESULTS TRPV1 knockout mice showed enhanced WD-induced renal macrophage infiltration and collagen deposition. Knocking out TRPV1 exacerbated renal I/R-induced increase of malondialdehyde, interleukin-6, monocyte chemoattractant protein-1, and NF-ĸB in obese mice. Similar results were observed in the expression of phosphorylated Smad1 and Smad2/3. Blockade of calcitonin gene-related peptide (CGRP) receptors with CGRP8-37 worsened the I/R-induced renal inflammation and injury. CONCLUSION Our data indicate that preserving TRPV1 expression and function may prevent renal I/R injury in obesity likely through alleviating inflammatory responses.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A. .,Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A.,Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
18
|
AKI: an increasingly recognized risk factor for CKD development and progression. J Nephrol 2020; 33:1171-1187. [PMID: 32651850 DOI: 10.1007/s40620-020-00793-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an increasing health burden with high morbidity and mortality rates worldwide. AKI is a risk factor for chronic kidney disease (CKD) development and progression to end stage renal disease (ESRD). Rapid action is required to find treatment options for AKI, plus to anticipate the development of CKD and other complications. Therefore, it is essential to understand the pathophysiology of AKI to CKD transition. Over the last several years, research has revealed maladaptive repair to be an interplay of cell death, endothelial dysfunction, tubular epithelial cell senescence, inflammatory processes and more-terminating in fibrosis. Various pathological mechanisms have been discovered and reveal targets for potential interventions. Furthermore, there have been clinical efforts measures for AKI prevention and progression including the development of novel biomarkers and prediction models. In this review, we provide an overview of pathophysiological mechanisms involved in kidney fibrosis. Furthermore, we discuss research gaps and promising therapeutic approaches for AKI to CKD progression.
Collapse
|
19
|
Romão CM, Pereira RC, Shimizu MHM, Furukawa LNS. N-acetyl-l-cysteine exacerbates kidney dysfunction caused by a chronic high-sodium diet in renal ischemia and reperfusion rats. Life Sci 2019; 231:116544. [PMID: 31181229 DOI: 10.1016/j.lfs.2019.116544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
Abstract
AIMS To investigate the effect of long-term N-acetyl-l-cysteine (NAC) treatment in Wistar rats subjected to renal ischemia and reperfusion (IR) and a chronic high‑sodium diet (HSD). MAIN METHODS Adult male Wistar rats received an HSD (8.0% NaCl) or a normal‑sodium diet (NSD; 1.3% NaCl) and NAC (600 mg/L) or normal drinking water starting at 8 weeks of age. At 11 weeks of age, the rats from both diet and NAC or water treatment groups underwent renal IR or Sham surgery and were followed for 10 weeks. The study consisted of six animal groups: NSD + Sham + water; NSD + IR + water; NSD + IR + NAC; HSD + Sham + water; HSD + IR + water; and HSD + IR + NAC. KEY FINDINGS Tail blood pressure (tBP) increased with IR and NAC treatment in the NSD group but not in the HSD group. The serum creatinine level was higher after NAC treatment in both diet groups, and creatinine clearance was decreased in only the HSD + IR + NAC group. Albuminuria increased in the HSD + IR + water group and decreased in the HSD + IR + NAC group. Kidney mass was increased in the HSD + IR group and decreased with NAC treatment. Renal fibrosis was prevented with NAC treatment and cardiac fibrosis was decreased with NAC treatment in the HSD + IR group. SIGNIFICANCE NAC treatment promoted structural improvements, such as decreased albuminuria and fibrosis, in the kidney and heart. However, NAC could not recover kidney function or blood pressure from the effects of IR associated with an HSD. Therefore, in general, long-term NAC treatment is not effective and is deleterious to recovery of function after kidney injury.
Collapse
Affiliation(s)
- Carolina Martinez Romão
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael Canavel Pereira
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Heloisa Massola Shimizu
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Luzia Naôko Shinohara Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Hsu CY, Hsu RK, Liu KD, Yang J, Anderson A, Chen J, Chinchilli VM, Feldman HI, Garg AX, Hamm L, Himmelfarb J, Kaufman JS, Kusek JW, Parikh CR, Ricardo AC, Rosas SE, Saab G, Sha D, Siew ED, Sondheimer J, Taliercio JJ, Yang W, Go AS. Impact of AKI on Urinary Protein Excretion: Analysis of Two Prospective Cohorts. J Am Soc Nephrol 2019; 30:1271-1281. [PMID: 31235617 PMCID: PMC6622423 DOI: 10.1681/asn.2018101036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/30/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Prior studies of adverse renal consequences of AKI have almost exclusively focused on eGFR changes. Less is known about potential effects of AKI on proteinuria, although proteinuria is perhaps the strongest risk factor for future loss of renal function. METHODS We studied enrollees from the Assessment, Serial Evaluation, and Subsequent Sequelae of AKI (ASSESS-AKI) study and the subset of the Chronic Renal Insufficiency Cohort (CRIC) study enrollees recruited from Kaiser Permanente Northern California. Both prospective cohort studies included annual ascertainment of urine protein-to-creatinine ratio, eGFR, BP, and medication use. For hospitalized participants, we used inpatient serum creatinine measurements obtained as part of clinical care to define an episode of AKI (i.e., peak/nadir inpatient serum creatinine ≥1.5). We performed mixed effects regression to examine change in log-transformed urine protein-to-creatinine ratio after AKI, controlling for time-updated covariates. RESULTS At cohort entry, median eGFR was 62.9 ml/min per 1.73 m2 (interquartile range [IQR], 46.9-84.6) among 2048 eligible participants, and median urine protein-to-creatinine ratio was 0.12 g/g (IQR, 0.07-0.25). After enrollment, 324 participants experienced at least one episode of hospitalized AKI during 9271 person-years of follow-up; 50.3% of first AKI episodes were Kidney Disease Improving Global Outcomes stage 1 in severity, 23.8% were stage 2, and 25.9% were stage 3. In multivariable analysis, an episode of hospitalized AKI was independently associated with a 9% increase in the urine protein-to-creatinine ratio. CONCLUSIONS Our analysis of data from two prospective cohort studies found that hospitalization for an AKI episode was independently associated with subsequent worsening of proteinuria.
Collapse
Affiliation(s)
- Chi-yuan Hsu
- Department of Medicine, University of California, San Francisco, San Francisco, California;,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Raymond K. Hsu
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Kathleen D. Liu
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | | | - Jing Chen
- Medicine, Tulane University, New Orleans, Louisiana
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Amit X. Garg
- Department of Medicine, Western University, London, Ontario, Canada
| | - Lee Hamm
- Medicine, Tulane University, New Orleans, Louisiana
| | | | - James S. Kaufman
- Veterans Affairs New York Harbor Healthcare System, New York, New York;,Department of Medicine, New York University School of Medicine, New York, New York
| | | | - Chirag R. Parikh
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ana C. Ricardo
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Georges Saab
- Case Western Reserve University and Metrohealth Medical Center, Cleveland, Ohio
| | - Daohang Sha
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward D. Siew
- Vanderbilt University Medical Center and Nashville Veterans Affairs Hospital, Nashville, Tennessee
| | - James Sondheimer
- Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan; and
| | | | - Wei Yang
- Department of Biostatistics and Epidemiology, and
| | - Alan S. Go
- Department of Medicine, University of California, San Francisco, San Francisco, California;,Division of Research, Kaiser Permanente Northern California, Oakland, California
| | | |
Collapse
|
21
|
O'Connor PM. Going with the flow: updating old techniques to gain insight into regional kidney hemodynamics. Physiol Rep 2019; 7:e14103. [PMID: 31090164 PMCID: PMC6517335 DOI: 10.14814/phy2.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Paul M. O'Connor
- Department of Physiology Medical College of Georgia Augusta Georgia
| |
Collapse
|
22
|
Zhong B, Ma S, Wang DH. TRPV1 protects renal ischemia-reperfusion injury in diet-induced obese mice by enhancing CGRP release and increasing renal blood flow. PeerJ 2019; 7:e6505. [PMID: 30834186 PMCID: PMC6397633 DOI: 10.7717/peerj.6505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
Background Obesity is a major risk factor for end-stage renal disease. Using transient receptor potential vanilloid 1 knockout (TRPV1−/−) mice, we tested the hypothesis that TRPV1 protects against obesity-induced exacerbation of renal ischemia-reperfusion (I/R) injury. Methods TRPV1−/− and wild-type (WT) mice were fed a chow or Western diet (WD) for 22–23 weeks. After that, mice were subjected to renal I/R injury, and renal cortical blood flow (CBF) and medullary blood flow (MBF) were measured. Results The Western diet significantly increased body weight and fasting blood glucose levels in both TRPV1−/− and WT mice. WD-induced impairment of glucose tolerance was worsened in TRPV1−/− mice compared with WT mice. WD intake prolonged the time required to reach peak reperfusion in the cortex and medulla (both P < 0.05), decreased the recovery rate of CBF (P < 0.05) and MBF (P < 0.05), and increased blood urea nitrogen, plasma creatinine, and urinary 8-isoprostane levels after I/R in both mouse strains, with greater effects in TRPV1−/− mice (all P < 0.05). Renal I/R increased calcitonin gene-related peptide (CGRP) release in WT but not in TRPV1−/− mice, and WD attenuated CGRP release in WT mice. Moreover, blockade of CGRP receptors impaired renal regional blood flow and renal function in renal I/R injured WT mice. Conclusion These results indicate that TRPV1 plays a protective role in WD-induced exacerbation of renal I/R injury probably through enhancing CGRP release and increasing renal blood flow.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, USA.,Neuroscience Program, Michigan State University, East Lansing, MI, USA.,Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
Doreille A, Dieudé M, Cardinal H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients. Am J Physiol Renal Physiol 2018; 316:F9-F19. [PMID: 30379097 DOI: 10.1152/ajprenal.00163.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Independent of the initial cause of kidney disease, microvascular injury to the peritubular capillary network appears to play a central role in the development of interstitial fibrosis in both native and transplanted kidney disease. This association is explained by mechanisms such as the upregulation of profibrotic genes and epigenetic changes induced by hypoxia, capillary leakage, endothelial and pericyte transition to interstitial fibroblasts, as well as modifications in the secretome of endothelial cells. Alloimmune injury due to antibody-mediated rejection and ischemia-reperfusion injury are the two main etiologies of microvascular damage in kidney transplant recipients. The presence of circulating donor-specific anti-human leukocyte antigen (HLA) antibodies, histological findings, such as diffuse C4d staining in peritubular capillaries, and the extent and severity of peritubular capillaritis, are commonly used clinically to provide both diagnostic and prognostic information. Complement-dependent assays, circulating non-HLA antibodies, or evaluation of the microvasculature with novel imaging techniques are the subject of ongoing studies.
Collapse
Affiliation(s)
- Alice Doreille
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Université Paris-Sud , Paris , France
| | - Mélanie Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| | - Heloise Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Polichnowski AJ. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Am J Physiol Renal Physiol 2018; 315:F1513-F1518. [PMID: 30256130 DOI: 10.1152/ajprenal.00419.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major complication in hospitalized patients and is associated with elevated mortality rates. Numerous recent studies indicate that AKI also significantly increases the risk of chronic kidney disease (CKD), end-stage renal disease (ESRD), hypertension, cardiovascular disease, and mortality in those patients who survive AKI. Moreover, the risk of ESRD and mortality after AKI is substantially higher in patients with preexisting CKD. However, the underlying mechanisms by which AKI and CKD interact to promote ESRD remain poorly understood. The recently developed models that superimpose AKI on rodents with preexisting CKD have provided new insights into the pathogenic mechanisms mediating the deleterious interactions between AKI and CKD. These studies show that preexisting CKD impairs recovery from AKI and promotes the development of mechanisms of CKD progression. Specifically, preexisting CKD exacerbates microvascular rarefaction, failed tubular redifferentiation, disruption of cell cycle regulation, hypertension, and proteinuria after AKI. The purpose of this review is to discuss the potential mechanisms by which microvascular rarefaction and hypertension contribute to impaired recovery from AKI and the subsequent progression of renal disease in preexisting CKD states.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
25
|
Boesen EI. ET A receptor activation contributes to T cell accumulation in the kidney following ischemia-reperfusion injury. Physiol Rep 2018; 6:e13865. [PMID: 30198212 PMCID: PMC6129774 DOI: 10.14814/phy2.13865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury and acute kidney injury (AKI) increase the risk of developing hypertension, with T cells suspected as a possible mechanistic link. Endothelin promotes renal T cell infiltration in several diseases, predominantly via the ETA receptor, but its contribution to renal T cell infiltration following renal IR injury is poorly understood. To test whether ETA receptor activation promotes T cell infiltration of the kidney following IR injury, male C57BL/6 mice were treated with the ETA receptor antagonist ABT-627 or vehicle, commencing 2 days prior to unilateral renal IR injury. Mice were sacrificed at 24 h or 10 days post-IR for assessment of the initial renal injury and subsequent infiltration of T cells. Vehicle and ABT-627-treated mice displayed significant upregulation of endothelin-1 (ET-1) in the IR compared to contralateral kidney at both 24 h and 10 days post-IR (P < 0.001). Renal CD3+ T cell numbers were increased in the IR compared to contralateral kidneys at 10 days, but ABT-627-treated mice displayed a 35% reduction in this effect in the outer medulla (P < 0.05 vs. vehicle) and a nonsignificant 23% reduction in the cortex compared to vehicle-treated mice. Whether specific T cell subsets were affected awaits confirmation by flow cytometry, but outer medullary expression of the T helper 17 transcription factor RORγt was reduced by ABT-627 (P = 0.06). These data indicate that ET-1 acting via the ETA receptor contributes to renal T cell infiltration post-IR injury. This may have important implications for immune system-mediated long-term consequences of AKI, an area which awaits further investigation.
Collapse
Affiliation(s)
- Erika I. Boesen
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraska
| |
Collapse
|
26
|
Mehrotra P, Collett JA, Gunst SJ, Basile DP. Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 2018; 314:R265-R273. [PMID: 29118018 PMCID: PMC5867669 DOI: 10.1152/ajpregu.00147.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is associated with high mortality rates and predisposes development of chronic kidney disease (CKD). Distant organ damage, particularly in the lung, may contribute to mortality in AKI patients. Animal models of AKI demonstrate an increase in pulmonary infiltration of lymphocytes and reveal an acute compromise of lung function, but the chronic effects of AKI on pulmonary inflammation are unknown. We hypothesized that in response to renal ischemia/reperfusion (I/R), there is a persistent systemic increase in Th17 cells with potential effects on pulmonary structure and function. Renal I/R injury was performed on rats, and CKD progression was hastened by unilateral nephrectomy and exposure to 4.0% sodium diet between 35 and 63 days post-I/R. Th17 cells in peripheral blood showed a progressive increase up to 63 days after recovery from I/R injury. Infiltration of leukocytes including Th17 cells was also elevated in bronchiolar lavage (BAL) fluid 7 days after I/R and remained elevated for up to 63 days. Lung histology demonstrated an increase in alveolar cellularity and a significant increase in picrosirius red staining. Suppression of lymphocytes with mycophenolate mofetil (MMF) or an IL-17 antagonist significantly reduced Th17 cell infiltration and fibrosis in lung. In addition, tracheal smooth muscle contraction to acetylcholine was significantly enhanced 63-days after I/R relative to sham-operated controls. These data suggest that AKI is associated with a persistent increase in circulating and lung Th17 cells which may promote pulmonary fibrosis and the potential alteration in airway contractility.
Collapse
MESH Headings
- Acute Kidney Injury/complications
- Acute Kidney Injury/immunology
- Acute Kidney Injury/pathology
- Animals
- Disease Models, Animal
- Disease Progression
- Immunosuppressive Agents/pharmacology
- Lung/drug effects
- Lung/immunology
- Lung/pathology
- Lung/physiopathology
- Male
- Muscle Contraction
- Muscle, Smooth/immunology
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Phenotype
- Pneumonia/etiology
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/physiopathology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/immunology
- Pulmonary Fibrosis/pathology
- Pulmonary Fibrosis/physiopathology
- Rats, Nude
- Rats, Sprague-Dawley
- Rats, Transgenic
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/immunology
- Renal Insufficiency, Chronic/pathology
- Risk Factors
- Sodium, Dietary/toxicity
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Time Factors
- Trachea/immunology
- Trachea/pathology
- Trachea/physiopathology
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University , Indianapolis, Indiana
| |
Collapse
|
27
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
28
|
Qin Z, Li X, Yang J, Cao P, Qin C, Xue J, Jia R. VEGF and Ang-1 promotes endothelial progenitor cells homing in the rat model of renal ischemia and reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11896-11908. [PMID: 31966554 PMCID: PMC6966018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine whether vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) promoted the mobilization and recruitment of endothelial progenitor cells (EPCs) to protect kidneys from ischemia and reperfusion injury (IRI) in male rats. At 24 h and 72 h after reperfusion, serum samples were respectively collected for renal function. Besides, kidney tissues were harvested to observe renal morphology changes. Subsequently, VEGF, Ang-1 and angiopoietin-2 (Ang-2) expression levels in different groups were measured at the indicated time points after reperfusion. Compared with IRI-operated group, rats that were intervened with EPCs significantly reduced in the levels of blood urea nitrogen, serum creatinine at 24 hours and 72 hours, particularly in injecting EPCs suspension liquid transfected by VEGF165-adenovirus and Ang-1-adenovirus. At 72 hours after reperfusion, renal function and morphology were exhibited significant improvements in two EPCs-transfected VEGF165-adenovirus and Ang-1-adenovirus groups. In addition, expression levels of VEGF, Ang-1 and Ang-2 in the kidneys of EPCs-treated rats which were transfected by VEGF165-adenovirus and Ang-1-adenovirus were markedly increased compared to rats subjected to IRI. The present work suggested that VEGF and Ang-1 might play important roles in the protective effect of homing of EPCs on renal acute IRI.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, The Second Affiliated Hospital of Southeast UniversityNanjing 210003, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
| | - Xiao Li
- Department of Urologic Surgery, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical UniversityNanjing 210009, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
| | - Pu Cao
- Department of Urology, The Second Affiliated Hospital of Southeast UniversityNanjing 210003, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
| | - Jianxin Xue
- Department of Urology, The Second Affiliated Hospital of Southeast UniversityNanjing 210003, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, China
| | - Ruipeng Jia
- Department of Urology and Transplantation, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| |
Collapse
|
29
|
Bansal N, Matheny ME, Greevy RA, Eden SK, Perkins AM, Parr SK, Fly J, Abdel-Kader K, Himmelfarb J, Hung AM, Speroff T, Ikizler TA, Siew ED. Acute Kidney Injury and Risk of Incident Heart Failure Among US Veterans. Am J Kidney Dis 2017; 71:236-245. [PMID: 29162339 DOI: 10.1053/j.ajkd.2017.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is common and associated with poor outcomes. Heart failure is a leading cause of cardiovascular disease among patients with chronic kidney disease. The relationship between AKI and heart failure remains unknown and may identify a novel mechanistic link between kidney and cardiovascular disease. STUDY DESIGN Observational study. SETTING & PARTICIPANTS We studied a national cohort of 300,868 hospitalized US veterans (2004-2011) without a history of heart failure. PREDICTOR AKI was the predictor and was defined as a 0.3-mg/dL or 50% increase in serum creatinine concentration from baseline to the peak hospital value. Patients with and without AKI were matched (1:1) on 28 in- and outpatient covariates using optimal Mahalanobis distance matching. OUTCOMES Incident heart failure was defined as 1 or more hospitalization or 2 or more outpatient visits with a diagnosis of heart failure within 2 years through 2013. RESULTS There were 150,434 matched pairs in the study. Patients with and without AKI during the index hospitalization were well matched, with a median preadmission estimated glomerular filtration rate of 69mL/min/1.73m2. The overall incidence rate of heart failure was 27.8 (95% CI, 19.3-39.9) per 1,000 person-years. The incidence rate was higher in those with compared with those without AKI: 30.8 (95% CI, 21.8-43.5) and 24.9 (95% CI, 16.9-36.5) per 1,000 person-years, respectively. In multivariable models, AKI was associated with 23% increased risk for incident heart failure (HR, 1.23; 95% CI, 1.19-1.27). LIMITATIONS Study population was primarily men, reflecting patients seen at Veterans Affairs hospitals. CONCLUSIONS AKI is an independent risk factor for incident heart failure. Future studies to identify underlying mechanisms and modifiable risk factors are needed.
Collapse
Affiliation(s)
- Nisha Bansal
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, WA.
| | - Michael E Matheny
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Svetlana K Eden
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Amy M Perkins
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Sharidan K Parr
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN
| | - James Fly
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN
| | - Khaled Abdel-Kader
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN
| | - Jonathan Himmelfarb
- Kidney Research Institute, Division of Nephrology, University of Washington, Seattle, WA
| | - Adriana M Hung
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN
| | - Theodore Speroff
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN
| | - T Alp Ikizler
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN
| | - Edward D Siew
- Geriatrics Research Education and Clinical Center, Tennessee Valley Health System, Veteran's Health Administration, Nashville, TN; Vanderbilt University Medical Center, Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury Research, Nashville, TN.
| |
Collapse
|
30
|
Göcze I, Wiesner C, Schlitt HJ, Bergler T. Renal recovery. Best Pract Res Clin Anaesthesiol 2017; 31:403-414. [PMID: 29248146 DOI: 10.1016/j.bpa.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
Recovery patterns after acute kidney injury (AKI) have increasingly become the focus of research, because currently available preventive measures and specific therapeutic intervention are limited. Moreover, changes in renal functional reserve are recognized as a "hidden" indicator of kidney susceptibility to either acute kidney injury or chronic kidney disease. Understanding these phenomena and their association with outcome may enable the initiation of strategies that facilitate fast and sustained recovery during the time course of AKI and limit AKI progression towards chronic kidney disease. Different interventions may be required during various phases of AKI continuum. Early recognition and prevention of second hit by kidney stress, treatment of cause and prevention of aggravation in the early phase of AKI and facilitation of recovery in the phase of acute kidney disease may together represent the key aspects of modern AKI management.
Collapse
Affiliation(s)
- Ivan Göcze
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| | - Christina Wiesner
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery and Operative Intensive Care, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
31
|
Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol 2017; 13:241-257. [PMID: 28239173 DOI: 10.1038/nrneph.2017.2] [Citation(s) in RCA: 956] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of >90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD.
Collapse
|
32
|
Lipworth L, Abdel-Kader K, Morse J, Stewart TG, Kabagambe EK, Parr SK, Birdwell KA, Matheny ME, Hung AM, Blot WJ, Ikizler TA, Siew ED. High prevalence of non-steroidal anti-inflammatory drug use among acute kidney injury survivors in the southern community cohort study. BMC Nephrol 2016; 17:189. [PMID: 27881100 PMCID: PMC5122006 DOI: 10.1186/s12882-016-0411-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 12/24/2022] Open
Abstract
Background Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used and have been linked to acute kidney injury (AKI), chronic kidney disease (CKD) and cardiovascular disease (CVD). Patients who survive an AKI episode are at risk for future adverse kidney and cardiovascular outcomes. The objective of our study was to examine the prevalence and predictors of NSAID use among AKI survivors. Methods The Southern Community Cohort Study is a prospective study of low-income adults aged 40–79 in the southeastern US. Through linkage with Centers for Medicare and Medicaid Services, 826 participants with an AKI diagnosis (ICD-9 584.5-584.9) at any age prior to cohort enrollment were identified. At baseline, data were collected on regular use of prescription and over-the-counter NSAIDs, as well as demographic, medical and other characteristics. Additional comorbidities were ascertained via linkage with CMS or the US Renal Data System. Results One hundred fifty-four AKI survivors (19%) reported regular NSAID use at cohort enrollment (52 prescription, 81 OTC, 21 both) and the percentage of NSAID users did not vary by time since AKI event. Over 58% of users were taking NSAIDS regularly both before and after their AKI event. Hypertension (83%), arthritis (71%), heart failure (44%), CKD (36%) and diabetes (35%) were prevalent among NSAID users. In a multivariable model, history of arthritis (OR: 3.00; 95% CI: 1.92, 4.68) and acetaminophen use (OR: 2.43; 95% CI: 1.50, 3.93) were significantly associated with NSAID use, while prevalent CKD (OR: 0.63; 95% CI: 0.41, 0.98) and diabetes (OR: 0.44; 95% CI: 0.29, 0.69) were significantly inversely associated. Conclusions NSAID use among AKI survivors is common and highlights the need to understand physician and patient decision-making around NSAIDs and to develop effective strategies to reduce NSAID use in this vulnerable population. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0411-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loren Lipworth
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA
| | - Khaled Abdel-Kader
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Morse
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas G Stewart
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edmond K Kabagambe
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA
| | - Sharidan K Parr
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Valley Healthcare System (TVHS) VA Medical Center, TVHS Geriatric Research Education and Clinical Centers (GRECC), Veteran's Health Administration, Nashville, TN, USA
| | - Kelly A Birdwell
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael E Matheny
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Tennessee Valley Healthcare System (TVHS) VA Medical Center, TVHS Geriatric Research Education and Clinical Centers (GRECC), Veteran's Health Administration, Nashville, TN, USA
| | - Adriana M Hung
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Valley Healthcare System (TVHS) VA Medical Center, TVHS Geriatric Research Education and Clinical Centers (GRECC), Veteran's Health Administration, Nashville, TN, USA
| | - William J Blot
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T Alp Ikizler
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA.,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.,Tennessee Valley Healthcare System (TVHS) VA Medical Center, TVHS Geriatric Research Education and Clinical Centers (GRECC), Veteran's Health Administration, Nashville, TN, USA
| | - Edward D Siew
- Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for Acute Kidney Injury Research (VIP-AKI), Nashville, TN, USA. .,Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA. .,Tennessee Valley Healthcare System (TVHS) VA Medical Center, TVHS Geriatric Research Education and Clinical Centers (GRECC), Veteran's Health Administration, Nashville, TN, USA.
| |
Collapse
|
33
|
Picken M, Long J, Williamson GA, Polichnowski AJ. Progression of Chronic Kidney Disease After Acute Kidney Injury: Role of Self-Perpetuating Versus Hemodynamic-Induced Fibrosis. Hypertension 2016; 68:921-8. [PMID: 27550923 DOI: 10.1161/hypertensionaha.116.07749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022]
Abstract
The relative contribution of self-perpetuating versus hemodynamic-induced fibrosis to the progression of chronic kidney disease (CKD) after acute kidney injury (AKI) is unclear. In the present study, male Sprague-Dawley rats underwent right uninephrectomy and were instrumented with a blood pressure radiotelemeter. Two weeks later, separate groups of rats were subjected to 40 minutes renal ischemia-reperfusion or sham surgery and followed up for 4 or 16 weeks to determine the extent to which glomerulosclerosis and tubulointerstitial fibrosis as a result of the AKI-CKD transition (ie, at 4 weeks post AKI) change over time during the progression of CKD (ie, at 16 weeks post AKI). On average, tubulointerstitial fibrosis was ≈3-fold lower (P<0.05), whereas glomerulosclerosis was ≈6-fold higher (P<0.05) at 16 versus 4 weeks post AKI. At 16 weeks post AKI, marked tubulointerstitial fibrosis was only observed in rats exhibiting marked glomerulosclerosis, proteinuria, and kidney hypertrophy consistent with a hemodynamic pathogenesis of renal injury. Moreover, quantitative analysis between blood pressure and renal injury revealed a clear and modest blood pressure threshold (average 16-week systolic blood pressure of ≈127 mm Hg) for the development of glomerulosclerosis. In summary, modest levels of blood pressure may be playing a substantial role in the progression of renal disease after AKI in settings of preexisting CKD associated with 50% loss of renal mass. In contrast, these data do not support a major role of self-perpetuating tubulointerstitial fibrosis in the progression CKD after AKI in such settings.
Collapse
Affiliation(s)
- Maria Picken
- From the Research and Development Service, Edward Hines Jr. VA Hospital, Hines, IL (A.J.P.); Department of Medicine, (A.J.P.) and Department of Pathology (M.P.), Loyola University-Chicago, Maywood, IL; and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago (J.L., G.A.W.)
| | - Jianrui Long
- From the Research and Development Service, Edward Hines Jr. VA Hospital, Hines, IL (A.J.P.); Department of Medicine, (A.J.P.) and Department of Pathology (M.P.), Loyola University-Chicago, Maywood, IL; and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago (J.L., G.A.W.)
| | - Geoffrey A Williamson
- From the Research and Development Service, Edward Hines Jr. VA Hospital, Hines, IL (A.J.P.); Department of Medicine, (A.J.P.) and Department of Pathology (M.P.), Loyola University-Chicago, Maywood, IL; and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago (J.L., G.A.W.)
| | - Aaron J Polichnowski
- From the Research and Development Service, Edward Hines Jr. VA Hospital, Hines, IL (A.J.P.); Department of Medicine, (A.J.P.) and Department of Pathology (M.P.), Loyola University-Chicago, Maywood, IL; and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago (J.L., G.A.W.).
| |
Collapse
|
34
|
Coca SG, Zabetian A, Ferket BS, Zhou J, Testani JM, Garg AX, Parikh CR. Evaluation of Short-Term Changes in Serum Creatinine Level as a Meaningful End Point in Randomized Clinical Trials. J Am Soc Nephrol 2016; 27:2529-42. [PMID: 26712525 PMCID: PMC4978048 DOI: 10.1681/asn.2015060642] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/03/2015] [Indexed: 01/10/2023] Open
Abstract
Observational studies have shown that acute change in kidney function (specifically, AKI) is a strong risk factor for poor outcomes. Thus, the outcome of acute change in serum creatinine level, regardless of underlying biology or etiology, is frequently used in clinical trials as both efficacy and safety end points. We performed a meta-analysis of clinical trials to quantify the relationship between positive or negative short-term effects of interventions on change in serum creatinine level and more meaningful clinical outcomes. After a thorough literature search, we included 14 randomized trials of interventions that altered risk for an acute increase in serum creatinine level and had reported between-group differences in CKD and/or mortality rate ≥3 months after randomization. Seven trials assessed interventions that, compared with placebo, increased risk of acute elevation in serum creatinine level (pooled relative risk, 1.52; 95% confidence interval, 1.22 to 1.89), and seven trials assessed interventions that, compared with placebo, reduced risk of acute elevation in serum creatinine level (pooled relative risk, 0.57; 95% confidence interval, 0.44 to 0.74). However, pooled risks for CKD and mortality associated with interventions did not differ from those with placebo in either group. In conclusion, several interventions that affect risk of acute, mild to moderate, often temporary elevation in serum creatinine level in placebo-controlled randomized trials showed no appreciable effect on CKD or mortality months later, raising questions about the value of using small to moderate changes in serum creatinine level as end points in clinical trials.
Collapse
Affiliation(s)
| | - Azadeh Zabetian
- Program of Applied Translational Research, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Bart S Ferket
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jing Zhou
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey M Testani
- Program of Applied Translational Research, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Amit X Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | - Chirag R Parikh
- Program of Applied Translational Research, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
35
|
Abstract
There is increasing recognition that acute kidney injury (AKI) and chronic kidney disease (CKD) are closely linked and likely promote one another. Underlying CKD now is recognized as a clear risk factor for AKI because both decreased glomerular filtration rate and increased proteinuria have been shown to be associated strongly with AKI. A growing body of literature also provides evidence that AKI accelerates the progression of CKD. Individuals who suffered dialysis-requiring AKI are particularly vulnerable to worse long-term renal outcomes, including end-stage renal disease. The association between AKI and subsequent renal function decline is amplified by pre-existing severity of CKD, higher stage of AKI, and the cumulative number of AKI episodes. However, residual confounding and ascertainment bias may partly explain the epidemiologic association between AKI and CKD in observational studies. As the number of AKI survivors increases, we need to better understand other clinically important outcomes after AKI, identify those at highest risk for the most adverse sequelae, and develop strategies to optimize their care.
Collapse
Affiliation(s)
- Raymond K Hsu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California
| | - Chi-Yuan Hsu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, California.
| |
Collapse
|
36
|
Abstract
Acute kidney injury is strongly associated with increased mortality and other adverse outcomes. Medical researchers have intensively investigated novel biomarkers to predict short- and long-term outcomes of acute kidney injury in many patient care settings, such as cardiac surgery, intensive care units, heart failure, and transplant. Future research should focus on leveraging this relationship to improve enrollment for clinical trials of acute kidney injury.
Collapse
Affiliation(s)
- Jennifer A Schaub
- Program of Applied Translational Research, Yale University, New Haven, CT, USA
| | - Chirag R Parikh
- Program of Applied Translational Research, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Parr SK, Siew ED. Delayed Consequences of Acute Kidney Injury. Adv Chronic Kidney Dis 2016; 23:186-94. [PMID: 27113695 PMCID: PMC4849427 DOI: 10.1053/j.ackd.2016.01.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/22/2016] [Indexed: 11/11/2022]
Abstract
Acute kidney injury (AKI) is an increasingly common complication of hospitalization and acute illness. Experimental data indicate that AKI may cause permanent kidney damage through tubulointerstitial fibrosis and progressive nephron loss, while also lowering the threshold for subsequent injury. Furthermore, preclinical data suggest that AKI may also cause distant organ dysfunction. The extension of these findings to human studies suggests long-term consequences of AKI including, but not limited to recurrent AKI, progressive kidney disease, elevated blood pressure, cardiovascular events, and mortality. As the number of AKI survivors increases, the need to better understand the mechanisms driving these processes becomes paramount. Optimizing care for AKI survivors will require understanding the short- and long-term risks associated with AKI, identifying patients at highest risk for poor outcomes, and testing interventions that target modifiable risk factors. In this review, we examine the literature describing the association between AKI and long-term outcomes and highlight opportunities for further research and potential intervention.
Collapse
Affiliation(s)
- Sharidan K Parr
- Tennessee Valley Healthcare System (TVHS), Geriatric Research Education and Clinical Centers (GRECC), Nashville, TN; TVHS, Veterans Administration (VA) Medical Center, Veterans Health Administration, Nashville, TN; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and Vanderbilt Center for Kidney Disease (VCKD), Nashville, TN
| | - Edward D Siew
- Tennessee Valley Healthcare System (TVHS), Geriatric Research Education and Clinical Centers (GRECC), Nashville, TN; TVHS, Veterans Administration (VA) Medical Center, Veterans Health Administration, Nashville, TN; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; and Vanderbilt Center for Kidney Disease (VCKD), Nashville, TN.
| |
Collapse
|
38
|
O'Connor PM, Guha A, Stilphen CA, Sun J, Jin C. Proton channels and renal hypertensive injury: a key piece of the Dahl salt-sensitive rat puzzle? Am J Physiol Regul Integr Comp Physiol 2016; 310:R679-90. [PMID: 26843580 DOI: 10.1152/ajpregu.00115.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Hv1 is a voltage-gated proton channel highly expressed in phagocytic cells, where it participates in the NADPH oxidase-dependent respiratory burst. We have recently identified Hv1 as a novel renal channel, expressed in the renal medullary thick ascending limb that appears to importantly contribute to the pathogenesis of renal hypertensive injury in the Dahl salt-sensitive rat model. The purpose of this review is to describe the experimental approaches that we have undertaken to identify the source of excess reactive oxygen species production in the renal outer medulla of Dahl salt-sensitive rats and the resulting evidence that the voltage-gated proton channel Hv1 mediates augmented superoxide production and contributes to renal medullary oxidative stress and renal injury. In addition, we will attempt to point out areas of current controversy, as well as propose areas in which further experimental studies are likely to move the field forward. The content of the following review was presented as part of the Water and Electrolyte Homeostasis Section New Investigator Award talk at Experimental Biology 2014.
Collapse
Affiliation(s)
- Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Avirup Guha
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Carly A Stilphen
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Jingping Sun
- Department of Physiology, Augusta University, Augusta, Georgia; and
| | - Chunhua Jin
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Mehrotra P, Patel JB, Ivancic CM, Collett JA, Basile DP. Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int 2015; 88:776-84. [PMID: 26200947 PMCID: PMC4589446 DOI: 10.1038/ki.2015.200] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Exposure of rats to elevated dietary salt following recovery from acute kidney injury (AKI) accelerates the transition to chronic kidney disease (CKD), and is dependent on lymphocyte activity. Here we tested whether high salt diet triggers lymphocyte activation in postischemic kidneys to worsen renal inflammation and fibrosis. Male Sprague-Dawley rats on a 0.4% salt diet were subjected to left unilateral ischemia-reperfusion and allowed to recover for 5 weeks. This resulted in a mild elevation of CD4(+) T cells relative to sham animals. Contralateral unilateral nephrectomy and elevated dietary salt (4%) for 4 extra weeks hastened CKD and interstitial fibrosis. Activated T cells were increased in the kidney threefold after 4 weeks of elevated dietary salt exposure relative to post-AKI rats before salt feeding. The T cell subset was largely positive for IL-17, indicative of Th-17 cells. Because angiotensin II activity may influence lymphocyte activation, injured rats were given the AT1R antagonist, losartan, along with high salt diet. This significantly reduced the number of renal Th-17 cells to levels of sham rats, and significantly reduced the salt-induced increase in fibrosis to about half. In vitro studies in AKI-primed CD4(+) T cells indicated that angiotensin II and extracellular sodium enhanced, and losartan inhibited, IL-17 expression. Thus, dietary salt modulates immune cell activity in postischemic recovering kidneys because of the activity of local RAS, suggesting the participation of these cells in CKD progression post-AKI.
Collapse
Affiliation(s)
- Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jaymin B Patel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carlie M Ivancic
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
40
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 515] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
41
|
Hsu CY, Hsu RK, Yang J, Ordonez JD, Zheng S, Go AS. Elevated BP after AKI. J Am Soc Nephrol 2015; 27:914-23. [PMID: 26134154 DOI: 10.1681/asn.2014111114] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/19/2015] [Indexed: 01/08/2023] Open
Abstract
The connection between AKI and BP elevation is unclear. We conducted a retrospective cohort study to evaluate whether AKI in the hospital is independently associated with BP elevation during the first 2 years after discharge among previously normotensive adults. We studied adult members of Kaiser Permanente Northern California, a large integrated health care delivery system, who were hospitalized between 2008 and 2011, had available preadmission serum creatinine and BP measures, and were not known to be hypertensive or have BP>140/90 mmHg. Among 43,611 eligible patients, 2451 experienced AKI defined using observed changes in serum creatinine concentration measured during hospitalization. Survivors of AKI were more likely than those without AKI to have elevated BP--defined as documented BP>140/90 mmHg measured during an ambulatory, nonemergency department visit--during follow-up (46.1% versus 41.2% at 730 days; P<0.001). This difference was evident within the first 180 days (30.6% versus 23.1%; P<0.001). In multivariable models, AKI was independently associated with a 22% (95% confidence interval, 12% to 33%) increase in the odds of developing elevated BP during follow-up, with higher adjusted odds with more severe AKI. Results were similar in sensitivity analyses when elevated BP was defined as having at least two BP readings of >140/90 mmHg or those with evidence of CKD were excluded. We conclude that AKI is an independent risk factor for subsequent development of elevated BP. Preventing AKI during a hospitalization may have clinical and public health benefits beyond the immediate hospitalization.
Collapse
Affiliation(s)
- Chi-yuan Hsu
- Departments of Medicine and Division of Research, Kaiser Permanente Northern California, Oakland, California;
| | | | - Jingrong Yang
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Juan D Ordonez
- Division of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, California; and
| | - Sijie Zheng
- Division of Nephrology, Kaiser Permanente Oakland Medical Center, Oakland, California; and
| | - Alan S Go
- Division of Research, Kaiser Permanente Northern California, Oakland, California; Department of Health Research and Policy, Stanford University School of Medicine, Stanford, California Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, California
| |
Collapse
|
42
|
Huen SC, Parikh CR. Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol 2015; 309:F406-13. [PMID: 26084933 DOI: 10.1152/ajprenal.00682.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is a common hospital complication. There are no effective treatments to minimize kidney injury or limit associated morbidity and mortality. Currently, serum creatinine and urine output remain the gold standard used clinically in the diagnosis of AKI. Several novel biomarkers can diagnose AKI earlier than elevations of serum creatinine and changes in urine output. Recent long-term observational studies have elucidated a subgroup of patients who have positive biomarkers of AKI but do not meet criteria for AKI by serum creatinine or urine output, termed subclinical AKI. These patients with subclinical AKI have increased risk of both short- and long-term mortality. In this review, we will highlight the implications of what these patients may represent and the need for better phenotyping of AKI by etiology, severity of injury, and ability to recover. We will discuss two AKI biomarkers, neutrophil gelatinase-associated lipocalin (NGAL) and breast regression protein-39 (BRP-39)/YKL-40, that exemplify the need to characterize the complexity of the biological meaning behind the biomarker, beyond elevated levels reporting on tissue injury. Ultimately, careful phenotyping of AKI will lead to identification of therapeutic targets and appropriate patient populations for clinical trials.
Collapse
Affiliation(s)
- Sarah C Huen
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Chirag R Parikh
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and Program of Applied Translational Research, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Basile DP, Yoder MC. Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. Cardiovasc Hematol Disord Drug Targets 2015; 14:3-14. [PMID: 25088124 DOI: 10.2174/1871529x1401140724093505] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 01/11/2023]
Abstract
Acute kidney injury is associated with alterations in vascular tone that contribute to an overall reduction in GFR. Studies in animal models indicate that ischemia triggers alterations in endothelial function that contribute significantly to the overall degree and severity of a kidney injury. Putative mediators of vasoconstriction that may contribute to the initial loss of renal blood flow and GFR are highlighted. In addition, there is discussion of how intrinsic damage to the endothelium impairs homeostatic responses in vascular tone as well as promotes leukocyte adhesion and exacerbating the reduction in renal blood flow. The timing of potential therapies in animal models as they relate to the evolution of AKI, as well as the limitations of such approaches in the clinical setting are discussed. Finally, we discuss how acute kidney injury induces permanent alterations in renal vascular structure. We posit that the cause of the sustained impairment in kidney capillary density results from impaired endothelial growth responses and suggest that this limitation is a primary contributing feature underlying progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Mervin C Yoder
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Med Sci 334, Indianapolis, IN 46202, USA.
| |
Collapse
|
44
|
Ge YZ, Wu R, Xin H, Liu H, Lu TZ, Zhao YC, Shen JW, Hu ZK, Yu P, Zhou LH, Xu LW, Xu Z, Wu JP, Li WC, Zhu JG, Jia RP. Effects of ischemic preconditioning on the systemic and renal hemodynamic changes in renal ischemia reperfusion injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1128-1140. [PMID: 25972999 PMCID: PMC4396246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) could protect against subsequent renal ischemia reperfusion injury (IRI). However, the mechanisms underlying IPC remain far from complete. Hence, we explored the effects of IPC on the renal and systemic hemodynamic changes, renal function and morphology, as well the involvement of endothelial and inducible nitric oxide synthase (eNOS/iNOS), and nitric oxide (NO). METHODS Male Sprague-Dawley rats were randomly divided into five groups after right-side nephrectomy: Sham group (surgery without vascular clamping); IRI group (the left renal artery was clamped for 45 min); IPC group (pretreated with 15 min of ischemia and 10 min of reperfusion); IPC + vehicle group (administrated with 0.9% saline 5 min before IPC); and IPC + N(G)-nitro-L-arginine methylester (L-NAME) group (pretreated with L-NAME 5 min prior to IPC). The renal and systemic hemodynamic parameters, renal function and morphology, as well as eNOS, iNOS, and NO expression levels in the kidneys were measured at the indicated time points after reperfusion. RESULTS IPC rats exhibited significant improvements in renal function, morphology, and renal artery blood flow (RABF), without obvious influence on the systemic hemodynamics and renal vein blood flow. Increased eNOS, iNOS, and NO expression levels were detected in the kidneys of IPC rats 24 h after reperfusion. Furthermore, the beneficial effects were fully abolished by the administration of L-NAME. CONCLUSIONS The results suggest that IPC contributes to early restoration of RABF, probably through eNOS/iNOS-mediated NO production, thereby alleviating the renal dysfunction and histological damage caused by IRI.
Collapse
Affiliation(s)
- Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Hui Xin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Hao Liu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine88 Jiefang Road, Hangzhou 310009, China
| | - Tian-Ze Lu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - You-Cai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jiang-Wei Shen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Ultrasound and Radiology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Zhi-Kai Hu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Department of Ultrasound and Radiology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Peng Yu
- Department of Urology, The First Hospital of Nanchang, Nanchang University128 Xiangshan North Road, Nanchang 330008, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jian-Ping Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Wen-Cheng Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Jia-Geng Zhu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
- Center for Renal Transplantation, Nanjing First Hospital, Nanjing Medical University68 Changle Road, Nanjing 210006, China
| |
Collapse
|
45
|
Das S, Mattson DL. Exogenous L-arginine attenuates the effects of angiotensin II on renal hemodynamics and the pressure natriuresis-diuresis relationship. Clin Exp Pharmacol Physiol 2014; 41:270-8. [PMID: 24472006 DOI: 10.1111/1440-1681.12212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/22/2013] [Accepted: 12/14/2013] [Indexed: 02/05/2023]
Abstract
Administration of exogenous L-arginine (L-Arg) attenuates angiotensin-II (AngII)-mediated hypertension and kidney disease in rats. The present study assessed renal hemodynamics and pressure diuresis-natriuresis in anaesthetized rats infused with vehicle, AngII (20 ng/kg per min i.v.) or AngII + L-Arg (300 μg/kg per min i.v.). Experiments in isolated aortic rings were carried out to assess L-Arg effects on the vasculature. Increasing renal perfusion pressure (RPP) from ~100 to 140 mmHg resulted in a nine- to tenfold increase in urine flow and sodium excretion rate in control animals. In comparison, AngII infusion significantly reduced renal blood flow (RBF) and glomerular filtration rate (GFR) by 40-42%, and blunted the pressure-dependent increase in urine flow and sodium excretion rate by 54-58% at elevated RPP. Supplementation of L-Arg reversed the vasoconstrictor effects of AngII and restored pressure-dependent diuresis to levels not significantly different from control rats. Dose-dependent contraction to AngII (10(-10) mol/L to 10(-7) mol/L) was observed with a maximal force equal to 27 ± 3% of the response to 10(-5) mol/L phenylephrine. Contraction to 10(-7) mol/L AngII was blunted by 75 ± 3% with 10(-4) mol/L L-Arg. The influence of L-Arg to blunt AngII-mediated contraction was eliminated by endothelial denudation or incubation with nitric oxide synthase inhibitors. Furthermore, the addition of 10(-3) mol/L cationic or neutral amino acids, which compete with L-Arg for cellular uptake, blocked the effect of L-Arg. Anionic amino acids did not influence the effects of L-Arg on AngII-mediated contraction. These studies show that L-Arg blunts AngII-mediated vascular contraction by an endothelial- and nitric oxide synthase-dependent mechanism involving cellular uptake of L-Arg.
Collapse
Affiliation(s)
- Satarupa Das
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
46
|
Polichnowski AJ, Lan R, Geng H, Griffin KA, Venkatachalam MA, Bidani AK. Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J Am Soc Nephrol 2014; 25:1496-507. [PMID: 24511135 DOI: 10.1681/asn.2013040359] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Preexisting CKD may affect the severity of and/or recovery from AKI. We assessed the impact of prior graded normotensive renal mass reduction on ischemia-reperfusion-induced AKI. Rats underwent 40 minutes of ischemia 2 weeks after right uninephrectomy and surgical excision of both poles of the left kidney (75% reduction of renal mass), right uninephrectomy (50% reduction of renal mass), or sham reduction of renal mass. The severity of AKI was comparable among groups, which was reflected by similarly increased serum creatinine (SCr; approximately 4.5 mg/dl) at 2 days, tubule necrosis at 3 days, and vimentin-expressing regenerating tubules at 7 days postischemia-reperfusion. However, SCr remained elevated compared with preischemia-reperfusion values, and more tubules failed to differentiate during late recovery 4 weeks after ischemia-reperfusion in rats with 75% renal mass reduction relative to other groups. Tubules that failed to differentiate continued to produce vimentin, exhibited vicarious proliferative signaling, and expressed less vascular endothelial growth factor but more profibrotic peptides. The disproportionate failure of regenerating tubules to redifferentiate in rats with 75% renal mass reduction associated with more severe capillary rarefaction and greater tubulointerstitial fibrosis. Furthermore, initially normotensive rats with 75% renal mass reduction developed hypertension and proteinuria, 2-4 weeks postischemia-reperfusion. In summary, severe (>50%) renal mass reduction disproportionately compromised tubule repair, diminished capillary density, and promoted fibrosis with hypertension after ischemia-reperfusion-induced AKI in rats, suggesting that accelerated declines of renal function may occur after AKI in patients with preexisting CKD.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Karen A Griffin
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| | | | - Anil K Bidani
- Division of Nephrology and Hypertension, Department of Medicine, Loyola University and Hines Veterans Affaris Hospital, Maywood, Illinois; and
| |
Collapse
|
47
|
Abstract
Chronic blood pressure is maintained within very narrow limits around an average value. However, the multitude of physiologic processes that participate in blood pressure control present a bewildering array of possibilities to explain how such tight control of arterial pressure is achieved. Guyton and Coleman and colleagues addressed this challenge by creating a mathematical model that integrated the short- and long-term control systems for overall regulation of the circulation. The hub is the renal-body fluid feedback control system, which links cardiac function and vascular resistance and capacitance with fluid volume homeostasis as the foundation for chronic blood pressure control. The cornerstone of that system is renal sodium excretory capability, which is defined by the direct effect of blood pressure on urinary sodium excretion, that is, "pressure natriuresis." Steady-state blood pressure is the pressure at which pressure natriuresis balances sodium intake over time; therefore, renal sodium excretory capability is the set point for chronic blood pressure. However, this often is misinterpreted as dismissing, or minimizing, the importance of nonrenal mechanisms in chronic blood pressure control. This article explains the renal basis for the blood pressure set point by focusing on the absolute dependence of our survival on the maintenance of sodium balance. Two principal threats to sodium balance are discussed: (1) a change in sodium intake or renal excretory capability and (2) a change in blood pressure. In both instances, circulatory homeostasis is maintained because the sodium balance blood pressure set point is reached.
Collapse
Affiliation(s)
- Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta, Georgia, USA.
| |
Collapse
|
48
|
Hammad FT, Al-Salam S, Lubbad L. Does aliskiren protect the kidney following ischemia reperfusion injury? Physiol Res 2013; 62:681-90. [PMID: 23869885 DOI: 10.33549/physiolres.932485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effect of blocking the first and rate-limiting step in renin-angiotensin cascade on the renal function in ischemia reperfusion injury has not been previously investigated. We investigated the effect of aliskiren, the first approved direct oral renin inhibitor, on the alterations in renal functional parameters in this condition. Wistar rats underwent left renal ischemia for 40 min. Group-1 received normal saline whereas Group-2 received aliskiren (30 mg/kg/day) by gavage for 6 days commencing one day before IRI. The hemodynamic and tubular functions and gene expression of neutrophil gelatinase-associated lipocalin (NGAL) and plasminogen activating inhibitor (PAI-1) in the right and left kidneys were measured five days following the IRI. Comparing Group-1 and Group-2, the left renal blood flow was significantly higher in Group-2 (1.28+/-0.36 vs. 0.39+/-0.05, P=0.007). Left kidney glomerular filtration rate was also higher in Group-2 but did not reach statistical significance (0.18+/-0.05 vs. 0.10+/-0.02, P=0.07). The left renal FE(Na) was significantly lower in Group-2 (29.9+/-6.4 vs. 49.7+/-7.8, P=0.03). Aliskiren also caused a significant decrease in the gene expression of both NGAL and PAI-1 in the left ischemic kidney. In conclusions, the administration of aliskiren before and after IRI appears to have ameliorated the IRI effect on the total renal artery blood flow, fractional excretion of sodium and gene expression of both NGAL and PAI-1 indicating a renoprotective effects in IRI.
Collapse
Affiliation(s)
- F T Hammad
- Department of Surgery, College of Medicine and Health Sciences, Al Ain, United Arab Emirates.
| | | | | |
Collapse
|
49
|
Zager RA, Johnson ACM, Andress D, Becker K. Progressive endothelin-1 gene activation initiates chronic/end-stage renal disease following experimental ischemic/reperfusion injury. Kidney Int 2013; 84:703-12. [PMID: 23698233 PMCID: PMC3788861 DOI: 10.1038/ki.2013.157] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
This study assessed whether endothelin-1 (ET-1) helps mediate postischemic acute kidney injury (AKI) progression to chronic kidney disease (CKD). The impact(s) of potent ETA or ETB receptor-specific antagonists (Atrasentan and BQ-788, respectively) on disease progression were assessed 24 h or 2 weeks following 30 min of unilateral ischemia in CD-1 mice. Unilateral ischemia caused progressive renal ET-1 protein/mRNA increases with concomitant ETA, but not ETB, mRNA elevations. Extensive histone remodeling consistent with gene activation and increased RNA polymerase II (Pol II) binding occurred at the ET-1 gene. Unilateral ischemia produced progressive renal injury as indicated by severe histologic injury and a 40% loss of renal mass. Pre- and post-ischemia or just postischemic treatment with Atrasentan conferred dramatic protective effects such as decreased tubule/microvascular injury, normalized tissue lactate, and total preservation of renal mass. Nuclear KI-67 staining was not increased by Atrasentan, implying that increased tubule proliferation was not involved. Conversely, ETB blockade had no protective effect. Thus, our findings provide the first evidence that ET-1 operating through ETA can have a critical role in ischemic AKI progression to CKD. Blockade of ETA provided dramatic protection, indicating the functional significance of these results.
Collapse
Affiliation(s)
- Richard A Zager
- 1] The Department of Medicine, University of Washington, Seattle, Washington, USA [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | |
Collapse
|
50
|
Pereira MB, Zanetta DMT, Abdulkader RCRM. The real importance of pre-existing comorbidities on long-term mortality after acute kidney injury. PLoS One 2012; 7:e47746. [PMID: 23082206 PMCID: PMC3474793 DOI: 10.1371/journal.pone.0047746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 11/16/2022] Open
Abstract
Background The causes of death on long-term mortality after acute kidney injury (AKI) have not been well studied. The purpose of the study was to evaluate the role of comorbidities and the causes of death on the long-term mortality after AKI. Methodology/Principal Findings We retrospectively studied 507 patients who experienced AKI in 2005–2006 and were discharged free from dialysis. In June 2008 (median: 21 months after AKI), we found that 193 (38%) patients had died. This mortality is much higher than the mortality of the population of São Paulo City, even after adjustment for age. A multiple survival analysis was performed using Cox proportional hazards regression model and showed that death was associated with Khan’s index indicating high risk [adjusted hazard ratio 2.54 (1.38–4.66)], chronic liver disease [1.93 (1.15–3.22)], admission to non-surgical ward [1.85 (1.30–2.61)] and a second AKI episode during the same hospitalization [1.74 (1.12–2.71)]. The AKI severity evaluated either by the worst stage reached during AKI (P = 0.20) or by the need for dialysis (P = 0.12) was not associated with death. The causes of death were identified by a death certificate in 85% of the non-survivors. Among those who died from circulatory system diseases (the main cause of death), 59% had already suffered from hypertension, 34% from diabetes, 47% from heart failure, 38% from coronary disease, and 66% had a glomerular filtration rate <60 previous to the AKI episode. Among those who died from neoplasms, 79% already had the disease previously. Conclusions Among AKI survivors who were discharged free from dialysis the increased long-term mortality was associated with their pre-existing chronic conditions and not with the severity of the AKI episode. These findings suggest that these survivors should have a medical follow-up after hospital discharge and that all efforts should be made to control their comorbidities.
Collapse
Affiliation(s)
- Mariana B Pereira
- Division of Nephrology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|