1
|
Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch 2024; 476:517-531. [PMID: 38448728 PMCID: PMC11006756 DOI: 10.1007/s00424-024-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The disposal of ammonia, the main proton buffer in the urine, is important for acid-base homeostasis. Renal ammonia excretion is the predominant contributor to renal net acid excretion, both under basal condition and in response to acidosis. New insights into the mechanisms of renal ammonia production and transport have been gained in the past decades. Ammonia is the only urinary solute known to be produced in the kidney and selectively transported through the different parts of the nephron. Both molecular forms of total ammonia, NH3 and NH4+, are transported by specific proteins. Proximal tubular ammoniagenesis and the activity of these transport processes determine the eventual fate of total ammonia produced and excreted by the kidney. In this review, we summarized the state of the art of ammonia handling by the kidney and highlighted the newest processes described in the last decade.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institut of Physiology, University of Zurich, Zurich, Switzerland.
| | - Pascal Houillier
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- Centre National de La Recherche Scientifique (CNRS), EMR 8228, Paris, France
| |
Collapse
|
2
|
Harris AN, Skankar M, Melanmed M, Batlle D. An Update on Kidney Ammonium Transport Along the Nephron. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:189-196. [PMID: 36868733 DOI: 10.1053/j.akdh.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 03/05/2023]
Abstract
Acid-base homeostasis is critical to the maintenance of normal health. The kidneys have a central role in bicarbonate generation, which occurs through the process of net acid excretion. Renal ammonia excretion is the predominant component of renal net acid excretion under basal conditions and in response to acid-base disturbances. Ammonia produced in the kidney is selectively transported into the urine or the renal vein. The amount of ammonia produced by the kidney that is excreted in the urine varies dramatically in response to physiological stimuli. Recent studies have advanced our understanding of ammonia metabolism's molecular mechanisms and regulation. Ammonia transport has been advanced by recognizing that the specific transport of NH3 and NH4+ by specific membrane proteins is critical to ammonia transport. Other studies show that proximal tubule protein, NBCe1, specifically the A variant, significantly regulates renal ammonia metabolism. This review discusses these critical aspects of the emerging features of ammonia metabolism and transport.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, FL; Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL.
| | - Mythri Skankar
- Department of Nephrology, Institute of Nephro-urology, Bengaluru, India
| | - Michal Melanmed
- Albert Einstein College of Medicine/ Montefiore Medical Center, Bronx, NY
| | - Daniel Batlle
- Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Verlander JW, Lee HW, Wall SM, Harris AN, Weiner ID. The proximal tubule through an NBCe1-dependent mechanism regulates collecting duct phenotypic and remodeling responses to acidosis. Am J Physiol Renal Physiol 2023; 324:F12-F29. [PMID: 36264886 PMCID: PMC9762982 DOI: 10.1152/ajprenal.00175.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023] Open
Abstract
The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na+-bicarbonate cotransporter (NBCe1). Both knockout (KO) mice have spontaneous metabolic acidosis. We then determined the collecting duct phenotypic responses to this acidosis and the remodeling responses to exogenous acid loading. Despite the spontaneous acidosis in NBCe1-A KO mice, type A intercalated cells in the inner stripe of the outer medullary collecting duct (OMCDis) exhibited decreased height and reduced expression of H+-ATPase, anion exchanger 1, Rhesus B glycoprotein, and Rhesus C glycoprotein. Combined kidney-specific NBCe1-A/B deletion induced similar changes. Ultrastructural imaging showed decreased apical plasma membrane and increased vesicular H+-ATPase in OMCDis type A intercalated cell in NBCe1-A KO mice. Next, we examined the collecting duct remodeling response to acidosis. In wild-type mice, acid loading increased the proportion of type A intercalated cells in the connecting tubule (CNT) and OMCDis, and it decreased the proportion of non-A, non-B intercalated cells in the connecting tubule, and type B intercalated cells in the cortical collecting duct (CCD). These changes were absent in NBCe1-A KO mice. We conclude that the collecting duct phenotypic and remodeling responses depend on proximal tubule-dependent signaling mechanisms blocked by constitutive deletion of proximal tubule NBCe1 proteins.NEW & NOTEWORTHY This study shows that the proximal tubule regulates collecting duct phenotypic and remodeling responses to acidosis.
Collapse
Affiliation(s)
- Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Susan M Wall
- Renal Division, Emory University, Atlanta, Georgia
| | - Autumn N Harris
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
4
|
Olsen JSM, Svendsen S, Berg P, Dam VS, Sorensen MV, Matchkov VV, Leipziger J, Boedtkjer E. NBCn1 Increases NH 4 + Reabsorption Across Thick Ascending Limbs, the Capacity for Urinary NH 4 + Excretion, and Early Recovery from Metabolic Acidosis. J Am Soc Nephrol 2021; 32:852-865. [PMID: 33414245 PMCID: PMC8017549 DOI: 10.1681/asn.2019060613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The electroneutral Na+/HCO3 - cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking. METHODS Metabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4 + transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4 +] was measured in renal biopsies, NH4 + excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice. RESULTS Basolateral Na+/HCO3 - cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3 - cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4 + reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4 + gradient, reduced the capacity for urinary NH4 + excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3 -] from their initial decline. CONCLUSIONS During metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3 - uptake and transepithelial NH4 + reabsorption in mTALs, renal medullary NH4 + accumulation, urinary NH4 + excretion, and early recovery of arterial blood pH and standard [HCO3 -]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4 + reabsorption across mTALs.
Collapse
Affiliation(s)
| | - Samuel Svendsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
6
|
Harris AN, Lee HW, Fang L, Verlander JW, Weiner ID. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am J Physiol Renal Physiol 2019; 317:F890-F905. [PMID: 31390234 DOI: 10.1152/ajprenal.00244.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl- cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida.,Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
7
|
Abdulnour‐Nakhoul S, Hering‐Smith K, Hamm LL, Nakhoul NL. Effects of chronic hypercapnia on ammonium transport in the mouse kidney. Physiol Rep 2019; 7:e14221. [PMID: 31456326 PMCID: PMC6712239 DOI: 10.14814/phy2.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/24/2022] Open
Abstract
Hypercapnia and subsequent respiratory acidosis are serious complications in many patients with respiratory disorders. The acute response to hypercapnia is buffering of H+ by hemoglobin and cellular proteins but this effect is limited. The chronic response is renal compensation that increases HCO3- reabsorption, and stimulates urinary excretion of titratable acids (TA) and NH4+ . However, the main effective pathway is the excretion of NH4+ in the collecting duct. Our hypothesis is that, the renal NH3 /NH4+ transporters, Rhbg and Rhcg, in the collecting duct mediate this response. The effect of hypercapnia on these transporters is unknown. We conducted in vivo experiments on mice subjected to chronic hypercapnia. One group breathed 8% CO2 and the other breathed normal air as control (0.04% CO2 ). After 3 days, the mice were euthanized and kidneys, blood, and urine samples were collected. We used immunohistochemistry and Western blot analysis to determine the effects of high CO2 on localization and expression of the Rh proteins, carbonic anhydrase IV, and pendrin. In hypercapnic animals, there was a significant increase in urinary NH4+ excretion but no change in TA. Western blot analysis showed a significant increase in cortical expression of Rhbg (43%) but not of Rhcg. Expression of CA-IV was increased but pendrin was reduced. These data suggest that hypercapnia leads to compensatory upregulation of Rhbg that contributes to excretion of NH3 /NH4+ in the kidney. These studies are the first to show a link among hypercapnia, NH4+ excretion, and Rh expression.
Collapse
Affiliation(s)
- Solange Abdulnour‐Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Kathleen Hering‐Smith
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - L. Lee Hamm
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| | - Nazih L. Nakhoul
- Section of Nephrology, Departments of Medicine and PhysiologyTulane University School of MedicineNew OrleansLouisiana
| |
Collapse
|
8
|
Osis G, Webster KL, Harris AN, Lee HW, Chen C, Fang L, Romero MF, Khattri RB, Merritt ME, Verlander JW, Weiner ID. Regulation of renal NaDC1 expression and citrate excretion by NBCe1-A. Am J Physiol Renal Physiol 2019; 317:F489-F501. [PMID: 31188034 PMCID: PMC6732450 DOI: 10.1152/ajprenal.00015.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022] Open
Abstract
Citrate is critical for acid-base homeostasis and to prevent calcium nephrolithiasis. Both metabolic acidosis and hypokalemia decrease citrate excretion and increase expression of Na+-dicarboxylate cotransporter 1 (NaDC1; SLC13A2), the primary protein involved in citrate reabsorption. However, the mechanisms transducing extracellular signals and mediating these responses are incompletely understood. The purpose of the present study was to determine the role of the Na+-coupled electrogenic bicarbonate cotransporter (NBCe1) A variant (NBCe1-A) in citrate metabolism under basal conditions and in response to acid loading and hypokalemia. NBCe1-A deletion increased citrate excretion and decreased NaDC1 expression in the proximal convoluted tubules (PCT) and proximal straight tubules (PST) in the medullary ray (PST-MR) but not in the PST in the outer medulla (PST-OM). Acid loading wild-type (WT) mice decreased citrate excretion. NaDC1 expression increased only in the PCT and PST-MR and not in the PST-MR. In NBCe1-A knockout (KO) mice, the acid loading change in citrate excretion was unaffected, changes in PCT NaDC1 expression were blocked, and there was an adaptive increase in PST-MR. Hypokalemia in WT mice decreased citrate excretion; NaDC1 expression increased only in the PCT and PST-MR. NBCe1-A KO blocked both the citrate and NaDC1 changes. We conclude that 1) adaptive changes in NaDC1 expression in response to metabolic acidosis and hypokalemia occur specifically in the PCT and PST-MR, i.e., in cortical proximal tubule segments; 2) NBCe1-A is necessary for normal basal, metabolic acidosis and hypokalemia-stimulated citrate metabolism and does so by regulating NaDC1 expression in cortical proximal tubule segments; and 3) adaptive increases in PST-OM NaDC1 expression occur in NBCe1-A KO mice in response to acid loading that do not occur in WT mice.
Collapse
Affiliation(s)
- Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Ram B Khattri
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
9
|
Fang L, Lee HW, Chen C, Harris AN, Romero MF, Verlander JW, Weiner ID. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney. Am J Physiol Renal Physiol 2018; 315:F417-F428. [PMID: 29631353 PMCID: PMC6172571 DOI: 10.1152/ajprenal.00515.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
Sodium-coupled bicarbonate transporters are critical for renal electrolyte transport. The electrogenic, sodium-coupled bicarbonate cotransporter, isoform 1 (NBCe1), encoded by the SLC4A4 geneencoded by the SLC4A4 gene has five multiple splice variants; the A splice variant, NBCe1-A, is the primary basolateral bicarbonate transporter in the proximal convoluted tubule. This study's purpose was to determine if there is expression of additional NBCe1 splice variants in the mouse kidney, their cellular distribution, and their regulation by metabolic acidosis. In wild-type mice, an antibody reactive only to NBCe1-A showed basolateral immunolabel only in cortical proximal tubule (PT) segments, whereas an antibody reactive to all NBCe1 splice variants (pan-NBCe1) showed basolateral immunolabel in PT segments in both the cortex and outer medulla. In mice with NBCe1-A deletion, the pan-NBCe1 antibody showed basolateral PT immunolabel in both the renal cortex and outer stripe of the outer medulla, and immunoblot analysis showed expression of a ~121-kDa protein. RT-PCR of mRNA from NBCe1-A knockout mice directed at splice variant-specific regions showed expression of only NBCe1-B mRNA. In wild-type kidney, RT-PCR confirmed expression of mRNA for the NBCe1-B splice variant and absence of mRNA for the C, D, and E splice variants. Finally, exogenous acid loading increased expression in the proximal straight tubule in the outer stripe of the outer medulla. These studies demonstrate that the NBCe1-B splice variant is present in the PT, and its expression increases in response to exogenous acid loading, suggesting it participates in the PT contribution to acid-base homeostasis.
Collapse
Affiliation(s)
- Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Chao Chen
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine , Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
10
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
11
|
Lee HW, Osis G, Harris AN, Fang L, Romero MF, Handlogten ME, Verlander JW, Weiner ID. NBCe1-A Regulates Proximal Tubule Ammonia Metabolism under Basal Conditions and in Response to Metabolic Acidosis. J Am Soc Nephrol 2018; 29:1182-1197. [PMID: 29483156 DOI: 10.1681/asn.2017080935] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Renal ammonia metabolism is the primary mechanism through which the kidneys maintain acid-base homeostasis, but the molecular mechanisms regulating renal ammonia generation are unclear. In these studies, we evaluated the role of the proximal tubule basolateral plasma membrane electrogenic sodium bicarbonate cotransporter 1 variant A (NBCe1-A) in this process. Deletion of the NBCe1-A gene caused severe spontaneous metabolic acidosis in mice. Despite this metabolic acidosis, which normally causes a dramatic increase in ammonia excretion, absolute urinary ammonia concentration was unaltered. Additionally, NBCe1-A deletion almost completely blocked the ability to increase ammonia excretion after exogenous acid loading. Under basal conditions and during acid loading, urine pH was more acidic in mice with NBCe1-A deletion than in wild-type controls, indicating that the abnormal ammonia excretion was not caused by a primary failure of urine acidification. Instead, NBCe1-A deletion altered the expression levels of multiple enzymes involved in proximal tubule ammonia generation, including phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and glutamine synthetase, under basal conditions and after exogenous acid loading. Deletion of NBCe1-A did not impair expression of key proteins involved in collecting duct ammonia secretion. These studies demonstrate that the integral membrane protein NBCe1-A has a critical role in basal and acidosis-stimulated ammonia metabolism through the regulation of proximal tubule ammonia-metabolizing enzymes.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida; .,Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
12
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
13
|
Lee HW, Osis G, Handlogten ME, Lamers WH, Chaudhry FA, Verlander JW, Weiner ID. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am J Physiol Renal Physiol 2016; 310:F1229-42. [PMID: 27009341 PMCID: PMC4935770 DOI: 10.1152/ajprenal.00547.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
14
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
15
|
Chigaev A. Does aberrant membrane transport contribute to poor outcome in adult acute myeloid leukemia? Front Pharmacol 2015; 6:134. [PMID: 26191006 PMCID: PMC4489100 DOI: 10.3389/fphar.2015.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia in adults is a highly heterogeneous disease. Gene expression profiling performed using unsupervised algorithms can be used to distinguish specific groups of patients within a large patient cohort. The identified gene expression signatures can offer insights into underlying physiological mechanisms of disease pathogenesis. Here, the analysis of several related gene expression clusters associated with poor outcome, worst overall survival and highest rates of resistant disease and obtained from the patients at the time of diagnosis or from previously untreated individuals is presented. Surprisingly, these gene clusters appear to be enriched for genes corresponding to proteins involved in transport across membranes (transporters, carriers and channels). Several ideas describing the possible relationship of membrane transport activity and leukemic cell biology, including the "Warburg effect," the specific role of chloride ion transport, direct "import" of metabolic energy through uptake of creatine phosphate, and modification of the bone marrow niche microenvironment are discussed.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
16
|
Lee HW, Osis G, Handlogten ME, Guo H, Verlander JW, Weiner ID. Effect of dietary protein restriction on renal ammonia metabolism. Am J Physiol Renal Physiol 2015; 308:F1463-73. [PMID: 25925252 DOI: 10.1152/ajprenal.00077.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Dietary protein restriction has multiple benefits in kidney disease. Because protein intake is a major determinant of endogenous acid production, it is important that net acid excretion change in parallel during protein restriction. Ammonia is the primary component of net acid excretion, and inappropriate ammonia excretion can lead to negative nitrogen balance. Accordingly, we examined ammonia excretion in response to protein restriction and then we determined the molecular mechanism of the changes observed. Wild-type C57Bl/6 mice fed a 20% protein diet and then changed to 6% protein developed an 85% reduction in ammonia excretion within 2 days, which persisted during a 10-day study. The expression of multiple proteins involved in renal ammonia metabolism was altered, including the ammonia-generating enzymes phosphate-dependent glutaminase (PDG) and phosphoenolpyruvate carboxykinase (PEPCK) and the ammonia-metabolizing enzyme glutamine synthetase. Rhbg, an ammonia transporter, increased in expression in the inner stripe of outer medullary collecting duct intercalated cell (OMCDis-IC). However, collecting duct-specific Rhbg deletion did not alter the response to protein restriction. Rhcg deletion did not alter ammonia excretion in response to dietary protein restriction. These results indicate 1) dietary protein restriction decreases renal ammonia excretion through coordinated regulation of multiple components of ammonia metabolism; 2) increased Rhbg expression in the OMCDis-IC may indicate a biological role in addition to ammonia transport; and 3) Rhcg expression is not necessary to decrease ammonia excretion during dietary protein restriction.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hui Guo
- Division of Nephrology, Second Hospital of Shanxi Medical University, Yaiyuan, Shanxi, Peoples Republic of China; and
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, Florida, Nephrology and Hypertension Section, Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
17
|
Renal acid-base regulation: new insights from animal models. Pflugers Arch 2014; 467:1623-41. [PMID: 25515081 DOI: 10.1007/s00424-014-1669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
Because majority of biological processes are dependent on pH, maintaining systemic acid-base balance is critical. The kidney contributes to systemic acid-base regulation, by reabsorbing HCO3 (-) (both filtered by glomeruli and generated within a nephron) and acidifying urine. Abnormalities in those processes will eventually lead to a disruption in systemic acid-base balance and provoke metabolic acid-base disorders. Research over the past 30 years advanced our understanding on cellular and molecular mechanisms responsible for those processes. In particular, a variety of transgenic animal models, where target genes are deleted either globally or conditionally, provided significant insights into how specific transporters are contributing to the renal acid-base regulation. Here, we broadly overview the mechanisms of renal ion transport participating to acid-base regulation, with emphasis on data obtained from transgenic mice models.
Collapse
|
18
|
Weiner ID, Leader JP, Bedford JJ, Verlander JW, Ellis G, Kalita P, Vos F, de Jong S, Walker RJ. Effects of chronic lithium administration on renal acid excretion in humans and rats. Physiol Rep 2014; 2:2/12/e12242. [PMID: 25501430 PMCID: PMC4332220 DOI: 10.14814/phy2.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. Chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - John P Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Jill W Verlander
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Gaye Ellis
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Priyakshi Kalita
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Frederiek Vos
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Sylvia de Jong
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Geyer RR, Parker MD, Toye AM, Boron WF, Musa-Aziz R. Relative CO₂/NH₃ permeabilities of human RhAG, RhBG and RhCG. J Membr Biol 2014; 246:915-26. [PMID: 24077989 DOI: 10.1007/s00232-013-9593-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (DpHS) caused by exposing the same oocyte to 5 % CO₂/33 mM HCO₃⁻ (an increase) or 0.5 mM NH₃/NH₄⁺ (a decrease). Subtracting the respective values for day-matched, H₂O-injected control oocytes yielded channel-specific values (*). (ΔpH*(S))(CO₂) and (-ΔpH*(S))(NH₃) were each significantly >0 for all channels, indicating that RhBG and RhCG--like RhAG--can carry CO₂ and NH₃. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH₃ transport. However, surface biotinylation experiments indicate the mutants RhBG(D178N) and RhCG(D177N) have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG--like RhAG--have significant CO₂ permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH₃ permeability. However, as evidenced by (ΔpH*(S))(CO₂)/ (-ΔpH*(S))(NH₃) values, we could not distinguish among the CO₂/ NH₃ permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH₃ but also CO₂ across the membranes of CD cells.
Collapse
|
20
|
Weiner ID, Verlander JW. Ammonia transport in the kidney by Rhesus glycoproteins. Am J Physiol Renal Physiol 2014; 306:F1107-20. [PMID: 24647713 PMCID: PMC4024734 DOI: 10.1152/ajprenal.00013.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/14/2014] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4(+) with a new model in which specific and regulated transport of both NH3 and NH4(+) across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville Florida; and
| |
Collapse
|
21
|
Bounoure L, Ruffoni D, Müller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA. The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J Am Soc Nephrol 2014; 25:2040-52. [PMID: 24652796 DOI: 10.1681/asn.2013050466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
High dietary protein imposes a metabolic acid load requiring excretion and buffering by the kidney. Impaired acid excretion in CKD, with potential metabolic acidosis, may contribute to the progression of CKD. Here, we investigated the renal adaptive response of acid excretory pathways in mice to high-protein diets containing normal or low amounts of acid-producing sulfur amino acids (SAA) and examined how this adaption requires the RhCG ammonia transporter. Diets rich in SAA stimulated expression of enzymes and transporters involved in mediating NH4 (+) reabsorption in the thick ascending limb of the loop of Henle. The SAA-rich diet increased diuresis paralleled by downregulation of aquaporin-2 (AQP2) water channels. The absence of Rhcg transiently reduced NH4 (+) excretion, stimulated the ammoniagenic pathway more strongly, and further enhanced diuresis by exacerbating the downregulation of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and AQP2, with less phosphorylation of AQP2 at serine 256. The high protein acid load affected bone turnover, as indicated by higher Ca(2+) and deoxypyridinoline excretion, phenomena exaggerated in the absence of Rhcg. In animals receiving a high-protein diet with low SAA content, the kidney excreted alkaline urine, with low levels of NH4 (+) and no change in bone metabolism. Thus, the acid load associated with high-protein diets causes a concerted response of various nephron segments to excrete acid, mostly in the form of NH4 (+), that requires Rhcg. Furthermore, bone metabolism is altered by a high-protein acidogenic diet, presumably to buffer the acid load.
Collapse
Affiliation(s)
- Lisa Bounoure
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Soline Bourgeois
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Olivier Devuyst
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| | - Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
22
|
Lee HW, Verlander JW, Handlogten ME, Han KH, Weiner ID. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis. Am J Physiol Renal Physiol 2013; 306:F389-400. [PMID: 24338819 DOI: 10.1152/ajprenal.00176.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Div. of Nephrology, Hypertension, and Transplantation, Univ. of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610.
| | | | | | | | | |
Collapse
|
23
|
Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2013; 2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The uriniferous tubule is divided into the proximal tubule, the intermediate (thin) tubule, the distal tubule and the collecting duct. The present chapter is based on the chapters by Maunsbach and Christensen on the proximal tubule, and by Kaissling and Kriz on the distal tubule and collecting duct in the 1992 edition of the Handbook of Physiology, Renal Physiology. It describes the fine structure (light and electron microscopy) of the entire mammalian uriniferous tubule, mainly in rats, mice, and rabbits. The structural data are complemented by recent data on the location of the major transport- and transport-regulating proteins, revealed by morphological means(immunohistochemistry, immunofluorescence, and/or mRNA in situ hybridization). The structural differences along the uriniferous tubule strictly coincide with the distribution of the major luminal and basolateral transport proteins and receptors and both together provide the basis for the subdivision of the uriniferous tubule into functional subunits. Data on structural adaptation to defined functional changes in vivo and to genetical alterations of specified proteins involved in transepithelial transport importantly deepen our comprehension of the correlation of structure and function in the kidney, of the role of each segment or cell type in the overall renal function,and our understanding of renal pathophysiology.
Collapse
|
24
|
Zimmer AM, Brauner CJ, Wood CM. Ammonia transport across the skin of adult rainbow trout (Oncorhynchus mykiss) exposed to high environmental ammonia (HEA). J Comp Physiol B 2013; 184:77-90. [PMID: 24114656 DOI: 10.1007/s00360-013-0784-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Recent molecular evidence points towards a capacity for ammonia transport across the skin of adult rainbow trout. A series of in vivo and in vitro experiments were conducted to understand the role of cutaneous ammonia excretion (J amm) under control conditions and after 12-h pre-exposure to high environmental ammonia (HEA; 2 mmol/l NH4HCO3). Divided chamber experiments with bladder-catheterized, rectally ligated fish under light anesthesia were performed to separate cutaneous J amm from branchial, renal, and intestinal J amm. Under control conditions, cutaneous J amm accounted for 4.5 % of total J amm in vivo. In fish pre-exposed to HEA, plasma total ammonia concentration increased 20-fold to approximately 1,000 μmol/l, branchial J amm increased 1.5- to 2.7-fold, and urinary J amm increased about 7-fold. Urinary J amm still accounted for less than 2 % of total J amm. Cutaneous J amm increased 4-fold yet amounted to only 5.7 % of total J amm in these fish. Genes (Rhcg1, Rhcg2, Rhbg, NHE-2, v-type H(+)-ATPase) known to be involved in ammonia excretion at the gills of trout were all expressed at the mRNA level in the skin, but their expression did not increase with HEA pre-exposure. In vitro analyses using [(14)C] methylamine (MA), an ammonia analog which is transported by Rh proteins, demonstrated that MA permeability in isolated skin sections was higher in HEA pre-exposed fish than in control fish. The addition of basolateral ammonia (1,000 μmol/l) to this system abolished this increase in permeability, suggesting ammonia competition with MA for Rh-mediated transport across the skin of HEA pre-exposed trout; this did not occur in skin sections from control trout. Moreover, in vitro J amm by the skin of fish which had been pre-exposed to HEA was also higher than in control fish in the absence of basolateral ammonia, pointing towards a possible cutaneous ammonia loading in response to HEA. In vitro MA permeability was reduced upon the addition of amiloride (10(-4) mol/l), but not phenamil (10(-5) mol/l) suggesting a role for a Na/H-exchanger (NHE) in cutaneous ammonia transport, as has been previously described in the skin of larval fish. Overall, it appears that under control conditions and in response to HEA pre-exposure, the skin makes only a very minor contribution to total J amm, but the observed increases in cutaneous J amm in vivo and in cutaneous J amm and MA permeability in vitro demonstrate the capacity for ammonia transport in the skin of adult trout. It remains unclear if this capacity may become significant under certain environmental challenges or if it is merely a remnant of cutaneous transport capacity from early life stages in these fish.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada,
| | | | | |
Collapse
|
25
|
Characteristics of mammalian Rh glycoproteins (SLC42 transporters) and their role in acid-base transport. Mol Aspects Med 2013; 34:629-37. [PMID: 23506896 DOI: 10.1016/j.mam.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/16/2012] [Indexed: 01/06/2023]
Abstract
The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an "Rh complex" made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4(+) transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4(+) and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease.
Collapse
|
26
|
Shih TH, Horng JL, Lai YT, Lin LY. Rhcg1 and Rhbg mediate ammonia excretion by ionocytes and keratinocytes in the skin of zebrafish larvae: H+-ATPase-linked active ammonia excretion by ionocytes. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1130-8. [PMID: 23594610 DOI: 10.1152/ajpregu.00550.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In zebrafish, Rhcg1 was found in apical membranes of skin ionocytes [H⁺-ATPase-rich (HR) cells], which are similar to α-type intercalated cells in mammalian collecting ducts. However, the cellular distribution and role of Rhbg in zebrafish larvae have not been well investigated. In addition, HR cells were hypothesized to excrete ammonia against concentration gradients. In this study, we attempted to compare the roles of Rhbg and Rhcg1 in ammonia excretion by larval skin and compare the capability of skin cells to excrete ammonia against concentration gradients. Using in situ hybridization and immunohistochemistry, Rhbg was localized to both apical and basolateral membranes of skin keratinocytes. A scanning ion-selective electrode technique (SIET) was applied to measure the NH₄⁺ flux at the apical surface of keratinocytes and HR cells. Knockdown of Rhbg with morpholino oligonucleotides suppressed ammonia excretion by keratinocytes and induced compensatory ammonia excretion by HR cells. To compare the capability of cells to excrete ammonia against gradients, NH₄⁺ flux of cells was determined in larvae exposed to serial concentrations of external NH₄⁺. Results showed that HR cells excreted NH₄⁺ against higher NH₄⁺ concentration than did keratinocytes. Knockdown of the expression of either Rhcg1 or H⁺ -ATPase in HR cells suppressed the capability of HR cells.
Collapse
Affiliation(s)
- Tin-Han Shih
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | |
Collapse
|
27
|
Han KH, Lee HW, Handlogten ME, Whitehill F, Osis G, Croker BP, Clapp WL, Verlander JW, Weiner ID. Expression of the ammonia transporter family member, Rh B Glycoprotein, in the human kidney. Am J Physiol Renal Physiol 2013; 304:F972-81. [PMID: 23324176 PMCID: PMC3625849 DOI: 10.1152/ajprenal.00550.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/09/2013] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (RhBG/Rhbg), is essential for ammonia transport by the rodent kidney, but in the human kidney mRNA but not protein expression has been reported. Because ammonia transport is fundamental for acid-base homeostasis, the current study addressed RhBG expression in the human kidney. Two distinct RhBG mRNA sequences have been reported, with different numbers of consecutive cytosines at nt1265 and thus encoding different carboxy-tails. Sequencing the region of difference in both human kidney and liver mRNA showed eight sequential cytosines, not seven as in some reports. Knowing the correct mRNA sequence for RhBG, we then assessed RhBG protein expression using antibodies against the correct amino acid sequence. Immunoblot analysis demonstrated RhBG protein expression in human kidney and immunohistochemistry identified basolateral RhBG in connecting segment (CNT) and the cortical and outer medullary collecting ducts. Colocalization of RhBG with multiple cell-specific markers demonstrated that that CNT cells and collecting duct type A intercalated cells express high levels of RhBG, and type B intercalated cells and principal cells do not express detectable RhBG. Thus, these studies identify the correct mRNA and thus protein sequence for human RhBG and show that the human kidney expresses basolateral RhBG protein in CNT, type A intercalated cells, and non-A, non-B cells. We conclude that RhBG can mediate an important role in human renal ammonia transport.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Korea
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E. Handlogten
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Florence Whitehill
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Byron P. Croker
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida
- Pathology Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; and
| | - William L. Clapp
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida
- Pathology Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida; and
| | - Jill W. Verlander
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I. David Weiner
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
28
|
Bishop JM, Lee HW, Handlogten ME, Han KH, Verlander JW, Weiner ID. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia. Am J Physiol Renal Physiol 2013; 304:F422-31. [PMID: 23220726 PMCID: PMC3566498 DOI: 10.1152/ajprenal.00301.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.
Collapse
Affiliation(s)
- Jesse M Bishop
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
30
|
Lee HW, Verlander JW, Bishop JM, Handlogten ME, Han KH, Weiner ID. Renal ammonia excretion in response to hypokalemia: effect of collecting duct-specific Rh C glycoprotein deletion. Am J Physiol Renal Physiol 2012. [PMID: 23195675 DOI: 10.1152/ajprenal.00300.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Rhesus factor protein, Rh C glycoprotein (Rhcg), is an ammonia transporter whose expression in the collecting duct is necessary for normal ammonia excretion both in basal conditions and in response to metabolic acidosis. Hypokalemia is a common clinical condition associated with increased renal ammonia excretion. In contrast to basal conditions and metabolic acidosis, increased ammonia excretion during hypokalemia can lead to an acid-base disorder, metabolic alkalosis, rather than maintenance of acid-base homeostasis. The purpose of the current studies was to determine Rhcg's role in hypokalemia-stimulated renal ammonia excretion through the use of mice with collecting duct-specific Rhcg deletion (CD-Rhcg-KO). In mice with intact Rhcg expression, a K(+)-free diet increased urinary ammonia excretion and urine alkalinization and concurrently increased Rhcg expression in the collecting duct in the outer medulla. Immunohistochemistry and immunogold electron microscopy showed hypokalemia increased both apical and basolateral Rhcg expression. In CD-Rhcg-KO, a K(+)-free diet increased urinary ammonia excretion and caused urine alkalinization, and the magnitude of these changes did not differ from mice with intact Rhcg expression. In mice on a K(+)-free diet, CD-Rhcg-KO increased phosphate-dependent glutaminase (PDG) expression in the outer medulla. We conclude that hypokalemia increases collecting duct Rhcg expression, that this likely contributes to the hypokalemia-stimulated increase in urinary ammonia excretion, and that adaptive increases in PDG expression can compensate for the absence of collecting duct Rhcg.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
31
|
Han KH. Mechanisms of the effects of acidosis and hypokalemia on renal ammonia metabolism. Electrolyte Blood Press 2011; 9:45-9. [PMID: 22438855 PMCID: PMC3302905 DOI: 10.5049/ebp.2011.9.2.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/18/2011] [Indexed: 01/29/2023] Open
Abstract
Renal ammonia metabolism is the predominant component of net acid excretion and new bicarbonate generation. Renal ammonia metabolism is regulated by acid-base balance. Both acute and chronic acid loads enhance ammonia production in the proximal tubule and secretion into the urine. In contrast, alkalosis reduces ammoniagenesis. Hypokalemia is a common electrolyte disorder that significantly increases renal ammonia production and excretion, despite causing metabolic alkalosis. Although the net effects of hypokalemia are similar to metabolic acidosis, molecular mechanisms of renal ammonia production and transport have not been well understood. This mini review summarizes recent findings regarding renal ammonia metabolism in response to chronic hypokalemia.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Han KH, Lee HW, Handlogten ME, Bishop JM, Levi M, Kim J, Verlander JW, Weiner ID. Effect of hypokalemia on renal expression of the ammonia transporter family members, Rh B Glycoprotein and Rh C Glycoprotein, in the rat kidney. Am J Physiol Renal Physiol 2011; 301:F823-32. [PMID: 21753075 DOI: 10.1152/ajprenal.00266.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemia is a common electrolyte disorder that increases renal ammonia metabolism and can cause the development of an acid-base disorder, metabolic alkalosis. The ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), are expressed in the distal nephron and collecting duct and mediate critical roles in acid-base homeostasis by facilitating ammonia secretion. In the current studies, the effect of hypokalemia on renal Rhbg and Rhcg expression was examined. Normal Sprague-Dawley rats received either K(+)-free or control diets for 2 wk. Rats receiving the K(+)-deficient diet developed hypokalemia and metabolic alkalosis associated with significant increases in both urinary ammonia excretion and urine pH. Rhcg expression increased in the outer medullary collecting duct (OMCD). In OMCD intercalated cells, hypokalemia resulted in more discrete apical Rhcg expression and a marked increase in apical plasma membrane immunolabel. In principal cells, in the OMCD, hypokalemia increased both apical and basolateral Rhcg immunolabel intensity. Cortical Rhcg expression was not detectably altered by immunohistochemistry, although there was a slight decrease in total expression by immunoblot analysis. Rhbg protein expression was decreased slightly in the cortex and not detectably altered in the outer medulla. We conclude that in rat OMCD, hypokalemia increases Rhcg expression, causes more polarized apical expression in intercalated cells, and increases both apical and basolateral expression in the principal cell. Increased plasma membrane Rhcg expression in response to hypokalemia in the rat, particularly in the OMCD, likely contributes to the increased ammonia excretion and thereby to the development of metabolic alkalosis.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Anatomy Department, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fenton RA, Praetorius J. Molecular Physiology of the Medullary Collecting Duct. Compr Physiol 2011; 1:1031-56. [DOI: 10.1002/cphy.c100064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Lee HJ, Park HJ, Lee S, Kim YH, Choi I. The sodium-driven chloride/bicarbonate exchanger NDCBE in rat brain is upregulated by chronic metabolic acidosis. Brain Res 2011; 1377:13-20. [DOI: 10.1016/j.brainres.2010.12.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 11/27/2022]
|
35
|
Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300:F11-23. [PMID: 21048022 PMCID: PMC3023229 DOI: 10.1152/ajprenal.00554.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022] Open
Abstract
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
36
|
Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P. The rhesus protein RhCG: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 2011; 79:154-61. [DOI: 10.1038/ki.2010.386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Abstract
PURPOSE OF REVIEW Recent studies have identified a new family of ammonia-specific transporters, Rh glycoproteins, which enable NH3-specific transport. The purpose of this review is to summarize recent evidence regarding the role of Rh glycoproteins in renal ammonia transport. RECENT FINDINGS The Rh glycoproteins, RhAG/Rhag, RhBG/Rhbg and RhCG/Rhcg, transport ammonia in the form of molecular NH3, although there is some evidence suggesting the possibility of NH4 transport. RhAG/Rhag is expressed only in erythrocytes, and not in the kidney. Rhbg and Rhcg are expressed in distal nephron sites, from the distal convoluted tubule through the inner medullary collecting duct, with basolateral Rhbg expression and both apical and basolateral Rhcg expression. Whether Rhbg contributes to renal ammonia transport remains controversial. Rhcg expression parallels ammonia excretion in multiple experimental models and genetic deletion studies, both global and collecting duct-specific, demonstrate a critical role for Rhcg in both basal and acidosis-stimulated renal ammonia excretion. X-ray crystallography has defined critical structural elements in Rh glycoprotein-mediated ammonia transport. Finally, Rh glycoproteins may also function as CO2 transporters. SUMMARY No longer can NH3 transport be considered to occur only through diffusive NH3 movement. Transporter-mediated NH3 movement is fundamental to ammonia metabolism.
Collapse
|
38
|
Abstract
The traditional dogma has been that all gases diffuse through all membranes simply by dissolving in the lipid phase of the membrane. Although this mechanism may explain how most gases move through most membranes, it is now clear that some membranes have no demonstrable gas permeability, and that at least two families of membrane proteins, the aquaporins (AQPs) and the Rhesus (Rh) proteins, can each serve as pathways for the diffusion of both CO2 and NH3. The knockout of RhCG in the renal collecting duct leads to the predicted consequences in acid–base physiology, providing a clear-cut role for at least one gas channel in the normal physiology of mammals. In our laboratory, we have found that surface-pH (pHS) transients provide a sensitive approach for detecting CO2 and NH3 movement across the cell membranes of Xenopus oocytes. Using this approach, we have found that each tested AQP and Rh protein has its own characteristic CO2/NH3 permeability ratio, which provides the first demonstration of gas selectivity by a channel. Our preliminary AQP1 data suggest that all the NH3 and less than half of the CO2 move along with H2O through the four monomeric aquapores. The majority of CO2 takes an alternative route through AQP1, possibly the central pore at the four-fold axis of symmetry. Preliminary data with two Rh proteins, bacterial AmtB and human erythroid RhAG, suggest a similar story, with all the NH3 moving through the three monomeric NH3 pores and the CO2 taking a separate route, perhaps the central pore at the three-fold axis of symmetry. The movement of different gases via different pathways is likely to underlie the gas selectivity that these channels exhibit.
Collapse
Affiliation(s)
- Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
39
|
Nakhoul NL, Abdulnour-Nakhoul SM, Schmidt E, Doetjes R, Rabon E, Hamm LL. pH sensitivity of ammonium transport by Rhbg. Am J Physiol Cell Physiol 2010; 299:C1386-97. [PMID: 20810915 DOI: 10.1152/ajpcell.00211.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rhbg is a membrane glycoprotein that is involved in NH(3)/NH(4)(+) transport. Several models have been proposed to describe Rhbg, including an electroneutral NH(4)(+)/H(+) exchanger, a uniporter, an NH(4)(+) channel, or even a gas channel. In this study, we characterized the pH sensitivity of Rhbg expressed in Xenopus oocytes. We used two-electrode voltage clamp and ion-selective microelectrodes to measure NH(4)(+)-induced [and methyl ammonium (MA(+))] currents and changes in intracellular pH (pH(i)), respectively. In oocytes expressing Rhbg, 5 mM NH(4)Cl (NH(3)/NH(4)(+)) at extracellular pH (pH(o)) of 7.5 induced an inward current, decreased pH(i), and depolarized the cell. Raising pH(o) to 8.2 significantly enhanced the NH(4)(+)-induced current and pH(i) changes, whereas decreasing bath pH to 6.5 inhibited these changes. Lowering pH(i) (decreased by butyrate) also inhibited the NH(4)(+)-induced current and pH(i) decrease. In oocytes expressing Rhbg, 5 mM methyl amine hydrochloride (MA/MA(+)), often used as an NH(4)Cl substitute, induced an inward current, a pH(i) increase (not a decrease), and depolarization of the cell. Exposing the oocyte to MA/MA(+) at alkaline bath pH (8.2) enhanced the MA(+)-induced current, whereas lowering bath pH to 6.5 inhibited the MA(+) current completely. Exposing the oocyte to MA/MA(+) at low pH(i) abolished the MA(+)-induced current and depolarization; however, pH(i) still increased. These data indicate that 1) transport of NH(4)(+) and MA/MA(+) by Rhbg is pH sensitive; 2) electrogenic NH(4)(+) and MA(+) transport are stimulated by alkaline pH(o) but inhibited by acidic pH(i) or pH(o); and 3) electroneutral transport of MA by Rhbg is likely but is less sensitive to pH changes.
Collapse
Affiliation(s)
- Nazih L Nakhoul
- Section of Nephrology, Department of Medicine, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Bishop JM, Verlander JW, Lee HW, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID. Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F1065-77. [PMID: 20719974 DOI: 10.1152/ajprenal.00277.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.
Collapse
Affiliation(s)
- Jesse M Bishop
- Div. of Nephrology, Hypertension, and Transplantation, P.O. Box 100224, Univ. of Florida College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Han KH, Lee SY, Kim WY, Shin JA, Kim J, Weiner ID. Expression of ammonia transporter family members, Rh B glycoprotein and Rh C glycoprotein, in the developing rat kidney. Am J Physiol Renal Physiol 2010; 299:F187-98. [PMID: 20392801 PMCID: PMC2904167 DOI: 10.1152/ajprenal.00607.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/10/2010] [Indexed: 11/22/2022] Open
Abstract
Ammonia metabolism is a primary component of acid-base homeostasis but is incompletely developed at time of birth. Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg) are recently recognized ammonia transporter family members expressed in the mammalian kidney. This study's purpose was to establish the expression and localization of Rhbg and Rhcg during kidney development. We examined kidneys from fetal days 16 (E16), 18 (E18), and 20 (E20), and from the first 21 days of postnatal development. Rhbg was expressed initially at E18, with expression only in the connecting tubule (CNT); at E20, Rhbg was expressed in both the CNT and the medullary collecting duct (MCD). In contrast, Rhcg was first expressed at E16 with basal expression in the ureteric bud; at E18, it was expressed in a subset of CNT cells with an apical pattern, followed by apical and basolateral expression in the MCD at E20. In the cortex, Rhbg and Rhcg expression increased in the CNT before expression in the cortical collecting duct during fetal development. In the MCD, both Rhbg and Rhcg expression was initially in cells in the papillary tip, with gradual removal from the tip during the late fetal period and transition during the early neonatal period to an adult pattern with predominant expression in the outer MCD and only rare expression in cells in the initial inner MCD. Double-labeling with intercalated cell-specific markers identified that Rhbg and Rhcg were expressed initially in CNT cells, CNT A-type intercalated cells and non-A, non-B intercalated cells, and in MCD A-type intercalated cells. We conclude that expression of Rhbg and Rhcg parallels intercalated cell development and that immature Rhbg and Rhcg expression at birth contributes to incomplete ammonia excretion capacity.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Nakhoul NL, Abdulnour-Nakhoul SM, Boulpaep EL, Rabon E, Schmidt E, Hamm LL. Substrate specificity of Rhbg: ammonium and methyl ammonium transport. Am J Physiol Cell Physiol 2010; 299:C695-705. [PMID: 20592240 DOI: 10.1152/ajpcell.00019.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhbg is a nonerythroid membrane glycoprotein belonging to the Rh antigen family. In the kidney, Rhbg is expressed at the basolateral membrane of intercalated cells of the distal nephron and is involved in NH4+ transport. We investigated the substrate specificity of Rhbg by comparing transport of NH3/NH4+ with that of methyl amine (hydrochloride) (MA/MA+), often used to replace NH3/NH4+, in oocytes expressing Rhbg. Methyl amine (HCl) in solution exists as neutral methyl amine (MA) in equilibrium with the protonated methyl ammonium (MA+). To assess transport, we used ion-selective microelectrodes and voltage-clamp experiments to measure NH3/NH4+- and MA/MA+-induced intracellular pH (pH(i)) changes and whole cell currents. Our data showed that in Rhbg oocytes, NH3/NH4+ caused an inward current and decrease in pH(i) consistent with electrogenic NH4+ transport. These changes were significantly larger than in H2O-injected oocytes. The NH3/NH4+-induced current was not inhibited in the presence of barium or in the absence of Na+. In Rhbg oocytes, MA/MA+ caused an inward current but an increase (rather than a decrease) in pH(i). MA/MA+ did not cause any changes in H2O-injected oocytes. The MA/MA+-induced current and pH(i) increase were saturated at higher concentrations of MA/MA+. Amiloride inhibited MA/MA+-induced current and the increase in pH(i) in oocytes expressing Rhbg but had no effect on control oocytes. These results indicate that MA/MA+ is transported by Rhbg but differently than NH3/NH4+. The protonated MA+ is likely a direct substrate whose transport resembles that of NH4+. Transport of electroneutral MA is also enhanced by expression of Rhbg.
Collapse
Affiliation(s)
- Nazih L Nakhoul
- Dept. of Medicine, Section of Nephrology, SL-45, Tulane Univ. School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Physiological and molecular analysis of the interactive effects of feeding and high environmental ammonia on branchial ammonia excretion and Na+ uptake in freshwater rainbow trout. J Comp Physiol B 2010; 180:1191-204. [DOI: 10.1007/s00360-010-0488-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/11/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
44
|
Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM. Function of human Rh based on structure of RhCG at 2.1 A. Proc Natl Acad Sci U S A 2010; 107:9638-43. [PMID: 20457942 PMCID: PMC2906887 DOI: 10.1073/pnas.1003587107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, NH(3) transport across cell membranes is facilitated by the Rh (rhesus) family of proteins. Human Rh C glycoprotein (RhCG) forms a trimeric complex that plays an essential role in ammonia excretion and renal pH regulation. The X-ray crystallographic structure of human RhCG, determined at 2.1 A resolution, reveals the mechanism of ammonia transport. Each monomer contains 12 transmembrane helices, one more than in the bacterial homologs. Reconstituted into proteoliposomes, RhCG conducts NH(3) to raise internal pH. Models of the erythrocyte Rh complex based on our RhCG structure suggest that the erythrocytic Rh complex is composed of stochastically assembled heterotrimers of RhAG, RhD, and RhCE.
Collapse
Affiliation(s)
- Franz Gruswitz
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Sarika Chaudhary
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Joseph D. Ho
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Avner Schlessinger
- Center for the Structure of Membrane Proteins, and
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 503B Byers Hall, University of California, San Francisco, CA 94158; and
| | - Bobak Pezeshki
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Chi-Min Ho
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| | - Andrej Sali
- Center for the Structure of Membrane Proteins, and
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute of Quantitative Biosciences, 503B Byers Hall, University of California, San Francisco, CA 94158; and
| | - Connie M. Westhoff
- American Red Cross, and Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19123
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, S412C Genentech Hall
- Center for the Structure of Membrane Proteins, and
- Membrane Protein Expression Center, University of California, San Francisco, CA 94158
| |
Collapse
|
45
|
Lee HW, Verlander JW, Bishop JM, Nelson RD, Handlogten ME, Weiner ID. Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F369-79. [PMID: 20462967 DOI: 10.1152/ajprenal.00120.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rh C glycoprotein (Rhcg) is an NH(3)-specific transporter expressed in both intercalated cells (IC) and principal cells (PC) in the renal collecting duct. Recent studies show that deletion of Rhcg from both intercalated and principal cells inhibits both basal and acidosis-stimulated renal ammonia excretion. The purpose of the current studies was to better understand the specific role of Rhcg expression in intercalated cells in basal and metabolic acidosis-stimulated renal ammonia excretion. We generated mice with intercalated cell-specific Rhcg deletion (IC-Rhcg-KO) using Cre-loxP techniques; control (C) mice were floxed Rhcg but Cre negative. Under basal conditions, IC-Rhcg-KO and C mice excreted urine with similar ammonia content and pH. Mice were then acid loaded by adding HCl to their diet. Ammonia excretion after acid loading increased similarly in IC-Rhcg-KO and C mice during the first 2 days of acid loading but on day 3 was significantly less in IC-Rhcg-KO than in C mice. During the first 2 days of acid loading, urine was significantly more acidic in IC-Rhcg-KO mice than in C mice; there was no difference on day 3. In IC-Rhcg-KO mice, acid loading increased principal cell Rhcg expression in both the cortex and outer medulla as well as expression of another ammonia transporter, Rh glycoprotein B (Rhbg), in principal cells in the outer medulla. We conclude that 1) Rhcg expression in intercalated cells is necessary for the normal renal response to metabolic acidosis; 2) principal cell Rhcg contributes to both basal and acidosis-stimulated ammonia excretion; and 3) adaptations in Rhbg expression occur in response to acid-loading.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
46
|
Huang CH, Ye M. The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 2010; 67:1203-18. [PMID: 19953292 PMCID: PMC11115862 DOI: 10.1007/s00018-009-0217-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
Abstract
The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor's involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.
Collapse
Affiliation(s)
- Cheng-Han Huang
- Laboratory of Biochemistry and Molecular Genetics, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | | |
Collapse
|
47
|
Park HJ, Rajbhandari I, Yang HS, Lee S, Cucoranu D, Cooper DS, Klein JD, Sands JM, Choi I. Neuronal expression of sodium/bicarbonate cotransporter NBCn1 (SLC4A7) and its response to chronic metabolic acidosis. Am J Physiol Cell Physiol 2010; 298:C1018-28. [PMID: 20147654 DOI: 10.1152/ajpcell.00492.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sodium-bicarbonate cotransporter NBCn1 (SLC4A7) is an acid-base transporter that normally moves Na(+) and HCO(3)(-) into the cell. This membrane protein is sensitive to cellular and systemic pH changes. We examined NBCn1 expression and localization in the brain and its response to chronic metabolic acidosis. Two new NBCn1 antibodies were generated by immunizing a rabbit and a guinea pig. The antibodies stained neurons in a variety of rat brain regions, including hippocampal pyramidal neurons, dentate gyrus granular neurons, posterior cortical neurons, and cerebellar Purkinje neurons. Choroid plexus epithelia were also stained. Double immunofluorescence labeling showed that NBCn1 and the postsynaptic density protein PSD-95 were found in the same hippocampal CA3 neurons and partially colocalized in dendrites. PSD-95 was pulled down from rat brain lysates with the GST/NBCn1 fusion protein and was also coimmunoprecipitated with NBCn1. Chronic metabolic acidosis was induced by feeding rats with normal chow or 0.4 M HCl-containing chow for 7 days. Real-time PCR and immunoblot showed upregulation of NBCn1 mRNA and protein in the hippocampus of acidotic rats. NBCn1 immunostaining was enhanced in CA3 neurons, posterior cortical neurons, and cerebellar granular cells. Intraperitoneal administration of N-methyl-d-aspartate caused neuronal death determined by caspase-3 activity, and this effect was more severe in acidotic rats. Administering N-methyl-d-aspartate also inhibited NBCn1 upregulation in acidotic rats. We conclude that NBCn1 in neurons is upregulated by chronic acid loads, and this upregulation is associated with glutamate excitotoxicity.
Collapse
Affiliation(s)
- Hae Jeong Park
- Dept. of Physiology, Emory Univ., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Han KH, Mekala K, Babida V, Kim HY, Handlogten ME, Verlander JW, Weiner ID. Expression of the gas-transporting proteins, Rh B glycoprotein and Rh C glycoprotein, in the murine lung. Am J Physiol Lung Cell Mol Physiol 2009; 297:L153-63. [PMID: 19429772 PMCID: PMC2711812 DOI: 10.1152/ajplung.90524.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 05/04/2009] [Indexed: 11/22/2022] Open
Abstract
A family of gas-transporting proteins, the Mep/Amt/Rh glycoprotein family, has been identified recently. These are integral membrane proteins, are widely expressed in sites of gas transport, and are known to transport the gaseous molecule, NH(3), and recent evidence indicates they can transport CO(2). Because the mammalian lung is a critical site for gas transport, the current studies examine the expression of the nonerythroid members of this extended family, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg), in the normal mouse lung. Real-time RT-PCR and immunoblot analysis demonstrated both Rhbg and Rhcg mRNA and protein expression, respectively. Immunohistochemistry demonstrated both Rhbg and Rhcg were expressed in bronchial and bronchiolar epithelial cells. Rhbg was expressed by Clara cells, specifically, whereas all bronchial/bronchiolar epithelial cells, with the exception of goblet cells, expressed Rhcg. Rhbg expression was basolateral, whereas Rhcg exhibited apical and intracellular immunolabel, polarized expression similar to that observed in Rhbg- and Rhcg-expressing epithelial cells in other organs. There was no detectable expression of either Rhbg or Rhcg in alveolar endothelial or epithelial cells, in pneumocytes or in vascular tissue. In vitro studies using cultured bronchial epithelial cells confirm Rhbg and Rhcg expression, demonstrate that saturable, not diffusive, transport is the primary mechanism of ammonia/methylammonia transport, and show that the saturable transport mechanism has kinetics similar to those demonstrated previously for Rhbg and Rhcg. These findings suggest Rhbg and Rhcg may contribute to bronchial epithelial cell ammonia metabolism and suggest that they do not contribute to pulmonary CO(2) transport.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Kim HY. Renal handling of ammonium and Acid base regulation. Electrolyte Blood Press 2009; 7:9-13. [PMID: 21468179 PMCID: PMC3041479 DOI: 10.5049/ebp.2009.7.1.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/27/2009] [Indexed: 11/05/2022] Open
Abstract
Renal ammonium metabolism is the primary component of net acid excretion and thereby is critical for acid-base homeostasis. Briefly, ammonium is produced from glutamine in the proximal tubule in a series of biochemical reactions that result in equimolar bicarbonate. Ammonium is predominantly secreted into the luminal fluid via the apical Na+/H+ exchanger, NHE3. The thick ascending limb of the loop of Henle reabsorbs luminal ammonium, predominantly by transport of NH4+ by the apical Na+/K+/2Cl- cotransporter, BSC1/NKCC2. This process results in renal interstitial ammonium accumulation. Finally, the collecting duct secretes ammonium from the renal interstitium into the luminal fluid. Although in past ammonium was believed to move across epithelia entirely by passive diffusion, an increasing number of studies demonstrated that specific proteins contribute to renal ammonium transport. Recent studies have yielded important new insights into the mechanisms of renal ammonium transport. In this review, we will discuss renal handling of ammonium, with particular emphasis on the transporters involved in this process.
Collapse
Affiliation(s)
- Hye-Young Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
50
|
Han KH, Kim HY, Weiner ID. Expression of rh glycoproteins in the Mammalian kidney. Electrolyte Blood Press 2009; 7:14-9. [PMID: 21468180 PMCID: PMC3041478 DOI: 10.5049/ebp.2009.7.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/21/2009] [Indexed: 11/05/2022] Open
Abstract
Ammonia metabolism is a fundamental process in the maintenance of life in all living organisms. Recent studies have identified ammonia transporter family proteins in yeast (Mep), plants (Amt), and mammals (Rh glycoproteins). In mammalian kidneys, where ammonia metabolism and transport are critically important for the regulation of systemic acid-base homeostasis, basolateral Rh B glycoprotein and apical/basolateral Rh C glycoprotein are expressed along the distal nephron segments. Data from experimental animal models and knockout mice suggest that the Rh glycoproteins appear to mediate important roles in urinary ammonia excretion.
Collapse
Affiliation(s)
- Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|