1
|
Shen P, Deng X, Li T, Chen X, Wu X. Demethylzeylasteral protects against renal interstitial fibrosis by attenuating mitochondrial complex I-mediated oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117986. [PMID: 38437887 DOI: 10.1016/j.jep.2024.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renal interstitial fibrosis (RIF) is a main pathological process in chronic kidney disease (CKD). Demethylzeylasteral (DML), a major component of Tripterygium wilfordii Hook. f., has anti-renal fibrosis effects. However, its mechanism of action remains incompletely understood. AIM OF THE STUDY The present study was designed to comprehensively examine the effects of DML on RIF and the underlying mechanisms. MATERIALS AND METHODS Pathological experiments were performed to determine the therapeutic effect of DML on a mouse model of UUO-induced RIF. To determine the novel mechanisms underlying the therapeutic effects of DML against RIF, a comprehensive transcriptomics analysis was performed on renal tissues, which was further verified by a series of experiments. RESULTS Pathological and immunohistochemical staining showed that DML inhibited UUO-induced renal damage and reduced the expression of fibrosis-related proteins in mice. Transcriptomic analysis revealed that the partial subunits of mitochondrial complex (MC) I and II may be targets by which DML protects against RIF. Furthermore, DML treatment reduced mitochondrial reactive oxygen species (ROS) levels, consequently promoting ATP production and mitigating oxidative stress-induced injury in mice and cells. Notably, this protective effect was attributed to the inhibition of MC I activity, suggesting a crucial role for this specific complex in mediating the therapeutic effects of DML against RIF. CONCLUSIONS This study provides compelling evidence that DML may be used to treat RIF by effectively suppressing mitochondrial oxidative stress injury mediated by MC I. These findings offer valuable insights into the pharmacological mechanisms of DML and its potential clinical application for patients with CKD.
Collapse
Affiliation(s)
- Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China.
| | - Xuan Deng
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| | - Tingting Li
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
2
|
Yarboro MT, Boatwright N, Sekulich DC, Hooper CW, Wong T, Poole SD, Berger CD, Brown AJ, Jetter CS, Sucre JMS, Shelton EL, Reese J. A novel role for PGE 2-EP 4 in the developmental programming of the mouse ductus arteriosus: consequences for vessel maturation and function. Am J Physiol Heart Circ Physiol 2023; 325:H687-H701. [PMID: 37566109 PMCID: PMC10643004 DOI: 10.1152/ajpheart.00294.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
The ductus arteriosus (DA) is a vascular shunt that allows oxygenated blood to bypass the developing lungs in utero. Fetal DA patency requires vasodilatory signaling via the prostaglandin E2 (PGE2) receptor EP4. However, in humans and mice, disrupted PGE2-EP4 signaling in utero causes unexpected patency of the DA (PDA) after birth, suggesting another role for EP4 during development. We used EP4-knockout (KO) mice and acute versus chronic pharmacological approaches to investigate EP4 signaling in DA development and function. Expression analyses identified EP4 as the primary EP receptor in the DA from midgestation to term; inhibitor studies verified EP4 as the primary dilator during this period. Chronic antagonism recapitulated the EP4 KO phenotype and revealed a narrow developmental window when EP4 stimulation is required for postnatal DA closure. Myography studies indicate that despite reduced contractile properties, the EP4 KO DA maintains an intact oxygen response. In newborns, hyperoxia constricted the EP4 KO DA but survival was not improved, and permanent remodeling was disrupted. Vasomotion and increased nitric oxide (NO) sensitivity in the EP4 KO DA suggest incomplete DA development. Analysis of DA maturity markers confirmed a partially immature EP4 KO DA phenotype. Together, our data suggest that EP4 signaling in late gestation plays a key developmental role in establishing a functional term DA. When disrupted in EP4 KO mice, the postnatal DA exhibits signaling and contractile properties characteristic of an immature DA, including impairments in the first, muscular phase of DA closure, in addition to known abnormalities in the second permanent remodeling phase.NEW & NOTEWORTHY EP4 is the primary EP receptor in the ductus arteriosus (DA) and is critical during late gestation for its development and eventual closure. The "paradoxical" patent DA (PDA) phenotype of EP4-knockout mice arises from a combination of impaired contractile potential, altered signaling properties, and a failure to remodel associated with an underdeveloped immature vessel. These findings provide new mechanistic insights into women who receive NSAIDs to treat preterm labor, whose infants have unexplained PDA.
Collapse
Affiliation(s)
- Michael T Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Deanna C Sekulich
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher W Hooper
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ting Wong
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stanley D Poole
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Courtney D Berger
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexus J Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher S Jetter
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elaine L Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
4
|
Kresse J, Mutsaers HAM, Jensen MS, Tingskov SJ, Madsen MG, Nejsum LN, Prætorius H, Nørregaard R. EP 1 receptor antagonism mitigates early and late stage renal fibrosis. Acta Physiol (Oxf) 2022; 234:e13780. [PMID: 34989478 PMCID: PMC9286353 DOI: 10.1111/apha.13780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022]
Abstract
AIM Renal fibrosis is a major driver of chronic kidney disease, yet current treatment strategies are ineffective in attenuating fibrogenesis. The cyclooxygenase/prostaglandin system plays a key role in renal injury and holds great promise as a therapeutic target. Here, we used a translational approach to evaluate the role of the PGE2 -EP1 receptor in the pathogenesis of renal fibrosis in several models of kidney injury, including human (fibrotic) kidney slices. METHODS The anti-fibrotic efficacy of a selective EP1 receptor antagonist (SC-19220) was studied in mice subjected to unilateral ureteral obstruction (UUO), healthy and fibrotic human precision-cut kidney slices (PCKS), Madin-Darby Canine Kidney (MDCK) cells and primary human renal fibroblasts (HRFs). Fibrosis was evaluated on gene and protein level using qPCR, western blot and immunostaining. RESULTS EP1 receptor inhibition diminished fibrosis in UUO mice, illustrated by a decreased protein expression of fibronectin (FN) and α-smooth muscle actin (αSMA) and a reduction in collagen deposition. Moreover, treatment of healthy human PCKS with SC-19220 reduced TGF-β-induced fibrosis as shown by decreased expression of collagen 1A1, FN and αSMA as well as reduced collagen deposition. Similar observations were made using fibrotic human PCKS. In addition, SC-19220 reduced TGF-β-induced FN expression in MDCK cells and HRFs. CONCLUSION This study highlights the EP1 receptor as a promising target for preventing both the onset and late stage of renal fibrosis. Moreover, we provide strong evidence that the effect of SC-19220 may translate to clinical care since its effects were observed in UUO mice, cells and human kidney slices.
Collapse
Affiliation(s)
| | | | | | | | | | - Lene N. Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
5
|
EVALUATION OF RDW, MPV, PLATELET LABORATORY PARAMETERS IN PROSTATE CANCER PATIENTS ADMITTING TO EMERGENCY DEPARTMENT WITH HEMATURIA. INTERNATIONAL JOURNAL OF HEALTH SERVICES RESEARCH AND POLICY 2020. [DOI: 10.33457/ijhsrp.795668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
6
|
Inhibition of ROCK2 alleviates renal fibrosis and the metabolic disorders in the proximal tubular epithelial cells. Clin Sci (Lond) 2020; 134:1357-1376. [PMID: 32490513 DOI: 10.1042/cs20200030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson's trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-β1 (TGF-β1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-β1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.
Collapse
|
7
|
Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction. Biofactors 2020; 46:716-733. [PMID: 32905648 DOI: 10.1002/biof.1673] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Obstructive nephropathy favors the progression to chronic kidney disease (CKD), a severe health problem worldwide. The unilateral ureteral obstruction (UUO) model is used to study the development of fibrosis. Impairment of renal mitochondria plays a crucial role in several types of CKD and has been strongly related to fibrosis onset. Nevertheless, in the UUO model, the impairment of mitochondria, their relationship with endoplasmic reticulum (ER) stress induction and the participation of both to induce the fibrotic process remain unclear. In this review, we summarize the current information about mitochondrial bioenergetics, redox dynamics, mitochondrial mass, and biogenesis alterations, as well as the relationship of these mitochondrial alterations with ER stress and their participation in fibrotic processes in UUO models. Early after obstruction, there is metabolic reprogramming related to mitochondrial fatty acid β-oxidation impairment, triggering lipid deposition, oxidative stress, (calcium) Ca2+ dysregulation, and a reduction in mitochondrial mass and biogenesis. Mitochondria and the ER establish a pathological feedback loop that promotes the impairment of both organelles by ER stress pathways and Ca2+ levels dysregulation. Preserving mitochondrial and ER function can prevent or at least delay the fibrotic process and loss of renal function. However, deeper understanding is still necessary for future clinically-useful therapies.
Collapse
Affiliation(s)
- Elena Martínez-Klimova
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
8
|
Crislip GR, Douma LG, Masten SH, Cheng KY, Lynch IJ, Johnston JG, Barral D, Glasford KB, Holzworth MR, Verlander JW, Wingo CS, Gumz ML. Differences in renal BMAL1 contribution to Na + homeostasis and blood pressure control in male and female mice. Am J Physiol Renal Physiol 2020; 318:F1463-F1477. [PMID: 32338037 PMCID: PMC7311713 DOI: 10.1152/ajprenal.00014.2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
The renal circadian clock has a major influence on the function of the kidney. Aryl hydrocarbon receptor nuclear translocator-like protein 1 [ARNTL; also known as brain and muscle ARNT-like 1 (BMAL1)] is a core clock protein and transcription factor that regulates the expression of nearly half of all genes. Using male and female kidney-specific cadherin BMAL1 knockout (KS-BMAL1 KO) mice, we examined the role of renal distal segment BMAL1 in blood pressure control and solute handling. We confirmed that this mouse model does not express BMAL1 in thick ascending limb, distal convoluted tubule, and collecting duct cells, which are the final locations for solute and fluid regulation. Male KS-BMAL1 KO mice displayed a substantially lower basal systolic blood pressure compared with littermate control mice, yet their circadian rhythm in pressure remained unchanged [male control mice: 127 ± 0.7 mmHg (n = 4) vs. male KS-BMAL KO mice: 119 ± 2.3 mmHg (n = 5), P < 0.05]. Female mice, however, did not display a genotype difference in basal systolic blood pressure [female control mice: 120 ± 1.6 mmHg (n = 5) vs. female KS-BMAL1 KO mice: 119 ± 1.5 mmHg (n = 7), P = 0.4]. In addition, male KS-BMAL1 KO mice had less Na+ retention compared with control mice in response to a K+-restricted diet (15% less following 5 days of treatment). However, there was no genotype difference in Na+ handling after a K+-restricted diet in female mice. Furthermore, there was evidence indicating a sex-specific response to K+ restriction where female mice reabsorbed less Na+ in response to this dietary challenge compared with male mice. We propose that BMAL1 in the distal nephron and collecting duct contributes to blood pressure regulation and Na+ handling in a sex-specific manner.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jermaine G Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Krystal B Glasford
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Meaghan R Holzworth
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Somparn P, Boonkrai C, Charngkaew K, Chomanee N, Hodge KG, Fenton RA, Pisitkun T, Khositseth S. Bilateral ureteral obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2. Am J Physiol Renal Physiol 2020; 318:F135-F147. [PMID: 31736351 PMCID: PMC7054639 DOI: 10.1152/ajprenal.00113.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After the release of bilateral ureteral obstruction (BUO), postobstructive diuresis from an impaired urine concentration mechanism is associated with reduced aquaporin 2 (AQP2) abundance in the inner medullary collecting duct (IMCD). However, the underlying molecular mechanism of this AQP2 reduction is incompletely understood. To elucidate the mechanisms responsible for this phenomenon, we studied molecular changes in IMCDs isolated from rats with 4-h BUO or sham operation at the early onset of AQP2 downregulation using mass spectrometry-based proteomic analysis. Two-hundred fifteen proteins had significant changes in abundances, with 65% of them downregulated in the IMCD of 4-h BUO rats compared with sham rats. Bioinformatic analysis revealed that significantly changed proteins were associated with functional Gene Ontology terms, including “cell-cell adhesion,” “cell-cell adherens junction,” “mitochondrial inner membrane,” “endoplasmic reticulum chaperone complex,” and the KEGG pathway of glycolysis/gluconeogenesis. Targeted liquid chromatography-tandem mass spectrometry or immunoblot analysis confirmed the changes in 19 proteins representative of each predominant cluster, including AQP2. Electron microscopy demonstrated disrupted tight junctions, disorganized adherens junctions, swollen mitochondria, enlargement of the endoplasmic reticulum lumen, and numerous autophagosomes/lysosomes in the IMCD of rats with 4-h BUO. AQP2 and seven proteins chosen as representative of the significantly altered clusters had a significant increase in immunofluorescence-based colocalization with autophagosomes/lysosomes. Immunogold electron microscopy confirmed colocalization of AQP2 with the autophagosome marker microtubule-associated protein 1A/1B-light chain 3 and the lysosomal marker cathepsin D in IMCD cells of rats with 4-h BUO. We conclude that enhanced autophagic degradation of AQP2 and other critical proteins, as well as endoplasmic reticulum stress in the IMCD, are initiated shortly after BUO.
Collapse
Affiliation(s)
- Poorichaya Somparn
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Kenneth G Hodge
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Center of Excellent in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
10
|
Zhang W, Yang Y, Gao H, Zhang Y, Jia Z, Huang S. Inhibition of Mitochondrial Complex I Aggravates Folic Acid-Induced Acute Kidney Injury. Kidney Blood Press Res 2019; 44:1002-1013. [DOI: 10.1159/000501934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/04/2019] [Indexed: 11/19/2022] Open
Abstract
Background: Some researches revealed that mitochondrial dysfunction is associated with various kidney injury. However, the role of mitochondrial dysfunction in the pathogenesis of acute kidney injury (AKI) still needs evidence. Methods: We evaluated the effect of mitochondrial complex I inhibitor rotenone on folic acid (FA)-induced AKI in mice. Results: Strikingly, the mice pretreated with rotenone at a dose of 200 ppm in food showed exacerbated kidney injury as shown by higher levels of blood urea nitrogen and creatinine compared with FA alone group. Meanwhile, both renal tubular injury score and the expression of renal tubular injury marker neutrophil gelatinase-associated lipocalin were further elevated in rotenone-pretreated mice, suggesting the deteriorated renal tubular injury. Moreover, the decrements of mitochondrial DNA copy number and the expressions of mitochondrial Cytochrome c oxidase subunit 1, mitochondrial NADH dehydrogenase subunit 1, and mitochondria-specific superoxide dismutase (SOD2) in the kidneys of FA-treated mice were further reduced in rotenone-pretreated mice, indicating the aggravated mitochondrial damage. In parallel with the SOD2 reduction, the oxidative stress markers of malondialdehyde and HO-1 displayed greater increment in AKI mice with rotenone pretreatment in line with the deteriorated apoptotic response and inflammation. Conclusion: Our results suggested that the inhibition of mitochondrial complex I activity aggravated renal tubular injury, mitochondrial damage, oxidative stress, cell apoptosis, and inflammation in FA-induced AKI.
Collapse
|
11
|
Bianco M, Lopes JA, Beiral HJV, Filho JDD, Frankenfeld SP, Fortunato RS, Gattass CR, Vieyra A, Takiya CM. The contralateral kidney presents with impaired mitochondrial functions and disrupted redox homeostasis after 14 days of unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0218986. [PMID: 31251767 PMCID: PMC6599136 DOI: 10.1371/journal.pone.0218986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
In unilateral ureteral obstruction (UUO), both oxidative stress and mitochondrial dysfunction are related to cell death. The aim of this study has been to characterize profiles of enzyme antioxidant activities and mitochondrial functioning of the contralateral (CL) compared to UUO and Sham (false-operated) kidneys of Balb/c mice. Kidneys were resected 14 days after obstruction for immunohistochemical and cortical mitochondrial functioning assays. Antioxidant enzymes activities were investigated in mitochondria and cytosol. Oxygen consumption (QO2) and formation of O2 reactive species (ROS) were assessed with pyruvate plus malate or succinate as the respiratory substrates. QO2 decreased in CL and UUO in all states using substrates for complex II, whereas it was affected only in UUO when substrates for complex I were used. Progressive decrease in mitochondrial ROS formation–in the forward and reverse pathway at complex I–correlates well with the inhibition of QO2 and, therefore, with decreased electron transfer at the level of complexes upstream of cytochrome c oxidase. CL and UUO transmembrane potential responses to ADP were impaired with succinate. Intense Ca2+-induced swelling was elicited in CL and UUO mitochondria. Important and selective differences exist in CL antioxidant enzymes with respect to either Sham or UUO kidneys: CL kidneys had increased mitochondrial glutathione peroxidase and cytosolic catalase activities, indicative of compensatory responses in the face of an early altered ROS homeostasis (as detected by 4-hydroxynonenal), and of a significant tendency to apoptosis. In CL and UUO, upregulation of nuclear (erythroid-derived 2)-like 2 transcription factor (Nrf2), as well as of cytoplasmic and nuclear Kelch-like ECH-associated protein 1 (Keap1) in opposition to decreased heme oxygenase-1 (HO-1), suggest impairment of the Nrf2/Keap1/HO-1 system. It is concluded that chronic obstruction impairs mitochondrial function in CL and UUO, preferentially affecting complex II.
Collapse
Affiliation(s)
- Mario Bianco
- Center of Experimental Surgery, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Jarlene A. Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hellen J. V. Beiral
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João D. D. Filho
- Center of Experimental Surgery, Postgraduate Program in Surgical Science, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephan P. Frankenfeld
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S. Fortunato
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cerli R. Gattass
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging /CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Translational Biomedicine Program, Grande Rio University, Duque de Caxias, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Orlandi PF, Fujii N, Roy J, Chen HY, Lee Hamm L, Sondheimer JH, He J, Fischer MJ, Rincon-Choles H, Krishnan G, Townsend R, Shafi T, Hsu CY, Kusek JW, Daugirdas JT, Feldman HI. Hematuria as a risk factor for progression of chronic kidney disease and death: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. BMC Nephrol 2018; 19:150. [PMID: 29940877 PMCID: PMC6020240 DOI: 10.1186/s12882-018-0951-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hematuria is associated with chronic kidney disease (CKD), but has rarely been examined as a risk factor for CKD progression. We explored whether individuals with hematuria had worse outcomes compared to those without hematuria in the CRIC Study. METHODS Participants were a racially and ethnically diverse group of adults (21 to 74 years), with moderate CKD. Presence of hematuria (positive dipstick) from a single urine sample was the primary predictor. Outcomes included a 50% or greater reduction in eGFR from baseline, ESRD, and death, over a median follow-up of 7.3 years, analyzed using Cox Proportional Hazards models. Net reclassification indices (NRI) and C statistics were calculated to evaluate their predictive performance. RESULTS Hematuria was observed in 1145 (29%) of a total of 3272 participants at baseline. Individuals with hematuria were more likely to be Hispanic (22% vs. 9.5%, respectively), have diabetes (56% vs. 48%), lower mean eGFR (40.2 vs. 45.3 ml/min/1.73 m2), and higher levels of urinary albumin > 1.0 g/day (36% vs. 10%). In multivariable-adjusted analysis, individuals with hematuria had a greater risk for all outcomes during the first 2 years of follow-up: Halving of eGFR or ESRD (HR Year 1: 1.68, Year 2: 1.36), ESRD (Year 1: 1.71, Year 2: 1.39) and death (Year 1:1.92, Year 2: 1.77), and these associations were attenuated, thereafter. Based on NRIs and C-statistics, no clear improvement in the ability to improve prediction of study outcomes was observed when hematuria was included in multivariable models. CONCLUSION In a large adult cohort with CKD, hematuria was associated with a significantly higher risk of CKD progression and death in the first 2 years of follow-up but did not improve risk prediction.
Collapse
Affiliation(s)
- Paula F Orlandi
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, 824 Guardian Drive, Blockley Hall, Philadelphia, Pennsylvania, 19104-6021, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Naohiko Fujii
- Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Jason Roy
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, 824 Guardian Drive, Blockley Hall, Philadelphia, Pennsylvania, 19104-6021, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hsiang-Yu Chen
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, 824 Guardian Drive, Blockley Hall, Philadelphia, Pennsylvania, 19104-6021, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - L Lee Hamm
- School of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | - Jiang He
- School of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michael J Fischer
- Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hernan Rincon-Choles
- Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio, USA
| | - Geetha Krishnan
- Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, Ohio, USA
| | - Raymond Townsend
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tariq Shafi
- John Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Chi-Yuan Hsu
- School of Medicine, University of California, San Francisco, California, USA
| | - John W Kusek
- National Institutes of Health, Bethesda, Maryland, USA
| | - John T Daugirdas
- Renal Division, University of Illinois Hospital and Health Sciences Center, Chicago, Illinois, USA
| | - Harold I Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, 824 Guardian Drive, Blockley Hall, Philadelphia, Pennsylvania, 19104-6021, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Liu M, Zhu Y, Sun Y, Wen Z, Huang S, Ding G, Zhang A, Jia Z, Zhang Y. MnTBAP therapy attenuates the downregulation of sodium transporters in obstructive kidney disease. Oncotarget 2017; 9:394-403. [PMID: 29416622 PMCID: PMC5787475 DOI: 10.18632/oncotarget.23037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022] Open
Abstract
Ureteral obstruction is associated with reduced expressions of renal sodium transporters, which contributes to impaired urinary concentrating capacity. In this study, we employed a synthetic mitochondrial superoxide dismutase 2 (SOD2) mimic MnTBAP to investigate the role of mitochondrial oxidative stress in modulating the sodium transporters in obstructive kidney disease. Following unilateral ureteral obstruction (UUO) for 7 days, a global reduction of sodium transporters including NHE3, NCC, NKCC2, and ENaCα was observed as determined by qRT-PCR, Western Blotting or immunohistochemistry. Among these sodium transporters, the downregulation of NHE3, NCC, and NKCC2 was partially reversed by MnTBAP treatment. In contrast, the reduction of ENaCα was not affected by MnTBAP. The β and γ subunits of ENaC were not significantly altered by ureteral obstruction or MnTBAP therapy. To further confirm the anti-oxidant effect of MnTBAP, we examined the levels of TBARs in the urine collected from the obstructed ureters of UUO mice and bladder of sham mice. As expected, the increment of urinary TBARs in UUO mice was entirely abolished by MnTBAP therapy, indicating an amelioration of oxidative stress. Meantime, we found that three types of SOD were all reduced in obstructed kidneys determined by qRT-PCR, which was unaffected by MnTBAP. Collectively, these results demonstrated an important role of mitochondrial oxidative stress in mediating the downregulation of sodium transporters in obstructive kidney disease.
Collapse
Affiliation(s)
- Mi Liu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Zhu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ying Sun
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhaoying Wen
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Luo R, Kakizoe Y, Wang F, Fan X, Hu S, Yang T, Wang W, Li C. Deficiency of mPGES-1 exacerbates renal fibrosis and inflammation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol 2016; 312:F121-F133. [PMID: 27784694 DOI: 10.1152/ajprenal.00231.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that converts prostaglandin H2 to prostaglandin E2 (PGE2), plays an important role in a variety of inflammatory diseases. We investigated the contribution of mPGES-1 to renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) for 7 days using wild-type (WT) and mPGES-1 knockout (KO) mice. UUO induced increased mRNA and protein expression of mPGES-1 and cyclooxygenase-2 in WT mice. UUO was associated with increased renal PGE2 content and upregulated PGE2 receptor (EP) 4 expression in obstructed kidneys of both WT and mPGES-1 KO mice; EP4 expression levels were higher in KO mice with UUO than those in WT mice. Protein expression of NLRP3 inflammasome components ASC and interleukin-1β was significantly increased in obstructed kidneys of KO mice compared with that in WT mice. mRNA expression levels of fibronectin, collagen III, and transforming growth factor-β1 (TGF-β1) were significantly higher in obstructed kidneys of KO mice than that in WT mice. In KO mice, protein expression of fibronectin and collagen III was markedly increased in obstructed kidneys compared with WT mice, which was associated with increased phosphorylation of protein kinase B (AKT). EP4 agonist CAY10598 attenuated increased expression of collagen I and fibronectin induced by TGF-β1 in inner medullary collecting duct 3 cells. Moreover, CAY10598 prevented the activation of NLRP3 inflammasomes induced by angiotensin II in human proximal tubule cells (HK2). In conclusion, these findings suggested that mPGES-1 exerts a potentially protective effect against renal fibrosis and inflammation induced by UUO in mice.
Collapse
Affiliation(s)
- Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yutaka Kakizoe
- Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Fan
- Neurosurgery Department, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|