1
|
Ghajar-Rahimi G, Barwinska D, Whipple GE, Kamocka MM, Khan S, Winfree S, Lafontaine J, Soliman RH, Melkonian AL, Zmijewska AA, Cheung MD, Traylor AM, Jiang Y, Yang Z, Bolisetty S, Zarjou A, Lee T, George JF, El-Achkar TM, Agarwal A. Acute kidney injury results in long-term alterations of kidney lymphatics in mice. Am J Physiol Renal Physiol 2024; 327:F869-F884. [PMID: 39323387 PMCID: PMC11563594 DOI: 10.1152/ajprenal.00120.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
The long-term effects of a single episode of acute kidney injury (AKI) induced by bilateral ischemia-reperfusion injury (BIRI) on kidney lymphatic dynamics are not known. The purpose of this study was to determine if alterations in kidney lymphatics are sustained in the long term and how they relate to inflammation and injury. Mice underwent BIRI as a model of AKI and were followed up to 9 mo. Although kidney function markers normalized following initial injury, histological analysis revealed sustained tissue damage and inflammation for up to 9 mo. Transcriptional analysis showed both acute and late-stage lymphangiogenesis, supported by increased expression of lymphatic markers, with unique signatures at each phase. Expression of Ccl21a was distinctly upregulated during late-stage lymphangiogenesis. Three-dimensional tissue cytometry confirmed increased lymphatic vessel abundance, particularly in the renal cortex, at early and late timepoints postinjury. In addition, the study identified the formation of tertiary lymphoid structures composed of CCR7+ lymphocytes and observed changes in immune cell composition over time, suggesting a complex and dynamic response to AKI involving tissue remodeling and immune cell involvement. This study provides new insights into the role of lymphatics in the progression of AKI to chronic kidney disease.NEW & NOTEWORTHY Here, we perform the first, comprehensive study of long-term lymphatic dynamics following a single acute kidney injury (AKI) event. Using improved three-dimensional image analysis and an expanded panel of transcriptional markers, we identify multiple stages of lymphatic responses with distinct transcriptional signatures, associations with the immune microenvironment, and collagen deposition. This research advances kidney lymphatic biology, emphasizing the significance of longitudinal studies in understanding AKI and the transition to chronic kidney disease.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Grace E Whipple
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Malgorzata M Kamocka
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shehnaz Khan
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jennifer Lafontaine
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Arin L Melkonian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna A Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Matthew D Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhengqin Yang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Creed HA, Kannan S, Tate BL, Godefroy D, Banerjee P, Mitchell BM, Brakenhielm E, Chakraborty S, Rutkowski JM. Single-Cell RNA Sequencing Identifies Response of Renal Lymphatic Endothelial Cells to Acute Kidney Injury. J Am Soc Nephrol 2024; 35:549-565. [PMID: 38506705 PMCID: PMC11149045 DOI: 10.1681/asn.0000000000000325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal lymphatic vasculature and the lymphatic endothelial cells that make up this network play important immunomodulatory roles during inflammation. How lymphatics respond to AKI may affect AKI outcomes. The authors used single-cell RNA sequencing to characterize mouse renal lymphatic endothelial cells in quiescent and cisplatin-injured kidneys. Lymphatic endothelial cell gene expression changes were confirmed in ischemia-reperfusion injury and in cultured lymphatic endothelial cells, validating renal lymphatic endothelial cells single-cell RNA sequencing data. This study is the first to describe renal lymphatic endothelial cell heterogeneity and uncovers molecular pathways demonstrating lymphatic endothelial cells regulate the local immune response to AKI. These findings provide insights into previously unidentified molecular pathways for lymphatic endothelial cells and roles that may serve as potential therapeutic targets in limiting the progression of AKI. BACKGROUND The inflammatory response to AKI likely dictates future kidney health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Owing to the relative sparsity of lymphatic endothelial cells in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. METHODS Here, we characterized murine renal lymphatic endothelial cell subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI 72 hours postinjury. Data were processed using the Seurat package. We validated our findings by quantitative PCR in lymphatic endothelial cells isolated from both cisplatin-injured and ischemia-reperfusion injury, by immunofluorescence, and confirmation in in vitro human lymphatic endothelial cells. RESULTS We have identified renal lymphatic endothelial cells and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin-injured conditions. After AKI, renal lymphatic endothelial cells alter genes involved in endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models were also identified with renal lymphatic endothelial cells further demonstrating changed gene expression between cisplatin and ischemia-reperfusion injury models, indicating the renal lymphatic endothelial cell response is both specific to where they lie in the lymphatic vasculature and the kidney injury type. CONCLUSIONS In this study, we uncover lymphatic vessel structural features of captured populations and injury-induced genetic changes. We further determine that lymphatic endothelial cell gene expression is altered between injury models. How lymphatic endothelial cells respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
Affiliation(s)
- Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Saranya Kannan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brittany L. Tate
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - David Godefroy
- Inserm UMR1239 (Nordic Laboratory), UniRouen, Normandy University, Mont Saint Aignan, France
| | - Priyanka Banerjee
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Ebba Brakenhielm
- INSERM EnVI, UMR1096, University of Rouen Normandy, Rouen, France
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, Texas
| |
Collapse
|
3
|
Creed HA, Kannan S, Tate BL, Banerjee P, Mitchell BM, Chakraborty S, Rutkowski JM. Single-cell RNA sequencing identifies response of renal lymphatic endothelial cells to acute kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544380. [PMID: 37333313 PMCID: PMC10274866 DOI: 10.1101/2023.06.09.544380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The inflammatory response to acute kidney injury (AKI) likely dictates future renal health. Lymphatic vessels are responsible for maintaining tissue homeostasis through transport and immunomodulatory roles. Due to the relative sparsity of lymphatic endothelial cells (LECs) in the kidney, past sequencing efforts have not characterized these cells and their response to AKI. Here we characterized murine renal LEC subpopulations by single-cell RNA sequencing and investigated their changes in cisplatin AKI. We validated our findings by qPCR in LECs isolated from both cisplatin-injured and ischemia reperfusion injury, by immunofluorescence, and confirmation in in vitro human LECs. We have identified renal LECs and their lymphatic vascular roles that have yet to be characterized in previous studies. We report unique gene changes mapped across control and cisplatin injured conditions. Following AKI, renal LECs alter genes involved endothelial cell apoptosis and vasculogenic processes as well as immunoregulatory signaling and metabolism. Differences between injury models are also identified with renal LECs further demonstrating changed gene expression between cisplatin and ischemia reperfusion injury models, indicating the renal LEC response is both specific to where they lie in the lymphatic vasculature and the renal injury type. How LECs respond to AKI may therefore be key in regulating future kidney disease progression.
Collapse
|
4
|
Winfree S, McNutt AT, Khochare S, Borgard TJ, Barwinska D, Sabo AR, Ferkowicz MJ, Williams JC, Lingeman JE, Gulbronson CJ, Kelly KJ, Sutton TA, Dagher PC, Eadon MT, Dunn KW, El-Achkar TM. Integrated Cytometry With Machine Learning Applied to High-Content Imaging of Human Kidney Tissue for In Situ Cell Classification and Neighborhood Analysis. J Transl Med 2023; 103:100104. [PMID: 36867975 PMCID: PMC10293106 DOI: 10.1016/j.labinv.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/12/2022] [Accepted: 01/07/2023] [Indexed: 02/05/2023] Open
Abstract
The human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney. Tissue cytometry is a novel approach used for the quantitative analysis of imaging data; however, the scale and complexity of such data sets pose unique challenges for processing and analysis. We have developed the Volumetric Tissue Exploration and Analysis (VTEA) software, a unique tool that integrates image processing, segmentation, and interactive cytometry analysis into a single framework on desktop computers. Supported by an extensible and open-source framework, VTEA's integrated pipeline now includes enhanced analytical tools, such as machine learning, data visualization, and neighborhood analyses, for hyperdimensional large-scale imaging data sets. These novel capabilities enable the analysis of mesoscale 2- and 3-dimensional multiplexed human kidney imaging data sets (such as co-detection by indexing and 3-dimensional confocal multiplexed fluorescence imaging). We demonstrate the utility of this approach in identifying cell subtypes in the kidney on the basis of labels, spatial association, and their microenvironment or neighborhood membership. VTEA provides an integrated and intuitive approach to decipher the cellular and spatial complexity of the human kidney and complements other transcriptomics and epigenetic efforts to define the landscape of kidney cell types.
Collapse
Affiliation(s)
- Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Andrew T McNutt
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Suraj Khochare
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tyler J Borgard
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Angela R Sabo
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael J Ferkowicz
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James C Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - James E Lingeman
- Department of Clinical Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Connor J Gulbronson
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katherine J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Timothy A Sutton
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pierre C Dagher
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tarek M El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
5
|
Chen CG, Kapoor A, Xie C, Moss A, Vadigepalli R, Ricard-Blum S, Iozzo RV. Conditional expression of endorepellin in the tumor vasculature attenuates breast cancer growth, angiogenesis and hyaluronan deposition. Matrix Biol 2023; 118:92-109. [PMID: 36907428 PMCID: PMC10259220 DOI: 10.1016/j.matbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The tumor stroma of most solid malignancies is characterized by a pathological accumulation of pro-angiogenic and pro-tumorigenic hyaluronan driving tumorigenesis and metastatic potential. Of all three hyaluronan synthase isoforms, HAS2 is the primary enzyme that promotes the build-up of tumorigenic HA in breast cancer. Previously, we discovered that endorepellin, the angiostatic C-terminal fragment of perlecan, evokes a catabolic mechanism targeting endothelial HAS2 and hyaluronan via autophagic induction. To explore the translational implications of endorepellin in breast cancer, we created a double transgenic, inducible Tie2CreERT2;endorepellin(ER)Ki mouse line that expresses recombinant endorepellin specifically from the endothelium. We investigated the therapeutic effects of recombinant endorepellin overexpression in an orthotopic, syngeneic breast cancer allograft mouse model. First, adenoviral delivery of Cre evoking intratumor expression of endorepellin in ERKi mice suppressed breast cancer growth, peritumor hyaluronan and angiogenesis. Moreover, tamoxifen-induced expression of recombinant endorepellin specifically from the endothelium in Tie2CreERT2;ERKi mice markedly suppressed breast cancer allograft growth, hyaluronan deposition in the tumor proper and perivascular tissues, and tumor angiogenesis. These results provide insight into the tumor suppressing activity of endorepellin at the molecular level and implicate endorepellin as a promising cancer protein therapy that targets hyaluronan in the tumor microenvironment.
Collapse
Affiliation(s)
- Carolyn G Chen
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aastha Kapoor
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Xie
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alison Moss
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sylvie Ricard-Blum
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Sabo AR, Winfree S, El-Achkar TM. Defining protein expression in the kidney at large scale: from antibody validation to cytometry analysis. Am J Physiol Renal Physiol 2023; 324:F135-F137. [PMID: 36454700 PMCID: PMC9844971 DOI: 10.1152/ajprenal.00262.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Angela R Sabo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Tarek M El-Achkar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
7
|
Zhu Z, Shi L, Dong Y, Zhang Y, Yang F, Wei J, Huo M, Li P, Liu X. Effect of crosstalk among conspirators in tumor microenvironment on niche metastasis of gastric cancer. Am J Cancer Res 2022; 12:5375-5402. [PMID: 36628284 PMCID: PMC9827080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
In Traditional Chinese medicine, the metaphoric views of the human body are based on observations of nature guided by the theory of "Yin-Yang". The direct meanings of yin and yang are the bright and dark sides of an object, which often represent a wider range of opposite properties. When we shifted our view to gastric cancer (GC), we found that there are more distinctive Yin and Yang features in the mechanism of GC development and metastasis, which is observed in many mechanisms such as GC metastasis, immune escape, and stem cell homing. When illustrating this process from the yin-yang perspective, categorizing different cells in the tumor microenvironment enables new and different perspectives to be put forward on the mechanism and treatment of GC metastasis.
Collapse
Affiliation(s)
- Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Lijuan Shi
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Jingjing Wei
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Minfeng Huo
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Peiqing Li
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China,Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese MedicineLanzhou 730000, Gansu, P. R. China
| |
Collapse
|
8
|
Suzuki J, Shimizu Y, Hayashi T, Che Y, Pu Z, Tsuzuki K, Narita S, Shibata R, Ishii I, Calvert JW, Murohara T. Hydrogen Sulfide Attenuates Lymphedema Via the Induction of Lymphangiogenesis Through a PI3K/Akt‐Dependent Mechanism. J Am Heart Assoc 2022; 11:e026889. [DOI: 10.1161/jaha.122.026889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Accumulating evidence suggests that hydrogen sulfide ( H
2
S ), an endogenously produced gaseous molecule, plays a critical role in the regulation of cardiovascular homeostasis. However, little is known about its role in lymphangiogenesis. Thus, the current study aimed to investigate the involvement of H
2
S in lymphatic vessel growth and lymphedema resolution using a murine model and assess the underlying mechanisms.
Methods and Results
A murine model of tail lymphedema was created both in wild‐type mice and cystathionine γ‐lyase–knockout mice, to evaluate lymphedema up to 28 days after lymphatic ablation. Cystathionine γ‐lyase–knockout mice had greater tail diameters than wild‐type mice, and this phenomenon was associated with the inhibition of reparative lymphangiogenesis at the site of lymphatic ablation. In contrast, the administration of an H
2
S donor, diallyl trisulfide, ameliorated lymphedema by inducing the formation of a considerable number of lymphatic vessels at the injured sites in the tails. In vitro experiments using human lymphatic endothelial cells revealed that diallyl trisulfide promoted their proliferation and differentiation into tube‐like structures by enhancing Akt (protein kinase B) phosphorylation in a concentration‐dependent manner. The blockade of Akt activation negated the diallyl trisulfide–induced prolymphangiogenic responses in lymphatic endothelial cells. Furthermore, the effects of diallyl trisulfide treatment on lymphangiogenesis in the tail lymphedema model were also negated by the inhibition of phosphoinositide 3'‐kinase (P13K)/Akt signaling.
Conclusions
H
2
S promotes reparative lymphatic vessel growth and ameliorates secondary lymphedema, at least in part, through the activation of the Akt pathway in lymphatic endothelial cells. As such, H
2
S donors could be used as therapeutics against refractory secondary lymphedema.
Collapse
Affiliation(s)
- Junya Suzuki
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Yuuki Shimizu
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Takumi Hayashi
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Yiyang Che
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Zhongyue Pu
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Shingo Narita
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Isao Ishii
- Laboratory of Health Chemistry Showa Pharmaceutical University Machida Tokyo Japan
| | - John W. Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center Emory University School of Medicine Atlanta GA
| | - Toyoaki Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine
- Nagoya Japan
| |
Collapse
|
9
|
El-Achkar TM, Winfree S, Talukder N, Barwinska D, Ferkowicz MJ, Al Hasan M. Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data. Front Physiol 2022; 13:832457. [PMID: 35309077 PMCID: PMC8931540 DOI: 10.3389/fphys.2022.832457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Advances in cellular and molecular interrogation of kidney tissue have ushered a new era of understanding the pathogenesis of kidney disease and potentially identifying molecular targets for therapeutic intervention. Classifying cells in situ and identifying subtypes and states induced by injury is a foundational task in this context. High resolution Imaging-based approaches such as large-scale fluorescence 3D imaging offer significant advantages because they allow preservation of tissue architecture and provide a definition of the spatial context of each cell. We recently described the Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive analysis, quantitation and semiautomated classification of labeled cells in 3D image volumes. We also established and demonstrated an imaging-based classification using deep learning of cells in intact tissue using 3D nuclear staining with 4',6-diamidino-2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in analyzing 3D imaging of kidney tissue, and how combining machine learning with cytometry is a powerful approach to leverage the depth of content provided by high resolution imaging into a highly informative analytical output. Therefore, imaging a small tissue specimen will yield big scale data that will enable cell classification in a spatial context and provide novel insights on pathological changes induced by kidney disease.
Collapse
Affiliation(s)
- Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Omaha, Omaha, NE, United States
| | - Niloy Talukder
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Michael J. Ferkowicz
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Mohammad Al Hasan
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
10
|
Chen X, Ma L, Liu X, Wang J, Li Y, Xie Q, Liang J. Clostridium butyricum alleviates dextran sulfate sodium-induced experimental colitis and promotes intestinal lymphatic vessel regeneration in mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:341. [PMID: 35434001 PMCID: PMC9011313 DOI: 10.21037/atm-22-1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the most common precancerous lesion of colitis-associated colon cancer (CAC). Studies have confirmed that pathological changes in intestinal lymphatic vessels (LVs) significantly promoted the development of IBD-associated carcinogenesis. An imbalance in the microecology of the intestinal flora is a key factor in the progression of IBD. As a result, therapeutic techniques that focus on the relationship between LV regeneration and flora management might be a potential treatment strategy. Methods We investigated the role of Clostridium butyricum (C butyricum) in a dextran sulfate sodium (DSS)-induced IBD mouse model. Balb/c mice were given 3% DSS in their drinking water for 8 days to produce acute colitis and simultaneously administrated with C butyricum for 12 days. Hematoxylin and eosin (H&E) staining was used to evaluate the degree of colitis tissue damage. Levels of the lymphatic endothelial cell (LEC)-specific marker LYVE-1 and intestinal expressions of pro-lymphatic vascular endothelial growth factor (VEGF)-C and VEGF-D were determined using immunohistochemical assays. Results In a DSS-induced IBD mouse model, we found that butyric acid-producing C butyricum significantly reduced disease activity index (DAI) scores in mice, reversed the shortening of the colon, weakened the degree of damage to colonic epithelial tissues, inhibited lymphocyte infiltration, and reduced pathological damage to the colon. To our knowledge, this is the first time that tissue expressions of LYVE-1, VEGF-C, and VEGF-D have been seen to increase in IBD-model mice after treatment with C butyricum. Conclusions Our findings suggest that C butyricum might alleviate IBD in DSS-induced IBD-model mice by promoting intestinal LV regeneration.
Collapse
Affiliation(s)
- Xing Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|