1
|
Chuang HJ, Chiu L, Liao BJ, Chang CY, Wu GC, Tseng YC, Chou MY, Hwang PP. Environmental acidification drives inter-organ energy mobilization to enhance reproductive performance in medaka (Oryzias latipes). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136197. [PMID: 39442299 DOI: 10.1016/j.jhazmat.2024.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Anthropogenically environmental acidification impacts aquatic organisms, including teleosts, the largest group of vertebrates. Despite its significance, how teleosts allocate nutrient and energy among their organs to cope with acidic stress remains unclear. Our integrated analysis of physiological, metabolic, and gene expression data reveals that Japanese medaka (Oryzias latipes) mobilize energy resources among organs in response to acidic conditions. We found that the muscles lost carbohydrates and proteins and the liver accumulates all macronutrients in both sexes. Notably, female-specific energy mobilization between the liver and ovary were triggered by estrogen signaling, resulting in improved oocyte maturation and ovulation. Female produced more offspring under acidic stress. Furthermore, the offspring embryos exhibited smaller diameters and earlier hatching but demonstrated growth rates and acid tolerance. These metabolic changes suggest a trade-off in energy allocation by suppressing basal maintenance (33 % decrease in oxygen consumption) and growth (25 % decrease in muscle mass) but enhancing energy storage (159 % increase in liver mass in males and 127 % in females) and reproduction (165 % increase in ovary mass). This reallocation may improve medaka fitness and population sustainability in acidic environments. Further investigation into more species is needed to project the survival of aquatic animals in an acidified future.
Collapse
Affiliation(s)
- Hsin-Ju Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ling Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Jun Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Yung Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
2
|
Wieërs MLAJ, Beynon-Cobb B, Visser WJ, Attaye I. Dietary acid load in health and disease. Pflugers Arch 2024; 476:427-443. [PMID: 38282081 PMCID: PMC11006742 DOI: 10.1007/s00424-024-02910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Maintaining an appropriate acid-base equilibrium is crucial for human health. A primary influencer of this equilibrium is diet, as foods are metabolized into non-volatile acids or bases. Dietary acid load (DAL) is a measure of the acid load derived from diet, taking into account both the potential renal acid load (PRAL) from food components like protein, potassium, phosphorus, calcium, and magnesium, and the organic acids from foods, which are metabolized to bicarbonate and thus have an alkalinizing effect. Current Western diets are characterized by a high DAL, due to large amounts of animal protein and processed foods. A chronic low-grade metabolic acidosis can occur following a Western diet and is associated with increased morbidity and mortality. Nutritional advice focusing on DAL, rather than macronutrients, is gaining rapid attention as it provides a more holistic approach to managing health. However, current evidence for the role of DAL is mainly associative, and underlying mechanisms are poorly understood. This review focusses on the role of DAL in multiple conditions such as obesity, cardiovascular health, impaired kidney function, and cancer.
Collapse
Affiliation(s)
- Michiel L A J Wieërs
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Beverley Beynon-Cobb
- Department of Nutrition & Dietetics, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Wesley J Visser
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Dietetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Nagami GT, Kraut JA. The Role of the Endocrine System in the Regulation of Acid-Base Balance by the Kidney and the Progression of Chronic Kidney Disease. Int J Mol Sci 2024; 25:2420. [PMID: 38397097 PMCID: PMC10889389 DOI: 10.3390/ijms25042420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic acid-base status is primarily determined by the interplay of net acid production (NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II, endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid-base balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD have included administration of medications which inhibit the production or action of deleterious hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several of these hormones, treatment of CKD should also include administration of base to correct the metabolic acidosis.
Collapse
Affiliation(s)
- Glenn T. Nagami
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jeffrey A. Kraut
- Nephrology Section, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA;
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Salcedo-Betancourt JD, Moe OW. The Effects of Acid on Calcium and Phosphate Metabolism. Int J Mol Sci 2024; 25:2081. [PMID: 38396761 PMCID: PMC10889523 DOI: 10.3390/ijms25042081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A variety of changes in mineral metabolism aiming to restore acid-base balance occur in acid loading and metabolic acidosis. Phosphate plays a key role in defense against metabolic acidosis, both as an intracellular and extracellular buffer, as well as in the renal excretion of excess acid in the form of urinary titratable acid. The skeleton acts as an extracellular buffer in states of metabolic acidosis, as the bone matrix demineralizes, leading to bone apatite dissolution and the release of phosphate, calcium, carbonate, and citrate into the circulation. The renal handling of calcium, phosphate and citrate is also affected, with resultant hypercalciuria, hyperphosphaturia and hypocitraturia.
Collapse
Affiliation(s)
- Juan D. Salcedo-Betancourt
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Orson W. Moe
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Mathur V, Reaven NL, Funk SE, Ferguson TW, Tangri N. Association of body mass index with the development of metabolic acidosis in patients with chronic kidney disease. Obes Sci Pract 2023; 9:609-617. [PMID: 38090684 PMCID: PMC10712406 DOI: 10.1002/osp4.672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 05/29/2024] Open
Abstract
Aims Higher body mass index (BMI) is associated with higher bone mass and bone serves as a buffer during the development of metabolic acidosis. The authors sought to examine the relationship between BMI and metabolic acidosis in patients with chronic kidney disease (CKD). Materials and Methods The study utilized a large US longitudinal data repository including over 103 million patients from healthcare provider organizations to evaluate the relationship between the exposure variable (BMI) and the prevalence and incidence of metabolic acidosis among patients with estimated glomerular filtration rate <60 ml/min/1.73 m2. Incident metabolic acidosis was identified at the first of two consecutive post-index serum bicarbonate values, 10-365 days apart, between 12 and <22 mEq/L in patients with normal index serum bicarbonate. Cox proportional hazard models were adjusted for multiple variables including demographics, comorbidities, income, education, and kidney function. Results 103,766 patients qualified for this study; 6472 (6.2%) had metabolic acidosis at index. An inverse association between BMI category and metabolic acidosis was observed for both baseline (prevalence) and new-onset (incidence) metabolic acidosis. Compared to BMI category of 18.5 to <25 kg/m2, each category of incrementally higher BMI was associated with a decreasing risk of incident metabolic acidosis; the adjusted hazard ratios (95% confidence interval) were 0.866 (0.824-0.911), 0.770 (0.729-0.813), 0.664 (0.622-0.709), and 0.612 (0.571-0.655) for BMI 25 to <30, 30 to <35, 35 to <40, and 40+ kg/m2, respectively. Conclusions Among patients with CKD, an incremental increase in BMI was inversely associated with both the prevalence and incidence of metabolic acidosis. These associations suggest that increased body weight may protect against the development of metabolic acidosis, a risk factor for progressive loss of kidney function.
Collapse
Affiliation(s)
| | | | | | - Thomas W. Ferguson
- Department of Internal MedicineMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Navdeep Tangri
- Department of Internal MedicineMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
6
|
Ring T. Strong ions and charge-balance. Scand J Clin Lab Invest 2023; 83:111-118. [PMID: 36811448 DOI: 10.1080/00365513.2023.2180658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
It has been shown that the ability to predict the pH in any chemically characterized fluid, together with its buffer-capacity and acid content can be based on the requirement of electroneutrality, conservation of mass, and rules of dissociation as provided by physical chemistry. More is not required, and less is not enough. The charge in most biological fluids is dominated by the constant charge on the completely dissociated strong ions but, nonetheless, a persistent narrative in physiology has problematized the notion that these have any role at all in acid-base homeostasis. While skepticism is always to be welcomed, some common arguments against the importance of strong ions are examined and refuted here. We find that the rejection of the importance of strong ions comes with the prize that even very simple systems such as fluids containing nothing else, or solutions of sodium bicarbonate in equilibrium with known tensions of CO2 become incomprehensible. Importantly, there is nothing fundamentally wrong with the Henderson-Hasselbalch equation but the idea that it is sufficient to understand even simple systems is unfounded. What it lacks for a complete description is a statement of charge-balance including strong ions, total buffer concentrations, and water dissociation.
Collapse
Affiliation(s)
- Troels Ring
- Department of Biomedicine, Aarhus University, Århus C, Denmark
| |
Collapse
|
7
|
Gholami F, Bahrampour N, Samadi M, Rasaei N, Yarizadeh H, Naghshi S, Mirzaei K. The association of dietary acid load (DAL) with estimated skeletal muscle mass and bone mineral content: a cross-sectional study. BMC Nutr 2023; 9:31. [PMID: 36788599 PMCID: PMC9926757 DOI: 10.1186/s40795-022-00658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/21/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND & AIMS Dietary patterns that promote mild metabolic acidosis may have a negative effect on bone and muscle, and a high dietary acid load (DAL) may be detrimental to skeletal muscle mass and bone mineral content. However, the association between skeletal muscle mass and bone mineral content with dietary acid load has not been consistently reported in previous studies. The objective of the study was to evaluate the association of potential renal net acid load (PRAL) and net endogenous acid production (NEAP) with bone mineral content and skeletal muscle mass in pre-menopause women with overweight or obesity in Iran. METHOD Three hundred and ninety women with a body mass index (BMI) of 25 were included in this cross-sectional study. We used a validated 147-item semi-quantitative food frequency questionnaire (FFQ) for evaluating the dietary intake. Based on the dietary data, potential renal net acid load (PRAL) and net endogenous acid production (NEAP) were calculated. Muscle mass and bone mineral content were estimated by a bioelectrical impedance analyzer (BIA). RESULTS After controlling for potential confounders, we discovered a significant linear relationship between PRAL (β = -0.027, 95%CI = -0.049 to -0.004, P = 0.02) and NEAP (β = -0.05, 95%CI = -0.097 to -0.003, P = 0.03) and skeletal muscle mass index. However, there was no significant difference between SMM and BMC across PRAL and NEAP tertiles. CONCLUSION PRAL and NEAP were found to be inversely related to skeletal muscle mass index among overweight/obese women. Further research is required to establish whether this relationship is important for musculoskeletal health in these populations.
Collapse
Affiliation(s)
- Fatemeh Gholami
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155 Iran
| | - Niki Bahrampour
- grid.411463.50000 0001 0706 2472Department of Nutrition, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mahsa Samadi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155 Iran
| | - Niloufar Rasaei
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155 Iran
| | - Habib Yarizadeh
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155 Iran
| | - Sina Naghshi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155 Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O Box 6446, Tehran, 14155, Iran.
| |
Collapse
|
8
|
Uribarri J, Goldfarb DS, Raphael KL, Rein JL, Asplin JR. Beyond the Urine Anion Gap: In Support of the Direct Measurement of Urinary Ammonium. Am J Kidney Dis 2022; 80:667-676. [PMID: 35810828 DOI: 10.1053/j.ajkd.2022.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/10/2022] [Indexed: 02/02/2023]
Abstract
Ammonium is a major urinary buffer that is necessary for the normal excretion of the daily acid load. Its urinary rate of excretion (UNH4) may be increased several fold in the presence of extrarenal metabolic acidosis. Therefore, measurement of UNH4 can provide important clues about causes of metabolic acidosis. Because UNH4 is not commonly measured in clinical laboratories, the urinary anion gap (UAG) was proposed as its surrogate about 4 decades ago, and it is still frequently used for that purpose. Several published studies strongly suggest that UAG is not a good index of UNH4 and support the concept that direct measurement of UNH4 is an important parameter to define in clinical nephrology. Low UNH4 levels have recently been found to be associated with a higher risk of metabolic acidosis, loss of kidney function, and death in persons with chronic kidney disease, while surrogates like the UAG do not recapitulate this risk. In order to advance the field it is necessary for the medical community to become more familiar with UNH4 levels in a variety of clinical settings. Herein, we review the literature, searching for available data on UNH4 under normal and various pathological conditions, in an attempt to establish reference values to interpret UNH4 results if and when UNH4 measurements become available as a routine clinical test. In addition, we present original data in 2 large populations that provide further evidence that the UAG is not a good predictor of UNH4. Measurement of urine NH4 holds promise to aid clinicians in the care of patients, and we encourage further research to determine its best diagnostic usage.
Collapse
Affiliation(s)
- Jaime Uribarri
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Kalani L Raphael
- Oregon Health & Science University and VA Portland Health Care System, Portland, Oregon
| | - Joshua L Rein
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| |
Collapse
|
9
|
Ring T, Rees SE, Frische S. Acid content and buffer-capacity: a charge-balance perspective. Scand J Clin Lab Invest 2022; 82:356-362. [PMID: 35792720 DOI: 10.1080/00365513.2022.2092903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rational treatment and thorough diagnostic classification of acid-base disorders requires quantitative understanding of the mechanisms that generate and dissipate loads of acid and base. A natural precondition for this tallying is the ability to quantify the acid content in any specified fluid. Physical chemistry defines the pH-dependent charge on any buffer species, and also on strong ions on which, by definition, the charge is pH-invariant. Based, then, on the requirement of electroneutrality and conservation of mass, it was shown in 1914 that pH can be calculated and understood on the basis of the chemical composition of any fluid. Herein we first show that this specification for [H+] of the charge-balance model directly delivers the pH-dependent buffer-capacity as defined in the literature. Next, we show how the notion of acid transport as proposed in experimental physiology can be understood as a change in strong ion difference, ΔSID. Finally, based on Brønsted-Lowry theory we demonstrate that by defining the acid content as titratable acidity, this is equal to SIDref - SID, where SIDref is SID at pH 7.4. Thereby, any chemical situation is represented as a curve in a novel diagram with titratable acidity = SIDref - SID as a function of pH. For any specification of buffer chemistry, therefore, the change in acid content in the fluid is path invariant. Since constituents of SID and titratable acidity are additive, we thereby, based on first principles, have defined a new framework for modeling acid balance across a cell, a whole organ, or the whole-body.
Collapse
Affiliation(s)
- Troels Ring
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Stephen Edward Rees
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
10
|
Moe OW, Maalouf NM, Sakhaee K, Lederer E. Preclinical and Clinical Evidence of Effect of Acid on Bone Health. Adv Chronic Kidney Dis 2022; 29:381-394. [PMID: 36175076 PMCID: PMC11375989 DOI: 10.1053/j.ackd.2022.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acid can have ill effect on bone health in the absence of frank clinical acidosis but affecting the bone mioneral matrix and bone cells via complex pathways botyh ascute;y and chronically. While the reaction of bone to an acid load is conserved in evolution and is adaptive, the capacity can be overwhelmed resulting in dire consequences. The preclinical an clincl evidence of the acdi effect on bone is very convincing and the clinical evidence in both association and interventiopn studies are also quite credible, The adverse effects of acid on bone is underappreoicated, under-investigated, and the potential benefits of alkali therapy is not generrally known.
Collapse
Affiliation(s)
- Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX.
| | - Naim M Maalouf
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Khashayar Sakhaee
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Eleanor Lederer
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX; Medical Service, VA North Texas Health Care System, Dallas, TX
| |
Collapse
|
11
|
Gholami F, Naghshi S, Samadi M, Rasaei N, Mirzaei K. Dietary Acid Load and Bone Health: A Systematic Review and Meta-Analysis of Observational Studies. Front Nutr 2022; 9:869132. [PMID: 35600825 PMCID: PMC9120865 DOI: 10.3389/fnut.2022.869132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Findings on the association between dietary acid load (DAL) and bone health are conflicting. This study aimed to summarize available studies on the association between DAL and risk of fractures or bone mineral density (BMD) in adults. Online databases including PubMed, Scopus, and Embase were searched for relevant studies published up to June 2021, using pertinent keywords. We identified observational studies (cohort, case-control, and cross-sectional) investigating the association between DAL and risk of fractures or BMD, then selected studies following these reported criteria: RRs with corresponding 95% CIs for the relationship between DAL and fracture risk; correlation coefficients for the association between DAL and BMD; and mean ± SD of BMD values across the categories of DAL. Overall, 17 studies with 80545 individuals were included. There was no significant relationship between the PRAL and fracture risk (Pooled RR: 1.18; 95% confidence interval 0.98 to 1.41, I2 = 60.6%). Moreover, a similar association was observed between the NEAP and fracture risk (Pooled RR: 1.41, 95% CI: 0.79 to 2.52, I2 = 54.1%). The results of five studies from four publications revealed no significant association between dietary PRAL score and femoral and spinal BMD (WMD femoral = −0.01, 95% confidence interval: −0.02 to 0.01, I2 = 76.5%; WMD spinal = −0.01, 95% CI: −0.03 to 0.01, I2 = 56.7%). However, being in the highest category of NEAP was significantly associated with a lower femoral and spinal BMD (WMD femoral = −0.01, 95% CI: −0.02 to −0.00, I2 = 82.1%; WMD spinal = −0.02, 95% CI: −0.03 to −0.01, I2 = 93%). It was showed that adopting diets high in acidity was not associated with risk of fractures. We also found a significant negative relationship between NEAP and BMD. However, DAL based on PRAL was not associated with BMD.
Collapse
|
12
|
Bushinsky DA, Krieger NS. Effects of Acid on Bone. Kidney Int 2022; 101:1160-1170. [DOI: 10.1016/j.kint.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
13
|
Yamagata AS, Freire PP, Jones Villarinho N, Teles RHG, Francisco KJM, Jaeger RG, Freitas VM. Transcriptomic Response to Acidosis Reveals Its Contribution to Bone Metastasis in Breast Cancer Cells. Cells 2022; 11:cells11030544. [PMID: 35159353 PMCID: PMC8834614 DOI: 10.3390/cells11030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bone is the most common site of metastasis in breast cancer. Metastasis is promoted by acidosis, which is associated with osteoporosis. To investigate how acidosis could promote bone metastasis, we compared differentially expressed genes (DEGs) in MDA-MB-231 cancer cells in acidosis, bone metastasis, and bone metastatic tumors. The DEGs were identified using Biojupies and GEO2R. The expression profiles were assessed with Morpheus. The overlapping DEGs between acidosis and bone metastasis were compared to the bulk of the DEGs in terms of the most important genes and enriched terms using CytoHubba and STRING. The expression of the genes in this overlap filtered by secreted proteins was assessed in the osteoporosis secretome. The analysis revealed that acidosis-associated transcriptomic changes were more similar to bone metastasis than bone metastatic tumors. Extracellular matrix (ECM) organization would be the main biological process shared between acidosis and bone metastasis. The secretome genes upregulated in acidosis, bone metastasis, and osteoporosis-associated mesenchymal stem cells are enriched for ECM organization and angiogenesis. Therefore, acidosis may be more important in the metastatic niche than in the primary tumor. Acidosis may contribute to bone metastasis by promoting ECM organization. Untreated osteoporosis could favor bone metastasis through the increased secretion of ECM organization proteins.
Collapse
Affiliation(s)
- Ana Sayuri Yamagata
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
- Correspondence:
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Nícolas Jones Villarinho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ramon Handerson Gomes Teles
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Kelliton José Mendonça Francisco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| |
Collapse
|
14
|
Dissociation of Bone Resorption and Formation in Spaceflight and Simulated Microgravity: Potential Role of Myokines and Osteokines? Biomedicines 2022; 10:biomedicines10020342. [PMID: 35203551 PMCID: PMC8961781 DOI: 10.3390/biomedicines10020342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The dissociation of bone formation and resorption is an important physiological process during spaceflight. It also occurs during local skeletal unloading or immobilization, such as in people with neuromuscular disorders or those who are on bed rest. Under these conditions, the physiological systems of the human body are perturbed down to the cellular level. Through the absence of mechanical stimuli, the musculoskeletal system and, predominantly, the postural skeletal muscles are largely affected. Despite in-flight exercise countermeasures, muscle wasting and bone loss occur, which are associated with spaceflight duration. Nevertheless, countermeasures can be effective, especially by preventing muscle wasting to rescue both postural and dynamic as well as muscle performance. Thus far, it is largely unknown how changes in bone microarchitecture evolve over the long term in the absence of a gravity vector and whether bone loss incurred in space or following the return to the Earth fully recovers or partly persists. In this review, we highlight the different mechanisms and factors that regulate the humoral crosstalk between the muscle and the bone. Further we focus on the interplay between currently known myokines and osteokines and their mutual regulation.
Collapse
|
15
|
Díaz-Anadón L, Cardo L, Santos F, Gil-Peña H. Evaluation of urinary acidification in children: Clinical utility. Front Pediatr 2022; 10:1051481. [PMID: 36389372 PMCID: PMC9660234 DOI: 10.3389/fped.2022.1051481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The kidney plays a fundamental role in acid-base homeostasis by reabsorbing the filtered bicarbonate and by generating new bicarbonate, to replace that consumed in the buffering of non-volatile acids, a process that leads to the acidification of urine and the excretion of ammonium (NH4 +). Therefore, urine pH (UpH) and urinary NH4 + (UNH4 +) are valuable parameters to assess urinary acidification. The adaptation of automated plasma NH4 + quantification methods to measure UNH4 + has proven to be an accurate and feasible technique, with diverse potential indications in clinical practice. Recently, reference values for spot urine NH4 +/creatinine ratio in children have been published. UpH and UNH4 +, aside from their classical application in the study of metabolic acidosis, have shown to be useful in the identification of incomplete distal renal tubular acidosis (dRTA), an acidification disorder, without overt metabolic acidosis, extensively described in adults, and barely known in children, in whom it has been found to be associated to hypocitraturia, congenital kidney abnormalities and growth impairment. In addition, a low UNH4 + in chronic kidney disease (CKD) is a risk factor for glomerular filtration decay and mortality in adults, even in the absence of overt metabolic acidosis. We here emphasize on the need of measuring UpH and UNH4 + in pediatric population, establishing reference values, as well as exploring their application in metabolic acidosis, CKD and disorders associated with incomplete dRTA, including growth retardation of unknown cause.
Collapse
Affiliation(s)
- Lucas Díaz-Anadón
- Division of Pediatric Nephrology, Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain.,Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Leire Cardo
- Clinical Biochemistry Department, Laboratory of Medicine, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Fernando Santos
- Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain
| | - Helena Gil-Peña
- Division of Pediatric Nephrology, Department of Pediatrics, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain.,Department of Medicine, Faculty of Medicine, University of Oviedo, Oviedo, Asturias, Spain.,Section of Pediatrics, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
16
|
Galchenko A, Gapparova K, Sidorova E. The influence of vegetarian and vegan diets on the state of bone mineral density in humans. Crit Rev Food Sci Nutr 2021; 63:845-861. [PMID: 34723727 DOI: 10.1080/10408398.2021.1996330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are so many literatures about vegetarians being less prone to chronic, noninfectious diseases, which are, however, the main cause of the decline in quality of life and mortality in developed countries.However, according to various scientific sources, vegetarian and especially vegan diets often contain less saturated fats, protein, calcium, vitamins D and B12, or long-chain ω-3 PUFAs. One of the most common pathology associated with a predominantly plant diet is osteopenia and osteoporosis. An analysis of 13 studies has shown that vegetarians and vegans are at a higher risk of reducing of bone mineral density, thereby increasing the incidence of fractures.At the same time, plant-based diets are usually richer in many other micronutrients important for bone health: vitamins C and K, carotenoids, potassium, magnesium, manganese, copper, or silicon. Moreover, with the deepening of our knowledge about the role of nutrients in the body and the features of the nutritional status of the population, the quality of vegetarian and vegan diets also increases. They are less and less prone to micronutrient deficiencies. Recent studies show that BMD, as well as the risk of osteoporotic fractures, at least in vegetarians, equaled these indicators in omnivores.
Collapse
Affiliation(s)
- Alexey Galchenko
- Department of preventive diet therapy, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation.,Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - K Gapparova
- Department of preventive diet therapy, Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - E Sidorova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
17
|
Mitchell NS, Batch BC, Tyson CC. Retrospective cohort study of changes in estimated glomerular filtration rate for patients prescribed a low carb diet. Curr Opin Endocrinol Diabetes Obes 2021; 28:480-487. [PMID: 34392262 DOI: 10.1097/med.0000000000000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Obesity and diabetes contribute to chronic kidney disease (CKD) and accelerate the loss of kidney function. Low carbohydrate diets (LCDs) are associated with weight loss and improved diabetes control. Compared to the typical Western diet, LCDs contain more protein, so individuals with CKD are not included in studies of LCDs. Therefore, there are no studies of LCDs for weight loss and their effects on kidney function. RECENT FINDINGS Obesity, hyperglycemia, and hyperinsulinemia can be detrimental to kidney function. LCDs may improve kidney function in patients with obesity and diabetes because they are associated with weight loss, improve blood sugar control, and decrease endogenous insulin production and exogenous insulin requirements. SUMMARY In this study, for patients with mildly reduced and moderately to severely reduced kidney function who were prescribed an LCD, their estimated glomerular filtration rate (eGFR) was either unchanged or improved. For those with normal or elevated eGFR, their kidney function was slightly decreased. For those without diabetes, greater weight loss was associated with improved eGFR. Future studies should prospectively measure low carbohydrate dietary adherence and physical activity and directly measure changes in GFR and albuminuria for participants with CKD before and during that diet.
Collapse
Affiliation(s)
- Nia S Mitchell
- Duke University Department of Medicine, Division of General Internal Medicine
| | - Bryan C Batch
- Duke University Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition
| | - Crystal C Tyson
- Duke University Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
18
|
Abstract
Small-scale trials in patients with chronic kidney disease (CKD) 3-5 have shown that hypobicarbonatemic metabolic acidosis promotes progression of CKD. Accordingly, the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) guideline suggests base administration to patients with CKD when serum bicarbonate concentration ([HCO3ˉ]) is <22 mEq/L (~15% of non–dialysis-dependent patients with CKD). However, individuals with milder CKD largely maintain serum [HCO3ˉ] within the normal range (eubicarbonatemia) and yet can manifest hydrogen ion (H+) retention. Limited data in eubicarbonatemic patients with CKD 2 suggest that base administration ameliorates CKD progression. Furthermore, most patients with moderate and advanced CKD maintain a normal serum [HCO3ˉ], and of those, the vast majority most likely harbor masked H+ retention. The present review probes this expanded concept of metabolic acidosis of CKD: the eubicarbonatemic H+ retention or subclinical metabolic acidosis of CKD. It focuses on the high prevalence of the entity, its pathophysiologic features, its clinical course, and recent work on potential biomarkers of the condition. Further, it puts forward the urgent task of investigating definitively whether treatment with alkali of eubicarbonatemic H+ retention delays CKD progression. If proven true, such knowledge would trigger a paradigm shift in the indication for alkali therapy in CKD.
Collapse
Affiliation(s)
- Nicolaos E Madias
- Department of Medicine, Tufts University School of Medicine and Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center, Boston, MA
| |
Collapse
|
19
|
Krieger NS, Bushinsky DA. Metabolic Acidosis Regulates RGS16 and G-protein Signaling in Osteoblasts. Am J Physiol Renal Physiol 2021; 321:F424-F430. [PMID: 34396788 DOI: 10.1152/ajprenal.00166.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis stimulates cell-mediated net calcium efflux from bone mediated by increased osteoblastic cyclooxygenase 2 (COX2), leading to prostaglandin E2-induced stimulation of RANKL-induced osteoclastic bone resorption. The osteoblastic H+-sensing G-protein coupled receptor (GPCR), OGR1, is activated by acidosis and leads to increased bne resorption. As regulators of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral (NTL) or acidic (MET) medium. Cells were collected and RNA extracted for real time PCR analysis with mRNA levels normalized to RPL13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11 or RGS18mRNA did not differ between MET and NTL; however by 30' MET decreased RGS16 which persisted for 60' and 3h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gβγ signaling, was used to determine if downstream signaling by the βγ subunit was critical for the response to acidosis. Gallein decreased net Ca efflux from calvariae and COX2 and RANKL gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR, OGR1, to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
20
|
Abstract
Acid-related injury from chronic metabolic acidosis is recognized through growing evidence of its deleterious effects, including kidney and other organ injury. Progressive acid accumulation precedes the signature manifestation of chronic metabolic acidosis, decreased plasma bicarbonate concentration. Acid accumulation that is not enough to manifest as metabolic acidosis, known as eubicarbonatemic acidosis, also appears to cause kidney injury, with exacerbated progression of CKD. Chronic engagement of mechanisms to mitigate the acid challenge from Western-type diets also appears to cause kidney injury. Rather than considering chronic metabolic acidosis as the only acid-related condition requiring intervention to reduce kidney injury, this review supports consideration of acid-related injury as a continuum. This "acid stress" continuum has chronic metabolic acidosis at its most extreme end, and high-acid-producing diets at its less extreme, yet detrimental, end.
Collapse
Affiliation(s)
- Donald E. Wesson
- Department of Internal Medicine, Texas A&M Health Science Center College of Medicine, Dallas, Texas
| |
Collapse
|
21
|
Afzal M, Alharbi KS, Alzarea SI, Quazi AM, Ameeduzzafar Zafar, Patel DM, Patel AB, Trivedi R, Kazmi I, Al-Abaasi FA. Methanolic extract of Cucumis melo attenuates ethylene glycol-induced nephrolithiasis in Wistar rats. Urolithiasis 2021; 49:301-308. [PMID: 33835227 DOI: 10.1007/s00240-021-01263-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Evaluation of the effects of methanolic extract of Cucumis melo in ethylene glycol-induced nephrolithiasis on Wistar rats. 0.75% solution of ethylene glycol (EG) in payable water was given to produce nephrolithiasis on Wistar rats. The action of oral intake of methanolic extract of Cucumis melo seed in nephrolithiasis is studied and is matched with the action of oral intake of Cystone (standard) on Wistar rats. EG resulted in hyperoxaluria and deposition of calcium oxalate as well as raised urinary excretion of oxalate and calcium. Supplementation with methanolic extract of Cucumis melo seed decreased the increased renal oxalate, indicating a regulatory effect on oxalate formation endogenously. The outcomes stipulate that the seed of Cucumis melo is endowed with antinephrolithiatic action.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka, 72341, Saudi Arabia.
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka, 72341, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka, 72341, Saudi Arabia
| | | | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf, Sakaka, 72341, Saudi Arabia
| | | | | | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abaasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Zhang S, Ueno D, Ohira T, Kato H, Izawa T, Yamanouchi S, Yoshida Y, Takahashi A, Ohira Y. Depression of Bone Density at the Weight-Bearing Joints in Wistar Hannover Rats by a Simulated Mechanical Stress Associated With Partial Gravity Environment. Front Cell Dev Biol 2021; 9:707470. [PMID: 34381788 PMCID: PMC8352372 DOI: 10.3389/fcell.2021.707470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The partial gravity environment in space can negatively affect bone health. This survey aimed to study the reaction of different parts of the lower limb bones of rats to partial gravity and the effects of different degrees of gravity on these bony parts. We used 15 8-week-old male Wistar Hannover rats were used at the beginning of the experiment. The degree of mechanical stress was modified, but the ankle joint was maintained at ∼30°, ∼120°, or ∼160° with or without plaster fixation during 10-day hindlimb suspension. Computed tomography was performed to measure the bone parameters [bone mineral density (BMD), trabecular BMD, cortical BMD, and cortical thickness] of each studied group of the whole, proximal, middle, and distal femur and distal tibia. BMD, trabecular BMD, and cortical thickness of the distal femur and proximal tibia of the simulated mechanical stress associated with partial gravity groups were significantly lower than those of the control group; the effect of different degrees of gravity on the same area of hindlimb bone had no significant difference. The simulated mechanical stress associated with partial gravity had the most significant effect on the bone close to the knee joint, with the largest weight-bearing response.
Collapse
Affiliation(s)
- Shenke Zhang
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Daishin Ueno
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takashi Ohira
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan.,Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hisashi Kato
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
| | - Tetsuya Izawa
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | | | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Yoshinobu Ohira
- Research Center for Space and Medical Sciences, Doshisha University, Kyotanabe, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
23
|
The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021; 13:nu13072328. [PMID: 34371838 PMCID: PMC8308808 DOI: 10.3390/nu13072328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bone disorders are a common complication of chronic kidney disease (CKD), obesity and gut malabsorption. Secondary hyperparathyroidism (SHPT) is defined as an appropriate increase in parathyroid hormone (PTH) secretion, driven by either reduced serum calcium or increased phosphate concentrations, due to an underlying condition. The available evidence on the effects of dietary advice on secondary hyperparathyroidism confirms the benefit of a diet characterized by decreased phosphate intake, avoiding low calcium and vitamin D consumption (recommended intakes 1000-1200 mg/day and 400-800 UI/day, respectively). In addition, low protein intake in CKD patients is associated with a better control of SHPT risk factors, although its strength in avoiding hyperphosphatemia and the resulting outcomes are debated, mostly for dialyzed patients. Ultimately, a consensus on the effect of dietary acid loads in the prevention of SHPT is still lacking. In conclusion, a reasonable approach for reducing the risk for secondary hyperparathyroidism is to individualize dietary manipulation based on existing risk factors and concomitant medical conditions. More studies are needed to evaluate long-term outcomes of a balanced diet on the management and prevention of secondary hyperparathyroidism in at-risk patients at.
Collapse
|
24
|
The Influence of Dietary Interventions on Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Nutrients 2021; 13:nu13062065. [PMID: 34208727 PMCID: PMC8235119 DOI: 10.3390/nu13062065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease is a health problem whose prevalence is increasing worldwide. The kidney plays an important role in the metabolism of minerals and bone health and therefore, even at the early stages of CKD, disturbances in bone metabolism are observed. In the course of CKD, various bone turnover or mineralization disturbances can develop including adynamic hyperparathyroid, mixed renal bone disease, osteomalacia. The increased risk of fragility fractures is present at any age in these patients. Nutritional treatment of patients with advanced stages of CKD is aiming at prevention or correction of signs, symptoms of renal failure, avoidance of protein-energy wasting (PEW), delaying or prevention of the occurrence of mineral/bone disturbances, and delaying the start of dialysis. The results of studies suggest that progressive protein restriction is beneficial with the progression of renal insufficiency; however, other aspects of dietary management of CKD patients, including changes in sodium, phosphorus, and energy intake, as well as the source of protein and lipids (animal or plant origin) should also be considered carefully. Energy intake must cover patients' energy requirement, in order to enable correct metabolic adaptation in the course of protein-restricted regimens and prevent negative nitrogen balance and protein-energy wasting.
Collapse
|
25
|
Koppen A, Hunault CC, van Kleef RGDM, van Velzen AG, Westerink RHS, de Vries I, de Lange DW. Estimation of the risk of local and systemic effects in infants after ingestion of low-concentrated weak acids from descaling products. Clin Toxicol (Phila) 2021; 60:71-75. [PMID: 34121559 DOI: 10.1080/15563650.2021.1933511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The accidental ingestion of diluted household descaling products by infants is a phenomenon that poison control centers regularly encounter. Feeding infants with baby milk prepared with water from electric kettles still containing descaler is a common way of exposure. This study aimed to determine the risks related to ingestion of (diluted) descalers by infants. METHODS pH measurements were performed using acetic acid and three different commercially available electric kettle descalers. The pH of different dilutions was measured in the absence or presence of baby milk powder. In addition, an overview was made of pH values of different electric kettle descalers as given by the product information of the manufacturer. Finally, a simple pharmacokinetic (PK) model was used to predict changes in blood pH in infants after ingestion of acetic acid, which is the most commonly used descaler. RESULTS Several commercially available electric kettle descalers have a pH <2. Even after diluting such descalers up to 10 times the pH can remain low. The addition of milk powder increases the pH of descalers containing weaker acids, with a pH >1.5, while descalers with stronger acids and pH <1 show little pH increase after the addition of milk powder. Finally, a simple PBPK model for the ingestion of acetic acid predicted that the ingestion of larger amounts of acetic acid (>1000 mg) by an infant could result in relevant changes in blood pH. CONCLUSIONS Commercially available electric kettle descaling products may pose a health risk to infants in case of accidental ingestion since the pH of some of these products can be very low, even when diluted 10-times or in the presence of baby milk powder. Oral exposure of infants to the common descaler acetic acid, after accidental preparation of baby milk with cleaning vinegar, will probably not result in serious local effects, but changes in blood pH cannot be excluded when larger amounts of acetic acid are ingested.
Collapse
Affiliation(s)
- Arjen Koppen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudine C Hunault
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Regina G D M van Kleef
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherland
| | - Agnes G van Velzen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Remco H S Westerink
- Toxicology Division, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherland
| | - Irma de Vries
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dylan W de Lange
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Huo J, Li D, McKay C, Hoke M, Worcester E, Coe F. Relative contributions of urine sulfate, titratable urine anion, and GI anion to net acid load and effects of age. Physiol Rep 2021; 9:e14870. [PMID: 34042292 PMCID: PMC8157790 DOI: 10.14814/phy2.14870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Models of acid–base balance include acid production from (1) oxidation of sulfur atoms on amino acids and (2) metabolically produced organic acid anions. Acid load is balanced by alkali from metabolism of GI anions; thus, net acid production is equivalent to the sum of urine sulfate and organic anion (measured by titration in urine), minus GI anion. However, the relative contributions of these three sources of acid production in people eating free choice diets, and presumably in acid–base balance, have not been well studied. We collected 26 urines from 18 normal subjects (10 male) and 43 urine samples from 34 stone formers (17 male) and measured sulfate, organic anion, and components of GI anion and acid excretion in each; values were expressed as mEq/mmol creatinine. Mean values of the urine components, except creatinine and pH, did not differ between the sexes or groups. Urine organic acid and acid production varied directly with age (p ≤ 0.03). In a general linear model of acid excretion, the coefficients for sulfate, organic anion, and GI anion were 0.34 ± 0.09, 0.49 ± 0.12, and −0.51 ± 0.06, respectively, p ≤ 0.005, and the model accounted for 54% of the variance. A model for urine ammonia gave similar results. Urine organic anion is a significant contributor to total acid production and may be responsible for an increase in acid production with age.
Collapse
Affiliation(s)
- Jenny Huo
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Daniel Li
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Charles McKay
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Madeleine Hoke
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Elaine Worcester
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Fredric Coe
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Beyond dissolution: Xerostomia rinses affect composition and structure of biomimetic dental mineral in vitro. PLoS One 2021; 16:e0250822. [PMID: 33901259 PMCID: PMC8075190 DOI: 10.1371/journal.pone.0250822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
Xerostomia, known as dry mouth, is caused by decreased salivary flow. Treatment with lubricating oral rinses provides temporary relief of dry mouth discomfort; however, it remains unclear how their composition affects mineralized dental tissues. Therefore, the objective of this study was to analyze the effects of common components in xerostomia oral rinses on biomimetic apatite with varying carbonate contents. Carbonated apatite was synthesized and exposed to one of the following solutions for 72 hours at varying pHs: water-based, phosphorus-containing (PBS), mucin-like containing (MLC), or fluoride-containing (FC) solutions. Post-exposure results indicated that apatite mass decreased irrespective of pH and solution composition, while solution buffering was pH dependent. Raman and X-ray diffraction analysis showed that the addition of phosphorus, mucin-like molecules, and fluoride in solution decreases mineral carbonate levels and changed the lattice spacing and crystallinity of bioapatite, indicative of dissolution/recrystallization processes. The mineral recrystallized into a less-carbonated apatite in the PBS and MLC solutions, and into fluorapatite in FC. Tap water did not affect the apatite lattice structure suggesting formation of a labile carbonate surface layer on apatite. These results reveal that solution composition can have varied and complex effects on dental mineral beyond dissolution, which can have long term consequences on mineral solubility and mechanics. Therefore, clinicians should consider these factors when advising treatments for xerostomia patients.
Collapse
|
28
|
Tyson CC, Luciano A, Modliszewski JL, Corcoran DL, Bain JR, Muehlbauer M, Ilkayeva O, Pourafshar S, Allen J, Bowman C, Gung J, Asplin JR, Pendergast J, Svetkey LP, Lin PH, Scialla JJ. Effect of Bicarbonate on Net Acid Excretion, Blood Pressure, and Metabolism in Patients With and Without CKD: The Acid Base Compensation in CKD Study. Am J Kidney Dis 2021; 78:38-47. [PMID: 33810868 DOI: 10.1053/j.ajkd.2020.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/10/2020] [Indexed: 11/11/2022]
Abstract
RATIONALE & OBJECTIVE Patients with CKD are at elevated risk of metabolic acidosis due to impaired net acid excretion (NAE). Identifying early markers of acidosis may guide prevention in chronic kidney disease (CKD). This study compared NAE in participants with and without CKD, as well as the NAE, blood pressure (BP), and metabolomic response to bicarbonate supplementation. STUDY DESIGN Randomized order, cross-over study with controlled feeding. SETTING & PARTICIPANTS Participants consisted of 8 patients with CKD (estimated glomerular filtration rate 30-59mL/min/1.73m2 or 60-70mL/min/1.73m2 with albuminuria) and 6 patients without CKD. All participants had baseline serum bicarbonate concentrations between 20 and 28 mEq/L; they did not have diabetes mellitus and did not use alkali supplements at baseline. INTERVENTION Participants were fed a fixed-acid-load diet with bicarbonate supplementation (7 days) and with sodium chloride control (7 days) in a randomized order, cross-over fashion. OUTCOMES Urine NAE, 24-hour ambulatory BP, and 24-hour urine and plasma metabolomic profiles were measured after each period. RESULTS During the control period, mean NAE was 28.3±10.2 mEq/d overall without differences across groups (P=0.5). Urine pH, ammonium, and citrate were significantly lower in CKD than in non-CKD (P<0.05 for each). Bicarbonate supplementation reduced NAE and urine ammonium in the CKD group, increased urine pH in both groups (but more in patients with CKD than in those without), and increased; urine citrate in the CKD group (P< 0.2 for interaction for each). Metabolomic analysis revealed several urine organic anions were increased with bicarbonate in CKD, including 3-indoleacetate, citrate/isocitrate, and glutarate. BP was not significantly changed. LIMITATIONS Small sample size and short feeding duration. CONCLUSIONS Compared to patients without CKD, those with CKD had lower acid excretion in the form of ammonium but also lower base excretion such as citrate and other organic anions, a potential compensation to preserve acid-base homeostasis. In CKD, acid excretion decreased further, but base excretion (eg, citrate) increased in response to alkali. Urine citrate should be evaluated as an early and responsive marker of impaired acid-base homeostasis. FUNDING National Institute of Diabetes and Digestive and Kidney Diseases and the Duke O'Brien Center for Kidney Research. TRIAL REGISTRATION Registered at ClinicalTrials.gov with study number NCT02427594.
Collapse
Affiliation(s)
- Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Alison Luciano
- Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC
| | - Jennifer L Modliszewski
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - James R Bain
- Department of Medicine, Duke University School of Medicine, Durham, NC; Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Jenifer Allen
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Cassandra Bowman
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Joseph Gung
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - John R Asplin
- Litholink Corp, Laboratory Corporation of America Holdings, Chicago, IL
| | - Jane Pendergast
- Department of Medicine, Duke University School of Medicine, Durham, NC; Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Laura P Svetkey
- Department of Medicine, Duke University School of Medicine, Durham, NC; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, NC; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA.
| |
Collapse
|
29
|
Giglio S, Montini G, Trepiccione F, Gambaro G, Emma F. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment. J Nephrol 2021; 34:2073-2083. [PMID: 33770395 PMCID: PMC8610947 DOI: 10.1007/s40620-021-01032-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022]
Abstract
Renal tubular acidosis (RTA) comprises a group of disorders in which excretion of hydrogen ions or reabsorption of filtered HCO3 is impaired, leading to chronic metabolic acidosis with normal anion gap. In the current review, the focus is placed on the most common type of RTA, Type 1 RTA or Distal RTA (dRTA), which is a rare chronic genetic disorder characterized by an inability of the distal nephron to secrete hydrogen ions in the presence of metabolic acidosis. Over the years, knowledge of the molecular mechanisms behind acid secretion has improved, thereby greatly helping the diagnosis of dRTA. The primary or inherited form of dRTA is mostly diagnosed in infancy, childhood, or young adulthood, while the acquired secondary form, as a consequence of other disorders or medications, can happen at any age, although it is more commonly seen in adults. dRTA is not as “benign” as previously assumed, and can have several, highly variable long-term consequences. The present review indeed reports and summarizes both clinical symptoms and diagnosis, long-term outcomes, genetic inheritance, epidemiology and current treatment options, with the aim of shedding more light onto this rare disorder. Being a chronic condition, dRTA also deserves attention in the transition between pediatric and adult nephrology care, and as a rare disease it has a place in the European and Italian rare nephrological diseases network.
Collapse
Affiliation(s)
- Sabrina Giglio
- Medical Genetics Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | - Giovanni Montini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Nephrology, Dialysis and PediatricTransplant Unit, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Research Institute Ariano Irpino, Ariano Irpino, Italy
| | - Giovanni Gambaro
- Nephrology Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Emma
- Division of Nephrology, Department of Pediatric Subspecialties, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
30
|
Krieger NS, Chen L, Becker J, Chan MR, Bushinsky DA. Deletion of the proton receptor OGR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption. Kidney Int 2020; 99:609-619. [PMID: 33159961 DOI: 10.1016/j.kint.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
Metabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice). We studied bones from three-month old female mice and the differentiated osteoclasts derived from bone marrow of femurs from these knockout and wild type mice. MicroCT demonstrated increased density in tibiae and femurs but not in vertebrae of the knockout mice. Tartrate resistant acid phosphatase staining of tibia indicated a decrease in osteoclast number and surface area/bone surface from knockout compared to wild type mice. Osteoclasts derived from the marrow of knockout mice demonstrated decreased pit formation, osteoclast staining and osteoclast-specific gene expression compared to those from wild type mice. In response to metabolic acidosis, osteoclasts from knockout mice had decreased nuclear translocation of NFATc1, a transcriptional regulator of differentiation, and no increase in size or number compared to osteoclasts from wild type mice. Thus, loss of osteoclast OGR1 decreased both basal and metabolic acidosis-induced osteoclast activity indicating osteoclast OGR1 is important in mediating metabolic acidosis-induced bone resorption. Understanding the role of OGR1 in metabolic acidosis-induced bone resorption will provide insight into bone loss in acidotic patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA.
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Jennifer Becker
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michaela R Chan
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
31
|
Chuang TL, Lin CH, Wang YF. Effects of vegetarian diet on bone mineral density. Tzu Chi Med J 2020; 33:128-134. [PMID: 33912409 PMCID: PMC8059457 DOI: 10.4103/tcmj.tcmj_84_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 11/18/2022] Open
Abstract
Factors, such as hormonal changes in postmenopausal women, natural aging degeneration, race, gender, body size, lifestyle, physical activity, sunlight, dietary intake, medications, or other environmental issues, can affect the rate of bone formation or reabsorption, cause changes in bone mineral content, and influence the development of osteoporosis. Do vegetarian diets adversely affect bone mineral density (BMD)? Among postmenopausal Buddhists, long-term practitioners of vegan vegetarian were found to have a higher risk exceeding the lumbar fracture threshold and a lower level of hip BMD after controlling for other variables. However, results of several prospective longitudinal studies failed to show a harmful effect of vegetarianism on bone health. In the Taiwanese adult population, researchers also did not find that a vegetarian diet significantly affects age-related BMD decline. Due to the various levels of nutrients in the diet (such as protein, alkali, calcium, Vitamin K, and phytoestrogens) and major lifestyle factors (such as smoking and physical exercise), determining the impact of a vegetarian diet on bone health is very complex. Good-quality vegetarian food can provide a healthy foundation for building and maintaining healthy bones and preventing fractures.
Collapse
Affiliation(s)
- Tzyy-Ling Chuang
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hung Lin
- Department of General Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yuh-Feng Wang
- Department of Nuclear Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan.,Center of Preventive Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
32
|
Dietary acid-base load and its association with risk of osteoporotic fractures and low estimated skeletal muscle mass. Eur J Clin Nutr 2020; 74:33-42. [PMID: 32873955 DOI: 10.1038/s41430-020-0686-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/OBJECTIVES Age-related decline in skeletal muscle mass and strength, loss of bone density, and increased risk of osteoporotic fractures are important public health issues. Systemic acid-base balance is affected by dietary intake and may be relevant to these conditions. We therefore investigated associations of dietary acid-base load with skeletal muscle mass, bone density status, and fracture risk. SUBJECTS/METHODS We analysed the European Prospective Investigation into Cancer and Nutrition-Norfolk cohort of >25,000 individuals, 39-79 years at baseline. Potential renal acid load (PRAL) was calculated from 7-day food diary data. As a proxy for skeletal muscle mass, we estimated fat-free mass from bioelectrical impedance analysis and scaled this for BMI (FFMBMI). Bone density status was assessed by heel-bone broadband ultrasound attenuation (BUA), and fracture rates were obtained from health-care records. Multivariable regression was used to test musculoskeletal outcomes across sex-specific quintiles of PRAL. RESULTS PRAL in quintiles was negatively associated with FFMBMI in men (n = 6350, p < 0.001) and women (n = 7989, p < 0.001), with quintile 5 vs 1 differences of -1.5% and -3.2% (both p < 0.001). PRAL was also negatively associated with BUA in women (n = 8312, p = 0.016; quintile 5 vs 1 difference -1.5%, p = 0.024). The combined hazard of hip, wrist and spine fractures (mean ± SD follow-up 17.9 ± 4.9 years) was higher with increasing quintiles of PRAL in men (610 fractures; n = 11,511; p = 0.013) and women (1583 fractures; n = 13,927; p = 0.009), with quintile 5 vs 1 hazard ratios of 1.33 (95% CI: 1.03-1.72, p = 0.029) and 1.21 (95% CI: 1.03-1.42, p = 0.022), but associations were not consistent for all fractures sites and age groups tested. CONCLUSIONS This study provides strong evidence, albeit observational, for a negative association between PRAL and musculoskeletal health in middle to older age men and women, and thus supports the rationale for a less acidic dietary load.
Collapse
|
33
|
Stroup BM, Murali SG, Schwahn DJ, Sawin EA, Lankey EM, Bächinger HP, Ney DM. Sex effects of dietary protein source and acid load on renal and bone status in the Pah enu2 mouse model of phenylketonuria. Physiol Rep 2020; 7:e14251. [PMID: 31650703 PMCID: PMC6813258 DOI: 10.14814/phy2.14251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/17/2023] Open
Abstract
The low‐phenylalanine (Phe) diet with amino acid (AA) medical foods is associated with low bone mineral density (BMD) and renal dysfunction in human phenylketonuria (PKU). Our objective was to determine if diets differing in dietary protein source and acid load alter bone and renal outcomes in Pah−/− and wild‐type (WT) mice. Female and male Pah−/− (Pahenu2/enu2) and WT littermates (C57BL/6 background) were fed high‐acid AA, buffered AA (BAA), glycomacropeptide (GMP), or high‐Phe casein diets from 3 to 24 weeks of age. The BAA diet significantly reduced the excretion of renal net acid and ammonium compared with the AA diet. Interestingly, the BAA diet did not improve renal dilation in hematoxylin and eosin (H&E) stained renal sections, femoral biomechanical parameters, or femoral bone mineral content (BMC). Significantly lower femoral BMC and strength occurred in Pah−/− versus WT mice, with greater decline in female Pah−/− mice. Polyuria and mild vacuolation in the proximal convoluted tubules were observed in male Pah−/− and WT mice fed the high‐acid AA diet versus absent/minimal cortical vacuolation in males fed the GMP, BAA, or casein diets. Vacuole contents in male mice were proteinaceous. Cortical vacuolation was absent in female mice. Dilated medullary tubules were observed in all Pah−/− mice, except for male Pah−/− mice fed the GMP diet. In summary, the PKU genotype and diet showed differential effects on renal and bone status in male and female mice. Renal status improved in male Pah−/− mice fed the GMP diet.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sangita G Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Emily A Sawin
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Emma M Lankey
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, Oregon
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
34
|
Spot urinary citrate-to-creatinine ratio is a marker for acid-base status in chronic kidney disease. Kidney Int 2020; 99:208-217. [PMID: 32721446 DOI: 10.1016/j.kint.2020.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022]
Abstract
Due to multiple compensating mechanisms, the serum bicarbonate concentration is a relatively insensitive marker of acid-base status; especially in chronic kidney disease (CKD). This is a major drawback that impairs the ability to diagnose acid excess or monitor alkali therapy. We postulated that it is more logical to measure the compensatory defense mechanism(s) rather than the defended parameter, which remains normal if the compensation is successful. Therefore, a retrospective cross-sectional study was performed in 1733 stone formers along with a prospective cross-sectional study of 22 individuals with normal kidney function and 50 patients in different stages of CKD. While serum bicarbonate was flat and did not fall below the reference range until near CKD stage 5, citrate excretion (24-hour urinary citrate excretion rate; urinary citrate-to-creatinine ratio, in the retrospective analysis, and spot urinary citrate-to-creatinine ratio in the prospective study) progressively and significantly declined starting from CKD stage 2. Following an acute acid load in 25 participants with a wide range of estimated glomerular filtration rates, the urinary citrate-to-creatinine ratio inversely and significantly associated with acid accumulation, whereas serum bicarbonate did not. We compared changes in serum bicarbonate and urinary citrate-to-creatinine ratio in response to alkali therapy in patients with CKD stage 3 or 4 started on potassium citrate in our kidney stone database. With alkali therapy, there was no change in serum bicarbonate, but the urinary citrate-to-creatinine ratio rose consistently in all patients adherent to potassium citrate therapy. Thus, the urinary citrate-to-creatinine ratio (the defense mechanism) is a potential easily implementable, pragmatic, and a superior parameter to serum bicarbonate (the defended entity) to assess acid-base status, and monitor alkali therapy. Additional studies are needed before a clinical test can be devised.
Collapse
|
35
|
Megahed AA, Constable PD. Technical note: Evaluation of a colorimetric point-of-care test for measuring urine ammonium concentration in periparturient dairy cattle. J Dairy Sci 2020; 103:8655-8660. [PMID: 32684458 DOI: 10.3168/jds.2020-18534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Abstract
Urine ammonium concentration ([NH4+]) provides a clinically useful indicator of the magnitude of nutritionally induced systemic acidification in dairy cattle when urine pH < 6.1. The objective of this study was to evaluate the analytical performance of a low-cost point-of-care colorimetric test in measuring urine [NH4+] in dairy cattle consuming an acidogenic ration. A method comparison study was performed using 154 urine samples from 43 periparturient Holstein-Friesian cows. We compared urine [NH4+] measured by an indophenol blue colorimetric test (MColortest, Merck KGaA, Billerica, MA; test method) with levels measured by formaldehyde titration (reference method). Diagnostic performance was evaluated using Pearson correlation coefficient (r), Passing-Bablok regression, Bland-Altman plot, and binary logistic regression. Urine [NH4+] measured by the colorimetric test was strongly correlated (r = 0.98) with urine [NH4+] measured by formaldehyde titration. Method comparison studies indicated that the colorimetric test provided acceptable test performance when urine [NH4+] < 80 mmol/L. Logistic regression analysis indicated that the area under the receiver operating characteristic curve for the colorimetric ammonium test was high at 0.985 when used to identify formaldehyde titration [NH4+] > 10 mmol/L, equivalent to urine pH <6.1. At the optimal cut point ([NH4+] > 11 mmol/L) for the colorimetric test, sensitivity = 0.94, specificity = 0.97, positive likelihood ratio = 27.6, and κ = 0.89, indicating excellent test performance. We conclude that the indophenol blue colorimetric test provided an accurate, low-cost, and practical on-farm test for measuring urine [NH4+] in diluted urine samples from dairy cattle consuming an acidogenic ration.
Collapse
Affiliation(s)
- A A Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana 61802; Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, 13736, Egypt
| | - P D Constable
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana 61802.
| |
Collapse
|
36
|
Higashiura Y, Tanaka M, Furuhashi M, Koyama M, Ohnishi H, Numata K, Hisasue T, Hanawa N, Moniwa N, Miura T. Low urine pH predicts new onset of diabetes mellitus during a 10-year period in men: BOREAS-DM1 study. J Diabetes Investig 2020; 11:1490-1497. [PMID: 32351012 PMCID: PMC7610131 DOI: 10.1111/jdi.13284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
Aims/Introduction A low level of urine pH (U‐pH) has been reported to be associated with metabolic disorders. However, the relationship between the incidence of diabetes mellitus and U‐pH has not yet been fully addressed. Materials and Methods We investigated the relationship between U‐pH and the development of diabetes mellitus during a 10‐year period in a general population of individuals who received annual health examinations in 2006 (n = 28,990). After exclusion of individuals with missing data, and those with diabetes mellitus and/or chronic kidney disease at baseline, a total of 12,476 individuals (men/women: 8,027/4,449) who received health examinations at least once during the period from 2007 to 2016 were recruited. The recruited individuals were divided into four groups according to their U‐pH levels: groups of U‐pH ≤5.0, 5.5, 6.0 and ≥6.5. Results During a 10‐year period, 521 men (6.5%) and 132 women (3.0%) had new onset of diabetes mellitus. The cumulative incidence of diabetes mellitus was 7.5% (men/women: 9.3%/4.4%) per 100 person‐years. The hazard ratios (HRs) in the U‐pH ≤5.0 (HR 1.93) and U‐pH 5.5 groups (HR 1.46) were significantly higher than that in the U‐pH ≥6.5 group as a reference for men, but not for women. After adjustment of age, obesity, fasting glucose, smoking and alcohol drinking habits, family history of diabetes mellitus, and use of drugs for hypertension and dyslipidemia, HR in the U‐pH ≤5.0 group (HR 1.39) was significantly higher than that in the U‐pH ≥6.5 group for men, but not for women. Conclusions Low U‐pH predicts new onset of diabetes mellitus in a general population of men.
Collapse
Affiliation(s)
- Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Tanaka Medical Clinic, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of General Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keita Numata
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Takashi Hisasue
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, Sapporo, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity 2020; 6:13. [PMID: 32411816 PMCID: PMC7200725 DOI: 10.1038/s41526-020-0103-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Bone loss in space travelers is a major challenge for long-duration space exploration. To quantify microgravity-induced bone loss in humans, we performed a meta-analysis of studies systematically identified from searching Medline, Embase, Web of Science, BIOSIS, NASA Technical reports, and HathiTrust, with the last update in November 2019. From 25 articles selected to minimize the overlap between reported populations, we extracted post-flight bone density values for 148 individuals, and in-flight and post-flight biochemical bone marker values for 124 individuals. A percentage difference in bone density relative to pre-flight was positive in the skull, +2.2% [95% confidence interval: +1.1, +3.3]; neutral in the thorax/upper limbs, −0.7% [−1.3, −0.2]; and negative in the lumbar spine/pelvis, −6.2 [−6.7, −5.6], and lower limbs, −5.4% [−6.0, −4.9]. In the lower limb region, the rate of bone loss was −0.8% [−1.1, −0.5] per month. Bone resorption markers increased hyperbolically with a time to half-max of 11 days [9, 13] and plateaued at 113% [108, 117] above pre-flight levels. Bone formation markers remained unchanged during the first 30 days and increased thereafter at 7% [5, 10] per month. Upon landing, resorption markers decreased to pre-flight levels at an exponential rate that was faster after longer flights, while formation markers increased linearly at 84% [39, 129] per month for 3–5 months post-flight. Microgravity-induced bone changes depend on the skeletal-site position relative to the gravitational vector. Post-flight recovery depends on spaceflight duration and is limited to a short post-flight period during which bone formation exceeds resorption.
Collapse
Affiliation(s)
- Mariya Stavnichuk
- 1Department of Biomedical Engineering, McGill University, Montréal, Canada.,2Shriners Hospital for Children-Canada, Montréal, Canada
| | - Nicholas Mikolajewicz
- 2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| | - Tatsuya Corlett
- 2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| | - Martin Morris
- 4Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montréal, Canada
| | - Svetlana V Komarova
- 1Department of Biomedical Engineering, McGill University, Montréal, Canada.,2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| |
Collapse
|
38
|
Seifter JL. Body Fluid Compartments, Cell Membrane Ion Transport, Electrolyte Concentrations, and Acid-Base Balance. Semin Nephrol 2020; 39:368-379. [PMID: 31300092 DOI: 10.1016/j.semnephrol.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Measurements made in the blood, part of the extracellular compartment, are used in the clinical assessment of acid-base disorders; however, intracellular events determine much of the metabolic importance of these disorders. Intracellular and interstitial compartment acid-base balance is complex and varies in different tissues. This review considers the determination of extracellular pH in the context of ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. A further consideration is the role of these membrane transporters in the generation of acid-base disorders and the associated disruption of electrolyte balance. This review suggests a process of internal and external balance for pH regulation similar to that of potassium, and considers the role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders. Electroneutrality of electrolytes in the extracellular fluid is a fundamental feature of reciprocal changes in Cl- or non-Cl- anions and HCO3-. Normal mechanisms for protecting cell pH and producing normal gastrointestinal and renal secretions in healthy states also may result in disease when abnormal. In a similar manner, organic anions such as ketoacid anions and lactate, normally transported as fuels between organs, result in acid-base disturbances in disease. Understanding the genomic basis of these transporters may contribute to specific treatments.
Collapse
|
39
|
Abstract
AbstractMilk production intensification has led to several unwanted aspects, such as sustainability issues and environmental pollution. Among these, increased milk outputs that have been achieved over the last 70 years have led to several health and pathophysiological conditions in high yielding dairy animals, including metabolic diseases that were uncommon in the past. Increased occurrence of diverse metabolic diseases in cattle and other domestic animals is a key feature of domestication that not only affects the animals' health and productivity, but also may have important and adverse health impacts on human consumers through the elevated use of drugs and antibiotics. These aspects will influence economical and ethical aspects in the near future. Therefore, finding and establishing proper biomarkers for early detection of metabolic diseases is of great interest. In the present review, recent work on the discovery of fitness, stress and welfare biomarkers in dairy cows is presented, focusing in particular on possible biomarkers of energy balance and oxidative stress in plasma and milk, and biomarkers of production-related diseases and decreased fertility.
Collapse
|
40
|
Worcester EM, Bergsland KJ, Gillen DL, Coe FL. Evidence for disordered acid-base handling in calcium stone-forming patients. Am J Physiol Renal Physiol 2020; 318:F363-F374. [PMID: 31790303 DOI: 10.1152/ajprenal.00400.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In stone formers (SFs) with idiopathic hypercalciuria, urine pH governs the mineral phase of stones. Calcium phosphate (CaP) SFs have higher urine pH than calcium oxalate (CaOx) SFs. Normal women have higher urine pH than men on fixed diets, accompanied by greater absorption of food alkali. Female CaP and male CaOx SFs have similar urine pH as same sex normal individuals, but male CaP and female CaOx SFs may have abnormal acid-base handling. We studied 25 normal individuals (13 men and 12 women), 17 CaOx SFs (11 men and 6 women), and 15 CaP SFs (8 men and 7 women) on fixed diets. Urine and blood samples were collected under fasting and fed conditions. Female CaOx SFs had lower urine pH and lower alkali absorption, fed, compared with normal women; their urine NH4 was higher and urine citrate excretion lower than in normal women, consistent with their higher net acid excretion. Male CaOx SFs had higher urine citrate excretion and higher serum ultrafilterable citrate levels than normal men. Both male and female CaP SFs had higher urine pH fasting than same sex normal individuals, but only men were higher in the fed period, and there were no differences from normal in gut alkali absorption. CaP SFs of both sexes had higher urine NH4 and lower urine citrate than same sex normal individuals. The lower urine pH of female CaOx SFs seems related to decreased gut alkali absorption, while the higher pH of CaP SFs, accompanied by higher urine NH4 and lower urine citrate, suggests a proximal tubule disorder.
Collapse
Affiliation(s)
- Elaine M Worcester
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| | | | - Daniel L Gillen
- Department of Statistics, University of California, Irvine, California
| | - Fredric L Coe
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
41
|
Burggren W, Bautista N. Invited review: Development of acid-base regulation in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110518. [DOI: 10.1016/j.cbpa.2019.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/26/2022]
|
42
|
Constable PD, Megahed AA, Hiew MWH. Measurement of urine pH and net acid excretion and their association with urine calcium excretion in periparturient dairy cows. J Dairy Sci 2019; 102:11370-11383. [PMID: 31548071 DOI: 10.3168/jds.2019-16805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
Urine pH (UpH) and net acid excretion (NAE) are used to monitor the degree of systemic acidification and predict the magnitude of resultant hypercalciuria when feeding an acidogenic ration to control periparturient hypocalcemia in dairy cattle. The objectives of this study were to evaluate the diagnostic performance of urine dipstick and pH paper for measuring UpH, and to characterize the UpH-NAE relationship and the association of urine Ca concentration ([Ca]) with UpH and NAE. Urine samples (n = 1,116) were collected daily from 106 periparturient Holstein-Friesian cows fed an acidogenic ration during late gestation. Net acid excretion was measured by titration, and UpH was measured by a glass-electrode pH meter (reference method), Multistix-SG urine dipsticks (Siemens Medical Solutions Inc., Ann Arbor, MI), and Hydrion pH paper (Micro Essential Laboratory Inc., Brooklyn, NY). Diagnostic performance was evaluated using Spearman correlation coefficient (rs), Bland-Altman plots, and logistic regression. Urine pH measured by urine dipstick (rs = 0.94) and pH paper (rs = 0.96) were strongly associated with UpH. Method-comparison studies indicated that the urine dipstick measured an average of 0.28 pH units higher, and pH paper 0.10 pH units lower, than UpH. Urine [Ca] was more strongly associated with UpH (rs = -0.65) than NAE (rs = 0.52). Goals for controlling periparturient hypocalcemia under the study conditions were UpH <6.22 and <6.11, based on achieving urine [Ca] ≥5 mmol/L and estimated urinary Ca excretion ≥4 g/d, respectively. Urine pH was as accurate at predicting urine [Ca] as NAE when UpH >6.11. We conclude that pH paper is an accurate, practical, and low-cost cow-side test for measuring UpH and provides a clinically useful estimate of urine [Ca].
Collapse
Affiliation(s)
- P D Constable
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign 61802.
| | - A A Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign 61802; Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, 13736, Egypt
| | - M W H Hiew
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra, Selangor, 43400, Malaysia
| |
Collapse
|
43
|
Goraya N, Simoni J, Sager LN, Mamun A, Madias NE, Wesson DE. Urine citrate excretion identifies changes in acid retention as eGFR declines in patients with chronic kidney disease. Am J Physiol Renal Physiol 2019; 317:F502-F511. [PMID: 31215805 DOI: 10.1152/ajprenal.00044.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that acid (H+) retention in patients with chronic kidney disease (CKD) but without metabolic acidosis increases as the estimated glomerular filtration rate (eGFR) decreases over time. The present study examined whether changes in urine excretion of the pH-sensitive metabolite citrate predicted changes in H+ retention over time in similar patients with CKD that were followed for 10 yr. We randomized 120 CKD2 nondiabetic, hypertension-associated nephropathy patients with plasma total CO2 of >24 mM to receive 0.5 meq·kg body wt-1·day-1 NaHCO3 ([Formula: see text]; n = 40), 0.5 meq·kg body wt-1·day-1 NaCl (NaCl; n = 40), or usual care (UC; n = 40). We assessed eGFR (CKD-EPI) and H+ retention by comparing the observed with expected plasma total CO2 increase 2 h after an oral NaHCO3 bolus (0.5 meq/kg body wt). Although 10 yr versus baseline eGFR was lower for each group, 10-yr eGFR was higher (P < 0.01) in [Formula: see text] (59.6 ± 4.8 ml·min-1·1.73 m-2) than NaCl and UC (52.1 ± 5.9 and 52.3 ± 4.1 ml·min-1·1.73 m-2, respectively) groups. Less eGFR preservation was associated with higher 10-yr versus baseline H+ retention in the NaCl group (26.5 ± 13.1 vs. 18.2 ± 15.3 mmol, P < 0.01) and UC group (24.8 ± 11.3 vs. 17.7 ± 10.9 mmol, P < 0.01) and with lower 10-yr versus baseline 8-h urine citrate excretion (UcitrateV) for the NaCl group (162 ± 47 vs. 196 ± 52 mg, respectively, P < 0.01) and UC group (153 ± 41 vs. 186 ± 42 mg, respectively, P < 0.01). Conversely, better eGFR preservation in the [Formula: see text] group was associated with no differences in 10-yr versus baseline H+ retention (14.2 ±13.5 vs. 16.1 ± 15.1 mmol, P = 1.00) or UcitrateV (212 ± 45 vs. 203 ± 49 mg, respectively, P = 0.74). An overall generalized linear model for repeated measures showed that UcitrateV predicted H+ retention (P < 0.01). Less eGFR preservation in patients with CKD2 without metabolic acidosis was associated with increased H+ retention that was predicted by decreased UcitrateV.
Collapse
Affiliation(s)
- Nimrit Goraya
- Baylor Scott and White Health Department of Internal Medicine, Temple, Texas.,Texas A&M Health Sciences Center, College of Medicine, Temple Texas
| | - Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Lauren N Sager
- Baylor Scott and White Health Department of Biostatistics, Temple, Texas
| | - Abdullah Mamun
- Baylor Scott and White Health and Wellness Center, Dallas, Texas
| | - Nicolaos E Madias
- School of Medicine, Department of Medicine, St. Elizabeth's Medical Center and Tufts University, Boston, Massachusetts
| | - Donald E Wesson
- Baylor Scott and White Health Department of Internal Medicine, Dallas, Texas.,Texas A&M Health Sciences Center, College of Medicine, Dallas, Texas
| |
Collapse
|
44
|
Banerjee T, Crews DC, Wesson DE, McCulloch CE, Johansen KL, Saydah S, Rios Burrows N, Saran R, Gillespie B, Bragg-Gresham J, Powe NR. Elevated serum anion gap in adults with moderate chronic kidney disease increases risk for progression to end-stage renal disease. Am J Physiol Renal Physiol 2019; 316:F1244-F1253. [PMID: 30908932 PMCID: PMC6620593 DOI: 10.1152/ajprenal.00496.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/13/2023] Open
Abstract
Acid retention associated with reduced glomerular filtration rate (GFR) exacerbates nephropathy progression in partial nephrectomy models of chronic kidney disease (CKD) and might be reflected in patients with CKD with reduced estimated GFR (eGFR) by increased anion gap (AG). We explored the presence of AG and its association with CKD in 14,924 adults aged ≥20 yr with eGFR ≥ 15 ml·min-1·1.73 m-2 enrolled in the National Health and Nutrition Examination Survey III, 1988-1994, using multivariable regression analysis. The model was adjusted for sociodemographic characteristics, diabetes, and hypertension. We further examined the association between AG and incident end-stage renal disease (ESRD) using frailty models, adjusting for demographics, clinical factors, body mass index, serum albumin, bicarbonate, eGFR, and urinary albumin-to-creatinine ratio by following 558 adults with moderate CKD for 12 yr via the United States Renal Data System. Laboratory measures determined AG using the traditional, albumin-corrected, and full AG definitions. Individuals with moderate CKD (eGFR: 30-59 ml·min-1·1.73 m-2) had a greater AG than those with eGFR ≥ 60 ml·min-1·1.73 m-2 in multivariable regression analysis with adjustment for covariates. We found a graded relationship between the adjusted mean for all three definitions of AG and eGFR categories (P trend < 0.0001). During followup, 9.2% of adults with moderate CKD developed ESRD. Those with AG in the highest tertile had a higher risk of ESRD after adjusting for covariates in a frailty model [relative hazard (95% confidence interval) for traditional AG: 1.76 (1.16-2.32)] compared with those in the middle tertile. The data suggest that high AG, even after adjusting for serum bicarbonate, is a contributing acid-base mechanism to CKD progression in adults with moderate chronic kidney disease.
Collapse
Affiliation(s)
- Tanushree Banerjee
- Division of General Internal Medicine, Department of Medicine, University of California , San Francisco, California
| | - Deidra C Crews
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Donald E Wesson
- Baylor Scott & White Health and Wellness Center , Dallas, Texas
| | - Charles E McCulloch
- Department of Biostatistics, University of California , San Francisco, California
| | - Kirsten L Johansen
- Division of Nephrology, Department of Medicine, University of California , San Francisco, California
| | - Sharon Saydah
- Division of Diabetes Translation, Centers of Disease and Control and Prevention , Atlanta, Georgia
| | - Nilka Rios Burrows
- Division of Diabetes Translation, Centers of Disease and Control and Prevention , Atlanta, Georgia
| | - Rajiv Saran
- Kidney Epidemiology & Cost Center, University of Michigan , Ann Arbor, Michigan
- Division of Nephrology, Department of Medicine, University of Michigan , Ann Arbor, Michigan
| | - Brenda Gillespie
- Kidney Epidemiology & Cost Center, University of Michigan , Ann Arbor, Michigan
| | | | - Neil R Powe
- Division of General Internal Medicine, Department of Medicine, University of California , San Francisco, California
- Department of Medicine, Zuckerberg San Francisco General Hospital , San Francisco, California
| |
Collapse
|
45
|
Kim JW, Alfafara AMD, Kim HY, Kim SY, Kim SJ. Effects of pH alteration on the pathogenesis of medication-related osteonecrosis of the jaw. Bone 2019; 122:45-51. [PMID: 30738857 DOI: 10.1016/j.bone.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION An acidic environment has been recognized to increase catabolic activities and inhibit osteoblastic deposition, and also exhibited in the pathogenesis of various bone diseases. The aim of the study was to investigate the role of systemic and local pH alteration in the pathogenesis of medication-related osteonecrosis of the jaw (MRONJ). MATERIAL AND METHODS Initially, MRONJ was induced in 54 Sprague-Dawley rats via subcutaneous bisphosphonate injections, once a week for 8 weeks. A week prior to bisphosphonate termination, surgical intervention was performed and rats were divided into 3 groups-alkalotic, acidic and control group, wherein each received NaHCO3, NH4Cl and normal saline, respectively for 8 weeks. Upon sacrifice, blood was sent for arterial blood pH analysis and their mandibles were subjected to histomorphometric and μCT analyses. ONJ was histologically defined as necrotic bone persisting for eight weeks after surgical intervention. RESULTS Each intervention exemplified its expected outcome wherein each group exhibited a borderline alkalotic (7.43 ± 0.05) and acidic state (7.27 ± 37), respectively (P < 0.05). Acidic group showed a higher occurrence of MRONJ (95%) compared to that of alkalotic group (60%) and control (76.9%). Histomorphometric and microstructural evaluation revealed that acidic group presented deteriorated bone architectures with significantly higher necrotic bone fraction, clusters of empty lacunae, N.Oc/B.Pm and lower B.Ar./T.Ar, BV/TV, Tb.Th (P < 0.05). Alkalotic group showed possible protective effects against ONJ versus acidic group, however these trends were not statistically significant. CONCLUSIONS An acidic milieu aggravated ONJ development in an animal model. Further investigations are needed to elucidate the exact role of acid-base balance in MRONJ pathogenesis and possible benefits of alkali supplementation for the prevention.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Center, Seoul, Republic of Korea; Research Institute for Intractable Osteonecrosis of the Jaw, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Angenine Marie D Alfafara
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Center, Seoul, Republic of Korea; Research Institute for Intractable Osteonecrosis of the Jaw, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye-Yeon Kim
- Research Institute for Intractable Osteonecrosis of the Jaw, School of Medicine, Ewha Womans University, Seoul, Republic of Korea; Department of Family Medicine, Graduate School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seon-Yeong Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Center, Seoul, Republic of Korea; Research Institute for Intractable Osteonecrosis of the Jaw, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sun-Jong Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Center, Seoul, Republic of Korea; Research Institute for Intractable Osteonecrosis of the Jaw, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Zimpel R, Poindexter M, Vieira-Neto A, Block E, Nelson C, Staples C, Thatcher W, Santos J. Effect of dietary cation-anion difference on acid-base status and dry matter intake in dry pregnant cows. J Dairy Sci 2018; 101:8461-8475. [DOI: 10.3168/jds.2018-14748] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/17/2018] [Indexed: 01/22/2023]
|
47
|
Seifter JL, Chang HY. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. Physiology (Bethesda) 2018; 32:367-379. [PMID: 28814497 DOI: 10.1152/physiol.00007.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023] Open
Abstract
Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl- or non Cl- anions and [Formula: see text].
Collapse
|
48
|
Goraya N, Wesson DE. Kidney Response to the Spectrum of Diet-Induced Acid Stress. Nutrients 2018; 10:nu10050596. [PMID: 29751620 PMCID: PMC5986476 DOI: 10.3390/nu10050596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic ingestion of the acid (H+)-producing diets that are typical of developed societies appears to pose a long-term threat to kidney health. Mechanisms employed by kidneys to excrete this high dietary H+ load appear to cause long-term kidney injury when deployed over many years. In addition, cumulative urine H+ excretion is less than the cumulative increment in dietary H+, consistent with H+ retention. This H+ retention associated with the described high dietary H+ worsens as the glomerular filtration rate (GFR) declines which further exacerbates kidney injury. Modest H+ retention does not measurably change plasma acid–base parameters but, nevertheless, causes kidney injury and might contribute to progressive nephropathy. Current clinical methods do not detect H+ retention in its early stages but the condition manifests as metabolic acidosis as it worsens, with progressive decline of the glomerular filtration rate. We discuss this spectrum of H+ injury, which we characterize as “H+ stress”, and the emerging evidence that high dietary H+ constitutes a threat to long-term kidney health.
Collapse
Affiliation(s)
- Nimrit Goraya
- Baylor Scott & White Health Department of Internal Medicine, Temple, TX 76508, USA.
- A&M Health Science Center College of Medicine, Temple, TX 76508, USA.
| | - Donald E Wesson
- Baylor Scott & White Health Department of Internal Medicine, Dallas, TX 75210, USA.
- A&M Health Science Center College of Medicine, Dallas, TX 75210, USA.
| |
Collapse
|
49
|
Bushinsky DA, Hostetter T, Klaerner G, Stasiv Y, Lockey C, McNulty S, Lee A, Parsell D, Mathur V, Li E, Buysse J, Alpern R. Randomized, Controlled Trial of TRC101 to Increase Serum Bicarbonate in Patients with CKD. Clin J Am Soc Nephrol 2018; 13:26-35. [PMID: 29102959 PMCID: PMC5753317 DOI: 10.2215/cjn.07300717] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/10/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Metabolic acidosis is common in patients with CKD and has significant adverse effects on kidney, muscle, and bone. We tested the efficacy and safety of TRC101, a novel, sodium-free, nonabsorbed hydrochloric acid binder, to increase serum bicarbonate in patients with CKD and metabolic acidosis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS One hundred thirty-five patients were enrolled in this randomized, double-blind, placebo-controlled, multicenter, in-unit study (designated the TRCA-101 Study). Patients had a mean baseline eGFR of 35 ml/min per 1.73 m2, a mean baseline serum bicarbonate of 17.7 mEq/L, and comorbidities, including hypertension (93%), diabetes (70%), and heart failure (21%). Patients ate a controlled diet and were treated for 14 days with placebo or one of four TRC101 dosing regimens (1.5, 3, or 4.5 g twice daily or 6 g once daily). After treatment, patients were discharged and followed for 7-14 days. RESULTS All TRC101 treatment groups had a mean within-group increase in serum bicarbonate of ≥1.3 mEq/L (P<0.001) within 72 hours of the first dose and a mean increase in serum bicarbonate of 3.2-3.9 mEq/L (P<0.001) at the end of treatment compared with placebo, in which serum bicarbonate did not change. In the combined TRC101 treatment group, serum bicarbonate was normalized (22-29 mEq/L) at the end of treatment in 35% of patients and increased by ≥4 mEq/L in 39% of patients. After discontinuation of TRC101, serum bicarbonate decreased nearly to baseline levels within 2 weeks. All adverse events were mild or moderate, with gastrointestinal events most common. All patients completed the study. CONCLUSIONS TRC101 safely and significantly increased the level of serum bicarbonate in patients with metabolic acidosis and CKD.
Collapse
Affiliation(s)
- David A. Bushinsky
- Department of Medicine, University of Rochester School of Medicine, Rochester, New York
| | - Thomas Hostetter
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Yuri Stasiv
- Tricida Inc., South San Francisco, California
| | | | | | - Angela Lee
- Tricida Inc., South San Francisco, California
| | | | | | | | | | - Robert Alpern
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
50
|
Goraya N, Simoni J, Sager LN, Pruszynski J, Wesson DE. Acid retention in chronic kidney disease is inversely related to GFR. Am J Physiol Renal Physiol 2018; 314:F985-F991. [PMID: 29357423 DOI: 10.1152/ajprenal.00463.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Greater H+ retention in animal models of chronic kidney disease (CKD) mediates faster glomerular filtration rate (GFR) decline and dietary H+ reduction slows eGFR decline in CKD patients with reduced eGFR and H+ retention due to the high acid (H+) diets of developed societies. We examined if H+ retention in CKD is inversely associated with estimated GFR (eGFR) using cross-sectional and longitudinal analysis of individuals with CKD stage 1 (>90 ml·min- 1·1.73 m-2), CKD stage 2 (60-89 ml/min per 1.73 m2), and CKD stage 3 (30-59 ml·min- 1·1.73 m-2) eGFR. H+ retention was assessed using the difference between observed and expected plasma total CO2 2 h after 0.5 meq/kg body wt oral NaHCO3. H+ retention was higher in CKD 2 vs. CKD 1 ( P < 0.01) and in CKD 3 vs. CKD 2 ( P < 0.02) at baseline and 5 yr, and was higher in CKD 2 vs. CKD 1 ( P < 0.01) at 10 yr. All groups had lower eGFR at subsequent time points ( P < 0.01) but H+ retention was not different among the three time points for CKD 1. By contrast, eGFR decrease was associated with higher H+ retention in CKD 2 at 5 yr ( P = 0.04) and 10 yr ( P < 0.01) and with higher H+ retention in CKD 3 at 5 yr ( P < 0.01). Yearly eGFR decline rate was faster in CKD 2 vs. CKD 1 ( P < 0.01) and in CKD 3 vs. CKD 2 ( P < 0.01). The data show that H+ retention is inversely associated with eGFR, with faster eGFR decline, and support the need for greater dietary H+ reduction therapy for CKD individuals with lower eGFR.
Collapse
Affiliation(s)
- Nimrit Goraya
- Department of Internal Medicine, Texas A&M College of Medicine, Temple, Texas.,Department of Internal Medicine, Baylor Scott & White Health, Temple, Texas
| | - Jan Simoni
- Department of Surgery, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Lauren N Sager
- Department of Biostatistics, Baylor Scott & White Health, Temple, Texas
| | - Jessica Pruszynski
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern , Dallas, Texas
| | - Donald E Wesson
- Department of Internal Medicine, Texas A&M Health Sciences Center College of Medicine , Dallas, Texas.,Baylor Scott & White Health and Wellness Center, Dallas, Texas
| |
Collapse
|