1
|
Steiger S, Li L, Bruchfeld A, Stevens KI, Moran SM, Floege J, Caravaca-Fontán F, Mirioglu S, Teng OYK, Frangou E, Kronbichler A. Sex dimorphism in kidney health and disease: mechanistic insights and clinical implication. Kidney Int 2025; 107:51-67. [PMID: 39477067 DOI: 10.1016/j.kint.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 11/18/2024]
Abstract
Sex is a key variable in the regulation of human physiology and pathology. Many diseases disproportionately affect one sex: autoimmune diseases, such as systemic lupus erythematosus, are more common in women but more severe in men, whereas the incidence of other disorders such as gouty arthritis and malignant cancers is higher in men. Besides the pathophysiology, sex may also influence the efficacy of therapeutics; participants in clinical trials are still predominately men, and the side effects of drugs are more common in women than in men. Sex dimorphism is a prominent feature of kidney physiology and function, and consequently affects the predisposition to many adult kidney diseases. These differences subsequently influence the response to immune stimuli, hormones, and therapies. It is highly likely that these responses differ between the sexes. Therefore, it becomes imperative to consider sex differences in translational science from basic science to preclinical research to clinical research and trials. Under-representation of one sex in preclinical animal studies or clinical trials remains an issue and key reported outcomes of such studies ought to be presented separately. Without this, it remains difficult to tailor the management of kidney disease appropriately and effectively. In this review, we provide mechanistic insights into sex differences in rodents and humans, both in kidney health and disease, highlight the importance of considering sex differences in the design of any preclinical animal or clinical study, and propose guidance on how to optimal design and conduct preclinical animal studies in future research.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany.
| | - Li Li
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Kate I Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah M Moran
- Cork University Hospital, University College Cork, Cork, Ireland
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Safak Mirioglu
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Instanbul, Turkey
| | - Onno Y K Teng
- Center of Expertise for Lupus, Vasculitis and Complement-mediated Systemic disease (LuVaCs), Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleni Frangou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus; University of Nicosia Medical School, Nicosia, Cyprus; National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Costello HM, Eikenberry SA, Cheng KY, Broderick B, Joshi AS, Scott GR, McKee A, Mendez VM, Douma LG, Crislip GR, Gumz ML. Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice. Am J Physiol Renal Physiol 2025; 328:F1-F14. [PMID: 39447118 DOI: 10.1152/ajprenal.00177.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Brain and muscle ARNT-Like 1 (BMAL1) is a circadian clock transcription factor that regulates physiological functions. Male adrenal-specific Bmal1 (ASCre/+::Bmal1) KO mice displayed blunted serum corticosterone rhythms, altered blood pressure rhythm, and altered timing of eating, but there is a lack of knowledge in females. This study investigates the role of adrenal BMAL1 in renal electrolyte handling and urinary aldosterone levels in response to low salt in male and female mice. Mice were placed in metabolic cages to measure 12-h urinary aldosterone after a standard diet and 7 days low-salt diet, as well as daily body weight, 12-h food and water intake, and renal sodium and potassium balance. Adrenal glands and kidneys were collected at ZT0 or ZT12 to measure the expression of aldosterone synthesis genes and clock genes. Compared with littermate controls, ASCre/+::Bmal1 KO male and female mice displayed increased urinary aldosterone in response to a low-salt diet, although mRNA expression of aldosterone synthesis genes was decreased. Timing of food intake was altered in ASCre/+::Bmal1 KO male and female mice, with a blunted night/day ratio. ASCre/+::Bmal1 KO female mice displayed decreases in renal sodium excretion in response to low salt, but both male and female KO mice had changes in sodium balance that were time-of-day-dependent. In addition, sex differences were found in adrenal and kidney clock gene expression. Notably, this study highlights sex differences in clock gene expression that could contribute to sex differences in physiological functions.NEW & NOTEWORTHY Our findings highlight the importance of sex as well as time-of-day in understanding the role of the circadian clock in the regulation of homeostasis. Time-of-day is a key biological variable that is often ignored in research, particularly in preclinical rodent studies. Our findings demonstrate important differences in several measures at 6 AM compared with 6 PM. Consideration of time-of-day is critical for the translation of findings in nocturnal rodent physiology to diurnal human physiology.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Sophia A Eikenberry
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Bryanna Broderick
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Advay S Joshi
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Gianna R Scott
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Annalisse McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida, United States
| |
Collapse
|
3
|
Layton AT. We are all different: Modeling key individual differences in physiological systems. Math Biosci 2024; 378:109338. [PMID: 39481640 DOI: 10.1016/j.mbs.2024.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Mathematical models of whole-body dynamics have advanced our understanding of human integrative systems that regulate physiological processes such as metabolism, temperature, and blood pressure. For most of these whole-body models, baseline parameters describe a 35-year-old young adult man who weighs 70 kg. As such, even among adults those models may not accurately represent half of the population (women), the older population, and those who weigh significantly more than 70 kg. Indeed, sex, age, and weight are known modulators of physiological function. To more accurately simulate a person who does not look like that "baseline person," or to explain the mechanisms that yield the observed sex or age differences, these factors should be incorporated into mathematical models of physiological systems. Another key modulator is the time of day, because most physiological processes are regulated by the circadian clocks. Thus, ideally, mathematical models of integrative physiological systems should be specific to either a man or woman, of a certain age and weight, and a given time of day. We illustrate the importance of capturing these individual differences, using the blood pressure regulatory system as an example, and explain how that such models can be built.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, Department of Biology, Cheriton School of Computer Science, School of Pharmacology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
4
|
Spišská V, Kubištová A, Novotný J, Bendová Z. Impact of Prenatal LPS and Early-life Constant Light Exposure on Circadian Gene Expression Profiles in Various Rat Tissues. Neuroscience 2024; 551:17-30. [PMID: 38777136 DOI: 10.1016/j.neuroscience.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Exposure to lipopolysaccharide (LPS) during prenatal development leads to various changes in neurobiological and behavioural patterns. Similarly, continuous exposure to constant light (LL) during the critical developmental period of the circadian system affects gene expression in various tissues in adulthood. Given the reciprocal nature of the interaction between the circadian and the immune systems, our study primarily investigated the individual effects of both interventions and, more importantly, their combined effect. We aimed to explore whether there might be a potential synergistic effect on circadian rhythms and their parameters, focussing on the expression of clock genes, immune-related genes, and specific genes in the hippocampus, pineal gland, spleen and adrenal gland of rats at postnatal day 30. Our results show a significant influence of prenatal LPS and postnatal LL on the expression profiles of all genes assessed. However, the combination of prenatal LPS and postnatal LL only revealed an enhanced negative effect in a minority of the comparisons. In most cases, it appeared to attenuate the changes induced by the individual interventions, restoring the measured parameters to values closer to those of the control group. In particular, genes such as Nr1d1, Aanat and Tph1 showed increased amplitude in the pineal gland and spleen, while the kynurenine enzymes Kynu and KatII developed circadian rhythmicity in the adrenal glands only after the combined interventions. Our data suggest that a mild immunological challenge during prenatal development may play a critical role in triggering an adaptive response of the circadian clock later in life.
Collapse
Affiliation(s)
- Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Aneta Kubištová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
5
|
Dutta P, Layton AT. Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis. PLoS One 2024; 19:e0293419. [PMID: 39018272 PMCID: PMC11253979 DOI: 10.1371/journal.pone.0293419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/12/2023] [Indexed: 07/19/2024] Open
Abstract
Renal hemodynamics, renal transporter expression levels, and urine excretion exhibit circadian variations. Disruption of these diurnal patterns is associated with the pathophysiology of hypertension and chronic kidney disease. Renal hemodynamics determines oxygen delivery, whereas renal transport and metabolism determines oxygen consumption; the balance between them yields renal oxygenation which also demonstrates 24-h periodicity. Another notable modulator of kidney function is sex, which has impacts on renal hemodynamics and transport function that are regulated by as well as independent of the circadian clock. The goal of this study was to investigate the diurnal and sexual variations in renal oxygen consumption and oxygenation. For this purpose, we developed computational models of rat kidney function that represent sexual dimorphism and circadian variation in renal hemodynamics and transporter activities. Model simulations predicted substantial differences in tubular Na+ transport and oxygen consumption among different nephron segments. We also simulated the effect of loop diuretics, which are used in the treatment of renal hypoxia, on medullary oxygen tension. Our model predicted a significantly higher effect of loop diuretics on medullary oxygenation in female rats compared to male rats and when administered during the active phase.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Stadt MM, Layton AT. A modeling analysis of whole body potassium regulation on a high-potassium diet: proximal tubule and tubuloglomerular feedback effects. Am J Physiol Regul Integr Comp Physiol 2024; 326:R401-R415. [PMID: 38465401 DOI: 10.1152/ajpregu.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Potassium (K+) is an essential electrolyte that plays a key role in many physiological processes, including mineralcorticoid action, systemic blood-pressure regulation, and hormone secretion and action. Indeed, maintaining K+ balance is critical for normal cell function, as too high or too low K+ levels can have serious and potentially deadly health consequences. K+ homeostasis is achieved by an intricate balance between the intracellular and extracellular fluid as well as balance between K+ intake and excretion. This is achieved via the coordinated actions of regulatory mechanisms such as the gastrointestinal feedforward effect, insulin and aldosterone upregulation of Na+-K+-ATPase uptake, and hormone and electrolyte impacts on renal K+ handling. We recently developed a mathematical model of whole body K+ regulation to unravel the individual impacts of these regulatory mechanisms. In this study, we extend our mathematical model to incorporate recent experimental findings that showed decreased fractional proximal tubule reabsorption under a high-K+ diet. We conducted model simulations and sensitivity analyses to investigate how these renal alterations impact whole body K+ regulation. Model predictions quantify the sensitivity of K+ regulation to various levels of proximal tubule K+ reabsorption adaptation and tubuloglomerular feedback. Our results suggest that the reduced proximal tubule K+ reabsorption under a high-K+ diet could achieve K+ balance in isolation, but the resulting tubuloglomerular feedback reduces filtration rate and thus K+ excretion.NEW & NOTEWORTHY Potassium homeostasis is maintained in the body by a complex system of regulatory mechanisms. This system, when healthy, maintains a small extracellular potassium concentration, despite large fluctuations of dietary potassium. The complexities of the system make this problem well suited for investigation with mathematical modeling. In this study, we extend our mathematical model to consider recent experimental results on renal potassium handling on a high potassium diet and investigate the impacts from a whole body perspective.
Collapse
Affiliation(s)
- Melissa M Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Juffre A, Gumz ML. Recent advances in understanding the kidney circadian clock mechanism. Am J Physiol Renal Physiol 2024; 326:F382-F393. [PMID: 38174377 PMCID: PMC11207534 DOI: 10.1152/ajprenal.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms are endogenous biological oscillations that regulate various physiological processes in organisms, including kidney function. The kidney plays a vital role in maintaining homeostasis by regulating water and electrolyte balance, blood pressure, and excretion of metabolic waste products, all of which display circadian rhythmicity. For this reason, studying the circadian regulation of the kidney is important, and the time of day is a biological and experimental variable that must be considered. Over the past decade, considerable progress has been made in understanding the molecular mechanisms underlying circadian regulation within the kidney. In this review, the current knowledge regarding circadian rhythms in the kidney is explored, focusing on the molecular clock machinery, circadian control of renal functions, and the impact of disrupted circadian rhythms on kidney health. In addition, parameters that should be considered and future directions are outlined in this review.
Collapse
Affiliation(s)
- Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Negoro H, Nakamoto I, Uiji S, Matsushima Y, Mathis BJ, Kanikowska D, Wakamura T. Diurnal differences in urine flow in healthy young men in a light-controlled environment: a randomized crossover design. J Physiol Anthropol 2023; 42:27. [PMID: 37978565 PMCID: PMC10655426 DOI: 10.1186/s40101-023-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Older men often experience nocturnal urination difficulties, reflected by diurnal differences in maximum urine flow (Qmax). Since lower urinary tract symptoms and pathological comorbidities are frequent in older men, it remains unclear whether this diurnal variation is a physiological or pathological phenomenon. Our aim was to quantify the diurnal variability of Qmax in healthy young participants under varying daylight conditions in a stable environment to discern potential underlying causes of nocturnal urination difficulties. METHODS Twenty-one healthy young men were recruited in a 4-day study utilizing daytime (08:00-18:00) exposure with two light conditions in randomized order: dim (< 50 lx) or bright (~2500 lx). Day 1 was for acclimation, and urine flow was assessed from day 2. The participants urinated ad libitum during day 2 and then at fixed 3-4-h intervals thereafter (days 3-4). Regular urination Qmax at late night (04:00) on day 4 was compared with the nearest voided volume during daytime of day 3 (mDay). RESULTS Morning Qmax scores (after bed-11:00) on day 2 were significantly lower than evening (17:00-before pre-sleep) in bright conditions and those of daytime (11:00-17:00), evening (17:00-before pre-sleep), and pre-sleep in dim conditions. Pre-sleep Qmax during the ad libitum period was significantly higher in dim than bright conditions. Late-night Qmax values (04:00) on day 4 were significantly lower than Qmax scores of mDay on day 3 in both light conditions. CONCLUSIONS Healthy young men had a clear diurnal Qmax difference that decreased during late night and morning. In addition, the pre-sleep Qmax values in dim daylight were significantly higher than in bright daylight. Taken together, we conclude that late-night and morning decreases in Qmax are an instinctive physiological phenomenon in humans, and the diurnal difference of Qmax can be influenced by daylight conditions.
Collapse
Affiliation(s)
- Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Isuzu Nakamoto
- Department of Gerontological and Home Healthcare Nursing, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Sayaka Uiji
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiko Matsushima
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Bryan J Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Ibaraki, Japan
| | - Dominika Kanikowska
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomoko Wakamura
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Hakimi S, Dutta P, Layton AT. Coupling of renal sodium and calcium transport: a modeling analysis of transporter inhibition and sex differences. Am J Physiol Renal Physiol 2023; 325:F536-F551. [PMID: 37615047 DOI: 10.1152/ajprenal.00145.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Ca2+ transport along the nephron occurs via specific transcellular and paracellular pathways and is coupled to the transport of other electrolytes. Notably, Na+ transport establishes an electrochemical gradient to drive Ca2+ reabsorption. Hence, alterations in renal Na+ handling, under pathophysiological conditions or pharmacological manipulations, can have major effects on Ca2+ transport. An important class of pharmacological agent is diuretics, which are commonly prescribed for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate Na+ transport but also indirectly affect renal Ca2+ handling. To better understand the underlying mechanisms, we developed a computational model of electrolyte transport along the superficial nephron in the kidney of a male and female rat. Sex differences in renal Ca2+ handling are represented. Model simulations predicted in the female rat nephron lower Ca2+ reabsorption in the proximal tubule and thick ascending limb, but higher reabsorption in the late distal convoluted tubule and connecting tubule, compared with the male nephron. The male rat kidney model yielded a higher urinary Ca2+ excretion than the female model, consistent with animal experiments. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occurred in parallel, but those processes were dissociated in the distal convoluted tubule. Additionally, we conducted simulations of inhibition of channels and transporters that play a major role in Na+ and Ca2+ transport. Simulation results revealed alterations in transepithelial Ca2+ transport, with differential effects among nephron segments and between the sexes.NEW & NOTEWORTHY The kidney plays an important role in the maintenance of whole body Ca2+ balance by regulating Ca2+ reabsorption and excretion. This computational modeling study provides insights into how Ca2+ transport along the nephron is coupled to Na+. Model results indicated that along the proximal tubule and thick ascending limb, Ca2+ and Na+ transport occur in parallel, but those processes were dissociated in the distal convoluted tubule. Simulations also revealed sex-specific responses to different pharmacological manipulations.
Collapse
Affiliation(s)
- Shervin Hakimi
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Layton AT. "Hi, how can i help you?": embracing artificial intelligence in kidney research. Am J Physiol Renal Physiol 2023; 325:F395-F406. [PMID: 37589052 DOI: 10.1152/ajprenal.00177.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023] Open
Abstract
In recent years, biology and precision medicine have benefited from major advancements in generating large-scale molecular and biomedical datasets and in analyzing those data using advanced machine learning algorithms. Machine learning applications in kidney physiology and pathophysiology include segmenting kidney structures from imaging data and predicting conditions like acute kidney injury or chronic kidney disease using electronic health records. Despite the potential of machine learning to revolutionize nephrology by providing innovative diagnostic and therapeutic tools, its adoption in kidney research has been slower than in other organ systems. Several factors contribute to this underutilization. The complexity of the kidney as an organ, with intricate physiology and specialized cell populations, makes it challenging to extrapolate bulk omics data to specific processes. In addition, kidney diseases often present with overlapping manifestations and morphological changes, making diagnosis and treatment complex. Moreover, kidney diseases receive less funding compared with other pathologies, leading to lower awareness and limited public-private partnerships. To promote the use of machine learning in kidney research, this review provides an introduction to machine learning and reviews its notable applications in renal research, such as morphological analysis, omics data examination, and disease diagnosis and prognosis. Challenges and limitations associated with data-driven predictive techniques are also discussed. The goal of this review is to raise awareness and encourage the kidney research community to embrace machine learning as a powerful tool that can drive advancements in understanding kidney diseases and improving patient care.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Stadt MM, Layton AT. Mathematical modeling of calcium homeostasis in female rats: An analysis of sex differences and maternal adaptations. J Theor Biol 2023; 572:111583. [PMID: 37516344 DOI: 10.1016/j.jtbi.2023.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Calcium plays a vital role in various biological processes, including muscle contractions, blood clotting, skeletal mineralization, and cell signaling. While extracellular calcium makes up less than 1% of total body calcium, it is tightly regulated since too high or too low extracellular calcium concentration can have dangerous effects on the body. Mathematical modeling is a well-suited approach to investigate the complex physiological processes involved in calcium regulation. While mathematical models have been developed to study calcium homeostasis in male rats, none have been used to investigate known sex differences in hormone levels nor the unique physiological states of pregnancy and lactation. Calcitriol, the active form of vitamin D, plays a key role in intestinal calcium absorption, renal calcium reabsorption, and bone remodeling. It has been shown that, when compared to age-matched male rats, females have significantly lower calcitriol levels. In this study we first seek to investigate the impact of this difference as well as other known sex differences on calcium homeostasis using mathematical modeling. Female bodies differ from male bodies in that during their lifetime they may undergo massive adaptations during pregnancy and lactation. Indeed, maternal adaptations impact calcium regulation in all mammals. In pregnant rodents, intestinal absorption of calcium is massively increased in the mother's body to meet the needs of the developing fetus. In a lactating rodent, much of the calcium needs of milk are met by bone resorption, intestinal absorption, and renal calcium reabsorption. Given these observations, the goal of this project is to develop multi-scale whole-body models of calcium homeostasis that represents (1) how sex differences impact calcium homeostasis in female vs. male rats and (2) how a female body adapts to support the excess demands brought on by pregnancy and lactation. We used these models to quantify the impact of individual sex differences as well as maternal adaptations during pregnancy and lactation. Additionally, we conducted "what if" simulations to test whether sex differences in calcium regulation may enable females to better undergo maternal adaptations required in pregnancy and lactation than males.
Collapse
Affiliation(s)
- Melissa M Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, Department of Biology, School of Pharmacology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.
Collapse
Affiliation(s)
- Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Anita T. Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Weger M, Weger BD, Gachon F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin Drug Discov 2023. [PMID: 37300813 DOI: 10.1080/17460441.2023.2224554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Most mammalian physiology is orchestrated by the circadian clock, including drug transport and metabolism. As a result, efficacy and toxicity of many drugs are influenced by the timing of their administration, which has led to the establishment of the field of chronopharmacology. AREAS COVERED In this review, the authors provide an overview of the current knowledge about the time-of-day dependent aspects of drug metabolism and the importance of chronopharmacological strategies for drug development. They also discuss the factors influencing rhythmic drug pharmacokinetic including sex, metabolic diseases, feeding rhythms, and microbiota, that are often overlooked in the context of chronopharmacology. This article summarizes the involved molecular mechanisms and functions and explains why these parameters should be considered in the process of drug discovery. EXPERT OPINION Although chronomodulated treatments have shown promising results, particularly for cancer, the practice is still underdeveloped due to the associated high cost and time investments. However, implementing this strategy at the preclinical stage could offer a new opportunity to translate preclinical discoveries into successful clinical treatments.
Collapse
Affiliation(s)
- Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Benjamin D Weger
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, QLD, Australia
| |
Collapse
|
14
|
Imamura M, Sasaki H, Hayashi K, Shibata S. Mid-Point of the Active Phase Is Better to Achieve the Natriuretic Effect of Acute Salt Load in Mice. Nutrients 2023; 15:nu15071679. [PMID: 37049519 PMCID: PMC10096866 DOI: 10.3390/nu15071679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Excess sodium intake and insufficient potassium intake are a prominent global issue because of their influence on high blood pressure. Supplementation of potassium induces kaliuresis and natriuresis, which partially explains its antihypertensive effect. Balancing of minerals takes place in the kidney and is controlled by the circadian clock; in fact, various renal functions exhibit circadian rhythms. In our previous research, higher intake of potassium at lunch time was negatively associated with blood pressure, suggesting the importance of timing for sodium and potassium intake. However, the effects of intake timing on urinary excretion remain unclear. In this study, we investigated the effect of 24 h urinary sodium and potassium excretion after acute sodium and potassium load with different timings in mice. Compared to other timings, the middle of the active phase resulted in higher urinary sodium and potassium excretion. In Clock mutant mice, in which the circadian clock is genetically disrupted, urinary excretion differences from intake timings were not observed. Restricted feeding during the inactive phase reversed the excretion timing difference, suggesting that a feeding-induced signal may cause this timing difference. Our results indicate that salt intake timing is important for urinary sodium and potassium excretion and provide new perspectives regarding hypertension prevention.
Collapse
|
15
|
Smith D, Layton A. The intrarenal renin-angiotensin system in hypertension: insights from mathematical modelling. J Math Biol 2023; 86:58. [PMID: 36952058 DOI: 10.1007/s00285-023-01891-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2023] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the maintenance of volume homeostasis and blood pressure. In addition to the well-studied systemic RAS, local RAS have been documented in various tissues, including the kidney. Given the role of the intrarenal RAS in the pathogenesis of hypertension, a role established via various pharmacologic and genetic studies, substantial efforts have been made to unravel the processes that govern intrarenal RAS activity. In particular, several mechanisms have been proposed to explain the rise in intrarenal angiotensin II (Ang II) that accompanies Ang II infusion, including increased angiotensin type 1 receptor (AT1R)-mediated uptake of Ang II and enhanced intrarenal Ang II production. However, experimentally isolating their contribution to the intrarenal accumulation of Ang II in Ang II-induced hypertension is challenging, given that they are fundamentally connected. Computational modelling is advantageous because the feedback underlying each mechanism can be removed and the effect on intrarenal Ang II can be studied. In this work, the mechanisms governing the intrarenal accumulation of Ang II during Ang II infusion experiments are delineated and the role of the intrarenal RAS in Ang II-induced hypertension is studied. To accomplish this, a compartmental ODE model of the systemic and intrarenal RAS is developed and Ang II infusion experiments are simulated. Simulations indicate that AT1R-mediated uptake of Ang II is the primary mechanism by which Ang II accumulates in the kidney during Ang II infusion. Enhanced local Ang II production is unnecessary. The results demonstrate the role of the intrarenal RAS in the pathogenesis of Ang II-induced hypertension and consequently, clinical hypertension associated with an overactive RAS.
Collapse
Affiliation(s)
- Delaney Smith
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Cheriton School of Computer Science, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
- School of Pharmacy, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
16
|
Dutta P, Sadria M, Layton AT. Influence of administration time and sex on natriuretic, diuretic, and kaliuretic effects of diuretics. Am J Physiol Renal Physiol 2023; 324:F274-F286. [PMID: 36701479 DOI: 10.1152/ajprenal.00296.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sex differences in renal function and blood pressure have been widely described across many species. Blood pressure dips during sleep and peaks in the early morning. Similarly, glomerular filtration rate, filtered electrolyte loads, urine volume, and urinary excretion all exhibit notable diurnal rhythms, which reflect, in part, the regulation of renal transporter proteins by circadian clock genes. That regulation is sexually dimorphic; as such, sex and time of day are not two independent regulators of kidney function and blood pressure. The objective of the present study was to assess the effect of sex and administration time on the natriuretic and diuretic effects of loop, thiazide, and K+-sparing diuretics, which are common treatments for hypertension. Loop diuretics inhibit Na+-K+-2Cl- cotransporters on the apical membrane of the thick ascending limb, thiazide diuretics inhibit Na+-Cl- cotransporters on the distal convoluted tubule, and K+-sparing diuretics inhibit epithelial Na+ channels on the connecting tubule and collecting duct. We simulated Na+ transporter inhibition using sex- and time-of-day-specific computational models of mouse kidney function. The simulation results highlighted significant sex and time-of-day differences in the drug response. Loop diuretics induced larger natriuretic and diuretic effects during the active phase. The natriuretic and diuretic effects of thiazide diuretics exhibited sex and time-of-day differences, whereas these effects of K+-sparing diuretics exhibited a significant time-of-day difference in females only. The kaliuretic effect depended on the type of diuretics and time of administration. The present computational models can be a useful tool in chronotherapy, to tailor drug administration time to match the body's diurnal rhythms to optimize the drug effect.NEW & NOTEWORTHY Sex influences cardiovascular disease, and the timing of onset of acute cardiovascular events exhibits circadian rhythms. Kidney function also exhibits sex differences and circadian rhythms. How do the natriuretic and diuretic effects of diuretics, a common treatment for hypertension that targets the kidneys, differ between the sexes? And how do these effects vary during the day? To answer these questions, we conducted computer simulations to assess the effects of loop, thiazide, and K+-sparing diuretics.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Tao Y, Young‐Stubbs C, Yazdizadeh Shotorbani P, Su D, Mathis KW, Ma R. Sex and strain differences in renal hemodynamics in mice. Physiol Rep 2023; 11:e15644. [PMID: 36946063 PMCID: PMC10031302 DOI: 10.14814/phy2.15644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023] Open
Abstract
The present study was to examine sex and strain differences in glomerular filtration rate (GFR) and renal blood flow (RBF) in C57BL6, 129/Sv, and C57BLKS/J mice, three commonly used mouse strains in renal research. GFR was measured by transdermal measurement of FITC-sinitrin clearance in conscious mice. RBF was measured by a flow probe placed in the renal artery under an anesthetic state. In C57BL6 mice, there were no sex differences in both GFR and RBF. In 129/Sv mice, females had significantly greater GFR than males at age of 24 weeks, but not at 8 weeks. However, males had higher RBF and lower renal vascular resistance (RVR). Similar to 129/Sv, female C57BLKS/J had significantly greater GFR at both 8 and 24 weeks, lower RBF, and higher RVR than males. Across strains, male 129/Sv had lower GFR and higher RBF than male C57BL6, but no significant difference in GFR and greater RBF than male C57BLKS/J. No significant difference in GFR or RBF was observed between C57BL6 and C57BLKS/J mice. Deletion of eNOS in C57BLKS/J mice reduced GFR in both sexes, but decreased RBF in males. Furthermore, there were no sex differences in the severity of renal injury in eNOS-/- dbdb mice. Taken together, our study suggests that sex differences in renal hemodynamics in mice are strain and age dependent. eNOS was not involved in the sex differences in GFR, but in RBF. Furthermore, the sexual dimorphism did not impact the severity of renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Cassandra Young‐Stubbs
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | | | - Dong‐Ming Su
- Department of Microbiology, Immunology and GeneticsUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Keisa W. Mathis
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Rong Ma
- Department of Physiology and AnatomyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|