1
|
Mansouri P, Mansouri P, Behmard E, Najafipour S, Kouhpayeh SA, Farjadfar A. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment. Int J Biol Macromol 2024; 278:134576. [PMID: 39127273 DOI: 10.1016/j.ijbiomac.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
In 1958, the presence of citrulline in the structure of the proteins was discovered for the first time. Several years later they found that Arginine converted to citrulline during a post-translational modification process by PAD enzyme. Each PAD is expressed in a certain tissue developing a series of diseases such as inflammation and cancers. Among these, PAD2 and PAD4 play a role in the development of rheumatoid arthritis (RA) by producing citrullinated autoantigens and increasing the production of inflammatory cytokines. PAD4 is also associated with the formation of NET structures and thrombosis. In the crystallographic structure, PAD has several calcium binding sites, and the active site of the enzyme consists of different amino acids. Various PAD inhibitors have been developed divided into pan-PAD and selective PAD inhibitors. F-amidine, Cl-amidine, and BB-Cl-amidine are some of pan-PAD inhibitors. AFM-30a and JBI589 are selective for PAD2 and PAD4, respectively. There is a need to evaluate the effectiveness of existing inhibitors more accurately in the coming years, as well as design and production of novel inhibitors targeting highly specific isoforms.
Collapse
Affiliation(s)
- Pegah Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Pardis Mansouri
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sohrab Najafipour
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Seyed Amin Kouhpayeh
- Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Akbar Farjadfar
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Yang T, Peng J, Zhang Z, Chen Y, Liu Z, Jiang L, Jin L, Han M, Su B, Li Y. Emerging therapeutic strategies targeting extracellular histones for critical and inflammatory diseases: an updated narrative review. Front Immunol 2024; 15:1438984. [PMID: 39206200 PMCID: PMC11349558 DOI: 10.3389/fimmu.2024.1438984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular histones are crucial damage-associated molecular patterns involved in the development and progression of multiple critical and inflammatory diseases, such as sepsis, pancreatitis, trauma, acute liver failure, acute respiratory distress syndrome, vasculitis and arthritis. During the past decade, the physiopathologic mechanisms of histone-mediated hyperinflammation, endothelial dysfunction, coagulation activation, neuroimmune injury and organ dysfunction in diseases have been systematically elucidated. Emerging preclinical evidence further shows that anti-histone strategies with either their neutralizers (heparin, heparinoids, nature plasma proteins, small anion molecules and nanomedicines, etc.) or extracorporeal blood purification techniques can significantly alleviate histone-induced deleterious effects, and thus improve the outcomes of histone-related critical and inflammatory animal models. However, a systemic evaluation of the efficacy and safety of these histone-targeting therapeutic strategies is currently lacking. In this review, we first update our latest understanding of the underlying molecular mechanisms of histone-induced hyperinflammation, endothelial dysfunction, coagulopathy, and organ dysfunction. Then, we summarize the latest advances in histone-targeting therapy strategies with heparin, anti-histone antibodies, histone-binding proteins or molecules, and histone-affinity hemoadsorption in pre-clinical studies. Finally, challenges and future perspectives for improving the clinical translation of histone-targeting therapeutic strategies are also discussed to promote better management of patients with histone-related diseases.
Collapse
Affiliation(s)
- Tinghang Yang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Peng
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuyun Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, China
| | - Luojia Jiang
- Jiujiang City Key Laboratory of Cell Therapy, Department of Nephrology, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Lunqiang Jin
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Mei Han
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
- Med+ Biomaterial Institute of West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Yupei Li
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024:10.1038/s41581-024-00875-5. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Tang W, Ma J, Chen K, Wang K, Chen Z, Chen C, Li X, Wang Y, Shu Y, Zhang W, Yuan X, Shi G, Chen T, Wang P, Chen Y. Berbamine ameliorates DSS-induced colitis by inhibiting peptidyl-arginine deiminase 4-dependent neutrophil extracellular traps formation. Eur J Pharmacol 2024; 975:176634. [PMID: 38710356 DOI: 10.1016/j.ejphar.2024.176634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with immune dysregulation affecting colon inflammatory response. Recent studies have highlighted that neutrophil extracellular traps (NETs) play an important role in the pathogenesis of UC. Berbamine (BBM), one of the bioactive ingredients extracted from Chinese herbal medicine Berberis vulgaris L, has attracted intensive attentions due to its significant anti-inflammatory activity and a marketing drug for treating leukemia in China. However, the exact role and potential molecular mechanism of BBM against UC remains elusive. In the present study, our results showed that BBM could markedly improve the pathological phenotype and the colon inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. Then, comprehensive approaches combining network pharmacology and molecular docking analyses were employed to predict the therapeutic potential of BBM in treating UC by peptidyl-arginine deiminase 4 (PAD4), a crucial molecule involved in NETs formation. The molecular docking results showed BBM had a high affinity for PAD4 with a binding energy of -9.3 kcal/mol Moreover, PAD4 expression and NETs productions, including citrullination of histone H3 (Cit-H3), neutrophil elastase (NE), myeloperoxidase (MPO) in both neutrophils and colonic tissue were reduced after BBM administration. However, in the mice with DSS-induced colitis pretreated with GSK484, a PAD4-specific inhibitor, BBM could not further reduce disease related indexes, expression of PAD4 and NETs productions. Above all, the identification of PAD4 as a potential target for BBM to inhibit NETs formation in colitis provides novel insights into the development of BBM-derived drugs for the clinical management of UC.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Jiaze Ma
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kaidi Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Kuiling Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Zepeng Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Chen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xun Li
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia
| | - Yuji Wang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Yi Shu
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Wei Zhang
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Xiaomin Yuan
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Guoping Shi
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Tuo Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; Institute for Molecular Bioscience, the University of Queensland, Brisbane, 4702, Australia.
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| | - Yugen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
5
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Xie M, Xie R, Huang P, Yap DYH, Wu P. GADD45A and GADD45B as Novel Biomarkers Associated with Chromatin Regulators in Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:11304. [PMID: 37511062 PMCID: PMC10379085 DOI: 10.3390/ijms241411304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Chromatin regulators (CRs) are essential upstream regulatory factors of epigenetic modification. The role of CRs in the pathogenesis of renal ischemia-reperfusion injury (IRI) remains unclear. We analyzed a bioinformatic analysis on the differentially expressed chromatin regulator genes in renal IRI patients using data from public domains. The hub CRs identified were used to develop a risk prediction model for renal IRI, and their expressions were also validated using Western blot, qRT-PCR, and immunohistochemistry in a murine renal IRI model. We also examined the relationships between hub CRs and infiltrating immune cells in renal IRI and used network analysis to explore drugs that target hub CRs and their relevant downstream microRNAs. The results of machine learning methods showed that five genes (DUSP1, GADD45A, GADD45B, GADD45G, HSPA1A) were upregulated in renal IRI, with key roles in the cell cycle, p38 MAPK signaling pathway, p53 signaling pathway, FoxO signaling pathway, and NF-κB signaling pathway. Two genes from the network, GADD45A and GADD45B (growth arrest and DNA damage-inducible protein 45 alpha and beta), were chosen for the renal IRI risk prediction model. They all showed good performance in the testing and validation cohorts. Mice with renal IRI showed significantly upregulated GADD45A and GADD45B expression within kidneys compared to sham-operated mice. GADD45A and GADD45B showed correlations with plasmacytoid dendritic cells (pDCs) in infiltrating immune cell analysis and enrichment in the MAPK pathway based on the weighted gene co-expression network analysis (WGCNA) method. Candidate drugs that target GADD45A and GADD45B include beta-escin, sertraline, primaquine, pimozide, and azacyclonol. The dysregulation of GADD45A and GADD45B is related to renal IRI and the infiltration of pDCs, and drugs that target GADD45A and GADD45B may have therapeutic potential for renal IRI.
Collapse
Affiliation(s)
- Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Ngo ATP, Sarkar A, Yarovoi I, Levine ND, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Neutrophil extracellular trap stabilization by platelet factor 4 reduces thrombogenicity and endothelial cell injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522931. [PMID: 36711969 PMCID: PMC9881987 DOI: 10.1101/2023.01.09.522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nate D. Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kaitlyn Eckart
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nilam S. Mangalmurti
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas B. Cines
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Nabihah Nasir N, Sekar M, Ravi S, Wong LS, Sisinthy SP, Gan SH, Subramaniyan V, Chidambaram K, Mat Rani NNI, Begum MY, Ramar M, Safi SZ, Selvaraj S, Chinna Maruthu SK, Fuloria S, Fuloria NK, Lum PT, Djearamane S. Chemistry, Biosynthesis and Pharmacology of Streptonigrin: An Old Molecule with Future Prospects for New Drug Design, Development and Therapy. Drug Des Devel Ther 2023; 17:1065-1078. [PMID: 37064433 PMCID: PMC10094529 DOI: 10.2147/dddt.s388490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 04/18/2023] Open
Abstract
Streptonigrin is an aminoquinone alkaloid isolated from Streptomyces flocculus and is gaining attention as a drug molecule owing to its potential antitumor and antibiotic effects. It was previously used as an anticancer drug but has been discontinued because of its toxic effects. However, according to the most recent studies, the toxicity of streptonigrin and its structurally modified derivatives has been reduced while maintaining their potential pharmacological action at lower concentrations. To date, many investigations have been conducted on this molecule and its derivatives to determine the most effective molecule with low toxicity to enable new drug discovery. Therefore, the main objective of this study is to provide a comprehensive review and to discuss the prospects for streptonigrin and its derived compounds, which may boost the molecule as a highly interesting target molecule for new drug design, development and therapy. To complete this review, relevant literature was collected from several scientific databases, including Google Scholar, PubMed, Scopus and ScienceDirect. Following a complete screening, the obtained information is summarized in the present review to provide a good reference and accelerate the development and utilization of streptonigrin and its derivatives as pharmaceuticals.
Collapse
Affiliation(s)
- Naurah Nabihah Nasir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
- Correspondence: Ling Shing Wong, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia, Tel +6014 – 3034057, Email
| | - Sreenivas Patro Sisinthy
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohankumar Ramar
- Department of Surgical Research, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, 42610, Malaysia
| | | | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Kedah, 08100, Malaysia
| | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, 30450, Malaysia
| | - Sinouvassane Djearamane
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, 31900, Malaysia
- Sinouvassane Djearamane, Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia, Tel +6016 – 4037685, Email
| |
Collapse
|
9
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|
10
|
Yao H, Cao G, Liu Z, Zhao Y, Yan Z, Wang S, Wang Y, Guo Z, Wang Y. Inhibition of Netosis with PAD Inhibitor Attenuates Endotoxin Shock Induced Systemic Inflammation. Int J Mol Sci 2022; 23:13264. [PMID: 36362052 PMCID: PMC9655899 DOI: 10.3390/ijms232113264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/24/2023] Open
Abstract
Neutrophils play a pivotal role in innate immunity by releasing neutrophils extracellular traps (NETs). Excessive NETs are detrimental to the local tissue and further exacerbate inflammation. Protein arginine deiminases (PAD) mediate histone citrullination and NET formation that, in turn, exacerbate endotoxin shock damages. In this study, we further investigated the molecular mechanism underlying PAD and NETs in endotoxic stress in mice. The control group mice were injected with solvent, the LPS endotoxic shock group mice were intraperitoneally injected with LPS at 35 mg/kg only, while the LPS and PAD inhibitor YW3-56 treatment group mice were injected with YW3-56 at 10 mg/kg prior to the LPS injection. YW3-56 significantly prolonged the survival time of the LPS-treated mice. NETs, cfDNA, and inflammatory factors were detected by ELISA in serum, paitoneal cavity, and lung at 24 h after LPS administration. Lung injuries were detected by immunostaining, and lung tissue transcriptomes were analyzed by RNA-seq at 24 h after LPS administration. We found that YW3-56 altered neutrophil tissue homeostasis, inhibited NET formation, and significantly decreased cytokines (IL-6, TNFα and IL-1β) levels, cytokines gene expression, and lung tissue injury. In summary, NET formation inhibition offers a new avenue to manage inflammatory damages under endotoxic stress.
Collapse
|
11
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
12
|
Zeng M, Xu M, Li X, Li J, Liu Y. PAD4 silencing inhibits inflammation whilst promoting trophoblast cell invasion and migration by inactivating the NEMO/NF‑κB pathway. Exp Ther Med 2022; 24:568. [PMID: 35978928 PMCID: PMC9366263 DOI: 10.3892/etm.2022.11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Preeclampsia (PE), presenting with onset hypertension and proteinuria, is a pregnancy-specific disorder that can result in maternal and fetal morbidity and mortality. Insufficient trophoblast invasion and migration has been considered to be an important cause of this disease. The present study aimed to investigate the role of peptidyl arginine deiminase 4 (PAD4), whose knockdown has been previously indicated to reduce inflammation and susceptibility to pregnancy loss in mice, in the development of PE in vitro. Lipopolysaccharide (LPS) was used to treat a human trophoblast cell line (HTR8/SVneo). After PAD4 silencing via transfection with short hairpin RNA against PAD4, the concentrations of inflammatory factors IL-6, IL-12 and monocyte chemoattractant protein (MCP)-1 were measured using ELISA. Cell viability was also measured using Cell Counting Kit-8 assay. HTR8/SVneo cell invasion and migration were detected using Transwell and wound healing assays, respectively. Western blotting was used to measure the expression of citrullinated NF-κB essential modulator (NEMO) and nuclear NF-κB p65 protein levels. TNF-α was applied for evaluating the potential regulatory effects of PAD4 on NF-κB in LPS-stimulated HTR8/SVneo cells. LPS increased the levels of IL-6, IL-12 and MCP-1 and reduced the migration and invasion of HTR8/SVneo cells. PAD4-knockdown was found to markedly reduce the levels of IL-6, IL-12 and MCP-1 secretion. HTR8/SVneo cell invasion and migration was also significantly elevated after PAD4 silencing following LPS exposure. In addition, LPS stimulation notably upregulated the protein levels of citrullinated NEMO and nuclear NF-κB p65, which was restored by PAD4 knockdown. Furthermore, TNF-α treatment partially counteracted the effects of PAD4 knockdown on the secretion of IL-6, MCP-1 and IL-12, which are markers of inflammation, and invasion and migration in LPS-induced HTR8/SVneo cells. To conclude, these results suggest that PAD4 silencing can suppress inflammation whilst promoting invasion and migration by trophoblast cells through inhibiting the NEMO/NF-κB pathway. These findings furthered the understanding in the complex molecular mechanism that can trigger PE and provide a promising target for the treatment of this disease.
Collapse
Affiliation(s)
- Min Zeng
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Minjuan Xu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Xiafang Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Junying Li
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| | - Yuanyuan Liu
- Department of Obstetrics, Ganzhou People's Hospital, Ganzhou, Jiangxi 341001, P.R. China
| |
Collapse
|
13
|
Block H, Rossaint J, Zarbock A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022; 11:1919. [PMID: 35741047 PMCID: PMC9222025 DOI: 10.3390/cells11121919] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.
Collapse
Affiliation(s)
| | | | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (H.B.); (J.R.)
| |
Collapse
|
14
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
15
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
16
|
Aoyama J, Osaka M, Deushi M, Hosoya S, Ishigami A, Maehara T, Yoshida M. CXCL1-Triggered PAD4 Cytoplasmic Translocation Enhances Neutrophil Adhesion through Citrullination of PDIA1. J Atheroscler Thromb 2021; 29:1307-1318. [PMID: 34880166 PMCID: PMC9444809 DOI: 10.5551/jat.63237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aims: Vascular inflammation is critical for the development and progression of atherosclerosis. Previously, we reported that neutrophils adhere to the vascular endothelium in low-density lipoprotein receptor null mice fed a high-fat diet through hypercitrullination of histone H3 by peptidylarginine deiminase 4 (PAD4) in neutrophils. However, the involvement of PAD4 and citrullination of proteins other than histone H3 in neutrophil adhesion is not well known. In this study, we investigated the function of PAD4 and identified citrullinated proteins during vascular inflammation.
Methods: We pefformed flow assay under physiological flow conditions using differentiated HL-60 (dHL-60) cells stimulated with CXCL1 and human umbilical vein endothelial cells (HUVECs). Furthermore, phalloidin stain for dHL-60 stimulated with CXCL1 to observe F-actin polymerization and immunohistochemistry for the activated β2-integrin was conducted. To identify a target of citrullination in the cytoplasm of dHL-60 cells, liquid chromatography-mass spectrometry (LC-MS/MS) for dHL-60 stimulated with CXCL1 was performed.
Results: Inhibition or knockdown of PAD4 significantly decreased adhesion of under physiological flow conditions. Thr-Asp-F-amidine trifluoroacetate salt (TDFA), a PAD4 inhibitor, inhibited cytoplasmic translocation of PAD4 by CXCL1. TDFA or knockdown of PAD4 significantly decreased expression of β2-integrin and F-actin polymerization activated by CXCL1. Moreover, LC-MS/MS identified protein disulfide isomerase A1 (PDIA1) as a target of citrullination in the cytoplasm of dHL-60 cells. Knockdown of PDIA1 significantly decreased adhesion of dHL-60 cells to HUVECs, expression of β2-integrin, and F-actin polymerization.
Conclusions: Cytoplasmic translocation of PAD4 by CXCL1 induces neutrophil adhesion to vascular endothelial cells and citrullination of PDIA1.
Collapse
Affiliation(s)
- Jiro Aoyama
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University.,Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Michiyo Deushi
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Shoichi Hosoya
- Research Core, Research Facility Cluster, Institute of Research, Tokyo Medical and Dental University
| | - Akihito Ishigami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology
| | - Taketoshi Maehara
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
17
|
Reid S, Scholey JW. Recent Approaches to Targeting Canonical NF κB Signaling in the Early Inflammatory Response to Renal IRI. J Am Soc Nephrol 2021; 32:2117-2124. [PMID: 34108233 PMCID: PMC8729839 DOI: 10.1681/asn.2021010069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is the most common cause of in-hospital AKI and is associated with increased morbidity and mortality. IRI is associated with an early phase of inflammation primarily regulated by the canonical NFκB signaling pathway. Despite recent advances in our understanding of the pathogenesis of IRI, few therapeutic strategies have emerged. The purpose of this manuscript is to review interventions targeting NFκB after IRI.
Collapse
Affiliation(s)
- Shelby Reid
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - James W. Scholey
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
19
|
Abstract
BACKGROUND The peptidylarginine deiminase (PAD) family converts arginine into citrulline through protein citrullination. PAD2 and PAD4 inhibitors can improve survival in hemorrhagic shock (HS). However, the impact of isoform-specific PAD inhibition in improving survival has not been studied. In this study, we utilize selective Pad2 knockout mice to elucidate loss of function of PAD2 leads to pro-survival effect in HS. METHODS HS: Pad2 and wild-type (WT) mice (n = 5/group) were subjected to lethal HS (55% volume hemorrhage). Survival was monitored over 7 days. Myocardial infarction (MI): Pad2 and WT mice (n = 9/group) were subjected to MI by permanent LAD ligation to examine the effect of ischemia on the heart. After 24 h cardiac function and infarct size were measured. RESULTS HS: Pad2 mice demonstrated 100% survival compared with 0% for WT mice (P = 0.002). In a sub-lethal HS model, cardiac β-catenin levels were higher in Pad2 compared with WT after 24 h. MI: WT mice demonstrated larger MI (75%) compared with Pad2 (60%) (P < 0.05). Pad2 had significantly higher ejection fraction and fractional shortening compared with WT (P < 0.05). CONCLUSIONS Pad2 improves survival in lethal HS. Possible mechanisms by which loss of PAD2 function improves survival include the activation of cell survival pathways, improved tolerance of cardiac ischemia, and improved cardiac function during ischemia. PAD2 is promising as a future therapeutic target for the treatment of HS and cardiac ischemia.
Collapse
|
20
|
Wang LL, Song YP, Mi JH, Ding ML. Peptidyl arginine deiminase 4 and its potential role in Alzheimer's disease. Med Hypotheses 2020; 146:110466. [PMID: 33412502 DOI: 10.1016/j.mehy.2020.110466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the main cause of dementia, and its pathogenesis is still not clear. Peptidyl arginine deiminases 4(PAD4) as one of the important members of PAD family, is the only protein with nuclear transfer function, it can regulate the expression of many proteins through citrullinating histone. PAD4 can also interact with many transcription factors, involved in regulating gene expression. PAD4 expression is closely related to the inflammatory factors secreted, cell autophagy, tumorigenesis and other neurodegenerative diseases. More importantly, PAD4 and its citrullinated protein were found in cortical and hippocampal neurons of AD patients. To study the expression and regulatory pathway of PAD4 in vivo and in vitro experiments on AD may be of helpful to elucidate the pathogenesis of AD. Meanwhile, detection of anti-citrullinated antibody will have potential value as novel biomarkers of AD.
Collapse
Affiliation(s)
- Li-Ling Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Ye-Ping Song
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Jian-Hua Mi
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Meng-Lei Ding
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, 200120, China.
| |
Collapse
|
21
|
Han SJ, Williams RM, Kim M, Heller DA, D'Agati V, Schmidt-Supprian M, Lee HT. Renal proximal tubular NEMO plays a critical role in ischemic acute kidney injury. JCI Insight 2020; 5:139246. [PMID: 32941183 PMCID: PMC7566738 DOI: 10.1172/jci.insight.139246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
We determined that renal proximal tubular (PT) NF-κB essential modulator (NEMO) plays a direct and critical role in ischemic acute kidney injury (AKI) using mice lacking renal PT NEMO and by targeted renal PT NEMO inhibition with mesoscale nanoparticle-encapsulated NEMO binding peptide (NBP MNP). We subjected renal PT NEMO-deficient mice, WT mice, and C57BL/6 mice to sham surgery or 30 minutes of renal ischemia and reperfusion (IR). C57BL/6 mice received NBP MNP or empty MNP before renal IR injury. Mice treated with NBP MNP and mice deficient in renal PT NEMO were protected against ischemic AKI, having decreased renal tubular necrosis, inflammation, and apoptosis compared with control MNP-treated or WT mice, respectively. Recombinant peptidylarginine deiminase type 4 (rPAD4) targeted kidney PT NEMO to exacerbate ischemic AKI in that exogenous rPAD4 exacerbated renal IR injury in WT mice but not in renal PT NEMO-deficient mice. Furthermore, rPAD4 upregulated proinflammatory cytokine mRNA and NF-κB activation in freshly isolated renal proximal tubules from WT mice but not from PT NEMO-deficient mice. Taken together, our studies suggest that renal PT NEMO plays a critical role in ischemic AKI by promoting renal tubular inflammation, apoptosis, and necrosis.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Ryan M Williams
- Department of Biomedical Engineering, City College of New York, New York, New York, USA
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Daniel A Heller
- Department of Molecular Pharmacology & Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University Munich, Munich, Germany
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
22
|
Sex-dependent mechanisms involved in renal tolerance to ischemia-reperfusion: Role of inflammation and histone H3 citrullination. Transpl Immunol 2020; 63:101331. [PMID: 32890741 DOI: 10.1016/j.trim.2020.101331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022]
Abstract
Ischemia-reperfusion (I/R) injury, an inevitable result of kidney transplantation, triggers early inflammatory events that affect graft viability. Evidence from human transplantation and preclinical models of I/R suggests that a female hormonal environment positively influences the ability to recover from ischemic injury. However, the mechanisms behind these effects remain mostly unexplored. Here, we studied the influence of sex on pro-inflammatory mediators involved in the pathophysiology of acute I/R injury in male, female, and female ovariectomized (OVX) Wistar rats that underwent unilateral renal ischemia for 45 min, followed by 24 h of reperfusion. We found improved renal function, reduced cytokine expression, and decreased infiltration of myeloperoxidase-positive cells in females after I/R, when compared to their male and female OVX counterparts. Remarkably, citrullination of histone H3 was exacerbated in serum and renal tubules of females after I/R. In contrast, we observed lower levels of citrullinated histone H3 in male and female OVX rats in response to I/R, mostly in neutrophil extracellular traps. Our results demonstrate that female sex promotes renal I/R tolerance by attenuating pro-inflammatory mediators involved in I/R-induced damage.
Collapse
|
23
|
Tang PCT, Zhang YY, Chan MKK, Lam WWY, Chung JYF, Kang W, To KF, Lan HY, Tang PMK. The Emerging Role of Innate Immunity in Chronic Kidney Diseases. Int J Mol Sci 2020; 21:ijms21114018. [PMID: 32512831 PMCID: PMC7312694 DOI: 10.3390/ijms21114018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common fate of chronic kidney diseases. Emerging studies suggest that unsolved inflammation will progressively transit into tissue fibrosis that finally results in an irreversible end-stage renal disease (ESRD). Renal inflammation recruits and activates immunocytes, which largely promotes tissue scarring of the diseased kidney. Importantly, studies have suggested a crucial role of innate immunity in the pathologic basis of kidney diseases. This review provides an update of both clinical and experimental information, focused on how innate immune signaling contributes to renal fibrogenesis. A better understanding of the underlying mechanisms may uncover a novel therapeutic strategy for ESRD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Winson Wing-Yin Lam
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (M.K.-K.C.); (J.Y.-F.C.); (W.W.-Y.L.); (W.K.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
24
|
Pan LL, Liang W, Ren Z, Li C, Chen Y, Niu W, Fang X, Liu Y, Zhang M, Diana J, Agerberth B, Sun J. Cathelicidin-related antimicrobial peptide protects against ischaemia reperfusion-induced acute kidney injury in mice. Br J Pharmacol 2020; 177:2726-2742. [PMID: 31976546 DOI: 10.1111/bph.14998] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite recent advances in understanding its pathophysiology, treatment of acute kidney injury (AKI) remains a major unmet medical need, and novel therapeutic strategies are needed. Cathelicidin-related antimicrobial peptide (CRAMP) with immunomodulatory properties has an emerging role in various disease contexts. Here, we aimed to investigate the role of CRAMP and its underlying mechanisms in AKI. EXPERIMENTAL APPROACH The human homologue LL-37 and CRAMP were measured in blood samples of AKI patients and in experimental AKI mice respectively. Experimental AKI was induced in wild-type and CRAMP-deficient (Cnlp-/- ) mice by ischaemia/reperfusion (I/R). Therapeutic evaluation of CRAMP was performed with exogenous CRAMP (5 mg·kg-1 , i.p.) treatment. KEY RESULTS Cathelicidin expression was inversely related to clinical signs in patients and down-regulated in renal I/R-induced injury in mice. Cnlp-/- mice exhibited exacerbated I/R-induced renal dysfunction, aggravated inflammatory responses and apoptosis. Moreover, over-activation of the NLRP3 inflammasome in Cnlp-/- mice was associated with I/R-induced renal injury. Exogenous CRAMP treatment markedly attenuated I/R-induced renal dysfunction, inflammatory response and apoptosis, correlated with modulation of immune cell infiltration and phenotype. Consistent with Cnlp-/- mouse data, CRAMP administration suppressed renal I/R-induced NLRP3 inflammasome activation, and its renal protective effects were mimicked by a specific NLRP3 inhibitor CY-09. The reno-protective and NLRP3 inhibitory effects of CRAMP required the EGF receptor. CONCLUSION AND IMPLICATIONS Our results suggest that CRAMP acts as a novel immunomodulatory mediator of AKI and modulation of CRAMP may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenjie Liang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengnan Ren
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chunqing Li
- Department of Nephrology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Chen
- Department of Nephrology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenying Niu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Fang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanyan Liu
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Zhang
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1151, Institute Necker-Enfants Malades (INEM), Centre National de la Recherche Scienctifique, Unité 8253, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, F68, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jia Sun
- Laboratory of Nutritional Immunology and Translational Medicine, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Han SJ, Lee HT. Mechanisms and therapeutic targets of ischemic acute kidney injury. Kidney Res Clin Pract 2019; 38:427-440. [PMID: 31537053 PMCID: PMC6913588 DOI: 10.23876/j.krcp.19.062] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) due to renal ischemia reperfusion (IR) is a major clinical problem without effective therapy and is a significant and frequent cause of morbidity and mortality during the perioperative period. Although the pathophysiology of ischemic AKI is not completely understood, several important mechanisms of renal IR-induced AKI have been studied. Renal ischemia and subsequent reperfusion injury initiates signaling cascades mediating renal cell necrosis, apoptosis, and inflammation, leading to AKI. Better understanding of the molecular and cellular pathophysiological mechanisms underlying ischemic AKI will provide more targeted approach to prevent and treat renal IR injury. In this review, we summarize important mechanisms of ischemic AKI, including renal cell death pathways and the contribution of endothelial cells, epithelial cells, and leukocytes to the inflammatory response during ischemic AKI. Additionally, we provide some updated potential therapeutic targets for the prevention or treatment of ischemic AKI, including Toll-like receptors, adenosine receptors, and peptidylarginine deiminase 4. Finally, we propose mechanisms of ischemic AKI-induced liver, intestine, and kidney dysfunction and systemic inflammation mainly mediated by Paneth cell degranulation as a potential explanation for the high mortality observed with AKI.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Topdağı Ö, Tanyeli A, Akdemir FNE, Eraslan E, Güler MC, Çomaklı S. Preventive effects of fraxin on ischemia/reperfusion-induced acute kidney injury in rats. Life Sci 2019; 242:117217. [PMID: 31884094 DOI: 10.1016/j.lfs.2019.117217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
AIM Kidney ischemia reperfusion (IR) injury is an important health problem resulting in acute kidney failure. The oxidative stress and inflammatory process are the underlying mechanisms of IR injury. It has been purposed in this study to research the possible protective effects of fraxin on kidney injury induced by IR. MATERIAL AND METHODS 32 Sprague Dawley male rats were divided into 4 groups. The groups were organized as follows; sham, IR, IR + fraxin 10 mg/kg, and IR + 50 mg/kg fraxin groups. Some oxidant, antioxidant and inflammatory parameters were evaluated in kidney tissues removed at the end of our experimental study. KEY FINDINGS It was detected that the oxidant and proinflammatory markers increased and antioxidant parameters decreased in IR group but the results significantly reversed in treatment groups compared to IR group. And also, 8-OHdG, NF-κB, HAVCR1 immunopositivities were at severe levels and these results attenuated in IR fraxin + 10 mg/kg, and IR + fraxin 50 mg/kg groups. SIGNIFICANCE These presented results have shown that fraxin performed protective effects against kidney injury induced by IR.
Collapse
Affiliation(s)
- Ömer Topdağı
- Department of Internal Medicine, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Fazile Nur Ekinci Akdemir
- Department of Nutrition and Dietetics, High School of Health, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey.
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
27
|
Du M, Yang W, Schmull S, Gu J, Xue S. Inhibition of peptidyl arginine deiminase-4 protects against myocardial infarction induced cardiac dysfunction. Int Immunopharmacol 2019; 78:106055. [PMID: 31816575 DOI: 10.1016/j.intimp.2019.106055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Peptidyl arginine deiminase-4 (PAD4), a PAD enzyme family member, catalyzes the posttranslational conversion of arginine residues to citrulline in target proteins. Although PAD4 is believed to play a crucial role in various pathological conditions such as infectious diseases, autoimmune diseases, and ischemic conditions, the effect of PAD4 in myocardial infarction (MI)-induced cardiac injury remains to be examined. Here, we hypothesize that PAD4 contributes to cardiac ischemic injury by exacerbating the inflammatory response and promoting neutrophil extracellular trap (NET) formation after MI. Permanent left coronary artery ligation, a condition that mimics MI, was performed on male C57BL/6 mice. [(3S,4R)-3-amino-4-hydroxy-1-piperidinyl] [2-[1-(cyclopropylmethyl)-1H-indol-2-yl]-7-methoxy-1-methyl-1H-benzimidazol-5-yl]-methanone (GSK484), an inhibitor of PAD4, was delivered via intraperitoneal injection to inhibit PAD4 activity. Cardiac PAD4 expression, tissue injury scoring, neutrophil infiltration, cit-H3 expression, NET formation, inflammatory cytokine secretion, apoptosis, and cardiac function were analyzed. In the current study, we discovered the protective effect of PAD4 inhibition using the PAD4-specific inhibitor GSK484 in cardiomyocytes challenged by MI. GSK484-mediated PAD4 inhibition can moderately preserve ventricle histological structure and myocardium integrity after MI, thereby reducing the infarct size and decreasing myocardial enzyme levels in serum. PAD4 inhibition also effectively protects cardiomyocytes from MI-induced NET formation and inflammatory cytokine secretion, in turn alleviating cardiac ischemia-induced apoptosis of cardiomyocytes. Collectively, these findings demonstrate the efficacy of specific PAD4 inhibition in reducing MI-induced neutrophil infiltration, NET formation, inflammatory reaction, and cardiomyocyte apoptosis, thereby increasing overall cardiac function improvement. These results provide novel insights for the development of new strategies to treat cardiovascular dysfunction in MI patients.
Collapse
Affiliation(s)
- Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wengang Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Sebastian Schmull
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jianmin Gu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
28
|
Liu H, Chen Z, Weng X, Chen H, Du Y, Diao C, Liu X, Wang L. Enhancer of zeste homolog 2 modulates oxidative stress-mediated pyroptosis in vitro and in a mouse kidney ischemia-reperfusion injury model. FASEB J 2019; 34:835-852. [PMID: 31914694 DOI: 10.1096/fj.201901816r] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a well-known methyltransferase, mediates histone H3 lysine 27 trimethylation (H3K27me3) and plays a crucial role in several kidney disease models. However, its role in renal ischemia/reperfusion (I/R) injury still remains unclear. In this study, we found that EZH2 was positively related to renal I/R injury and inhibition of EZH2 with DZNeP alleviated I/R injury and blocked the activation of oxidative stress and pyroptosis in vivo. Similarly, inhibition of EZH2 with either DZNeP or si-RNA also exerted an inhibitory effect on hypoxia/reoxygenation (H/R)-induced oxidative stress and pyroptosis in vitro. Moreover, further study revealed that ablation of reactive oxygen species (ROS) with N-acetyl-cysteine (NAC) suppressed pyroptosis in human renal proximal tubular epithelial cell line cells exposed to H/R stimulation. Furthermore, Nox4, which was positively related to the generation of ROS, was upregulated during H/R process, while it could be reversed by EZH2 inhibition. Consistently, Nox4-mediated ROS generation was attenuated upon inhibition of EZH2 with DZNeP or si-RNA. Additionally, the transcriptional activity of Nox4 was enhanced by the activation of ALK5/Smad2/3 signaling pathway, which was abolished by ALK5 knockdown in vitro. Finally, EZH2 inhibition blocked H/R and I/R-activated ALK5/Smad2/3 pathway and also resulted in an obvious decrease in the transcriptional activity and protein expression levels of Nox4. In conclusion, our results proved that EZH2 inhibition alleviated renal pyroptosis by blocking Nox4-dependent ROS generation through ALK5/Smad2/3 signaling pathway, indicating that EZH2 could be a potential therapeutic target for renal I/R injury.
Collapse
Affiliation(s)
- Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Changhui Diao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
29
|
Sun B, Chang HH, Salinger A, Tomita B, Bawadekar M, Holmes CL, Shelef MA, Weerapana E, Thompson PR, Ho IC. Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight 2019; 4:129687. [PMID: 31723060 DOI: 10.1172/jci.insight.129687] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulated citrullination, a unique form of posttranslational modification catalyzed by the peptidylarginine deiminases (PADs), has been observed in several human diseases, including rheumatoid arthritis. However, the physiological roles of PADs in the immune system are still poorly understood. Here, we report that global inhibition of citrullination enhances the differentiation of type 2 helper T (Th2) cells but attenuates the differentiation of Th17 cells, thereby increasing the susceptibility to allergic airway inflammation. This effect on Th cells is due to inhibition of PAD2 but not PAD4. Mechanistically, PAD2 directly citrullinates GATA3 and RORγt, 2 key transcription factors determining the fate of differentiating Th cells. Citrullination of R330 of GATA3 weakens its DNA binding ability, whereas citrullination of 4 arginine residues of RORγt strengthens its DNA binding. Finally, PAD2-deficient mice also display altered Th2/Th17 immune response and heightened sensitivity to allergic airway inflammation. Thus, our data highlight the potential and caveat of PAD2 as a therapeutic target of Th cell-mediated diseases.
Collapse
Affiliation(s)
- Bo Sun
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hui-Hsin Chang
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Ari Salinger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Beverly Tomita
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Caitlyn L Holmes
- Department of Medicine and.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miriam A Shelef
- Department of Medicine and.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - I-Cheng Ho
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Piperine pretreatment attenuates renal ischemia-reperfusion induced liver injury. Heliyon 2019; 5:e02180. [PMID: 31463384 PMCID: PMC6706586 DOI: 10.1016/j.heliyon.2019.e02180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Remote organ injury is one of the complications which are developed following ischemia-reperfusion induced acute kidney injury (AKI), dramatically increasing its mortality rate. The aim of the present study was to investigate the effect of piperine pretreatment on liver dysfunction following ischemia-reperfusion induced AKI. Materials and methods Acute kidney injury was induced by 30 min-bilateral renal ischemia followed by 24 h of reperfusion. To investigate liver damages, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) enzymes were measured in plasma. In order to study oxidative stress, malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) levels were measured. Furthermore, the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA along with infiltration of leukocytes in the liver tissue was measured for inflammation assessment. Histopathological damages were studied through measuring the extent of cellular fibrosis, sinusoidal dilatation, and vascular congestion in liver tissue. Results Following acute kidney injury, AST, ALT, and ALP levels in plasma, MDA level and ICAM-1 expression in the liver tissue, infiltration of leukocytes into the interstitium, and hepatic histopathologic damages increased significantly, while FRAP decreased. Pretreatment with piperine at 10 and 20 mg/kg body weight was able to improve these damages, such that some of them reached its value in the sham group, though piperine in the 20 mg/kg was more effective. Conclusions The results of this study suggest that ischemia-reperfusion induced AKI result in hepatic damages, and pretreatment with piperine can prevent development of these damages through its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
31
|
Salazar-Gonzalez H, Zepeda-Hernandez A, Melo Z, Saavedra-Mayorga DE, Echavarria R. Neutrophil Extracellular Traps in the Establishment and Progression of Renal Diseases. ACTA ACUST UNITED AC 2019; 55:medicina55080431. [PMID: 31382486 PMCID: PMC6722876 DOI: 10.3390/medicina55080431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
Abstract
Uncontrolled inflammatory and immune responses are often involved in the development of acute and chronic forms of renal injury. Neutrophils are innate immune cells recruited early to sites of inflammation, where they produce pro-inflammatory cytokines and release mesh-like structures comprised of DNA and granular proteins known as neutrophil extracellular traps (NETs). NETs are potentially toxic, contribute to glomerular injury, activate autoimmune processes, induce vascular damage, and promote kidney fibrosis. Evidence from multiple studies suggests that an imbalance between production and clearance of NETs is detrimental for renal health. Hence strategies aimed at modulating NET-associated processes could have a therapeutic impact on a myriad of inflammatory diseases that target the kidney. Here, we summarize the role of NETs in the pathogenesis of renal diseases and their mechanisms of tissue damage.
Collapse
Affiliation(s)
- Hector Salazar-Gonzalez
- Decanato de Ciencia y Tecnología, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | | | - Zesergio Melo
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Mexico
| | - Diego Eduardo Saavedra-Mayorga
- Facultad de Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Raquel Echavarria
- CONACyT-Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Mexico.
| |
Collapse
|
32
|
Nakazawa D, Marschner JA, Platen L, Anders HJ. Extracellular traps in kidney disease. Kidney Int 2019; 94:1087-1098. [PMID: 30466565 DOI: 10.1016/j.kint.2018.08.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
During the past decade the formation of neutrophil extracellular traps (NETs) has been recognized as a unique modality of pathogen fixation (sticky extracellular chromatin) and pathogen killing (cytotoxic histones and proteases) during host defense, as well as collateral tissue damage. Numerous other triggers induce NET formation in multiple forms of sterile inflammation, including thrombosis, gout, obstruction of draining ducts, and trauma. Whether neutrophils always die along with NET release, and if they do die, how, remains under study and is most likely context dependent. In certain settings, neutrophils release NETs while undergoing regulated necrosis-for example, necroptosis. NETs and extracellular traps (ETs) released by macrophages also have been well documented in kidney diseases-for example, in various forms of acute kidney injury. Histones released from ETs and other sources are cytotoxic and elicit inflammation, contributing to necroinflammation of the early-injury phase of acute tubular necrosis in antineutrophil cytoplasmic antibody-related renal vasculitis, anti-glomerular basement membrane disease, lupus nephritis, and thrombotic microangiopathies. Finally, acute kidney injury-related releases of dying renal cells or ETs promote remote organ injuries-for example, acute respiratory distress syndrome. In this review, we summarize what is known about the release of ETs from neutrophils and macrophages in the kidney, the available experimental evidence, and ongoing discussions in the field.
Collapse
Affiliation(s)
- Daigo Nakazawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Julian A Marschner
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Louise Platen
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany.
| |
Collapse
|
33
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
34
|
Rabadi MM, Han SJ, Kim M, D'Agati V, Lee HT. Peptidyl arginine deiminase-4 exacerbates ischemic AKI by finding NEMO. Am J Physiol Renal Physiol 2019; 316:F1180-F1190. [PMID: 30943066 DOI: 10.1152/ajprenal.00089.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptidyl arginine deiminase-4 (PAD4) catalyzes the conversion of peptidylarginine residues to peptidylcitrulline. We have previously shown that kidney ischemia-reperfusion (I/R) injury increases renal proximal tubular PAD4 expression and activity. Furthermore, kidney PAD4 plays a critical role in ischemic acute kidney injury (AKI) by promoting renal tubular inflammation, neutrophil infiltration, and NF-κB activation. However, the mechanisms of PAD4-mediated renal tubular inflammation and NF-κB activation after I/R remain unclear. Here, we show that recombinant PAD4 preferentially citrullinates recombinant IKKγ [also called NF-κB essential modulator (NEMO)] over recombinant IKKα or IKKβ. Consistent with this finding, PAD4 citrullinated renal proximal tubular cell IKKγ and promoted NF-κB activation via IκBα phosphorylation in vitro. NEMO inhibition with a selective NEMO-binding peptide attenuated PAD4-mediated proinflammatory cytokine mRNA induction in HK-2 cells. Moreover, NEMO inhibition did not affect proximal tubular cell survival, proliferation, or apoptosis, unlike global NF-κB inhibition. In vivo, NEMO-binding peptide treatment protected against ischemic AKI. Finally, NEMO-binding peptide attenuated recombinant PAD4-mediated exacerbation of ischemic AKI, renal tubular inflammation, and apoptosis. Taken together, our results show that PAD4 exacerbates ischemic AKI and inflammation by promoting renal tubular NF-κB activity and inflammation via NEMO citrullination. Targeting NEMO activation may serve as a potential therapy for this devastating clinical problem.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
35
|
Zhu M, Wang L, Yang J, Xie K, Zhu M, Liu S, Xu C, Wang J, Gu L, Ni Z, Xu G, Che M. Erythropoietin Ameliorates Lung Injury by Accelerating Pulmonary Endothelium Cell Proliferation via Janus Kinase-Signal Transducer and Activator of Transcription 3 Pathway After Kidney Ischemia and Reperfusion Injury. Transplant Proc 2019; 51:972-978. [PMID: 30979490 DOI: 10.1016/j.transproceed.2019.01.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Kidney ischemia and reperfusion injury could cause microvascular barrier dysfunction, lung inflammatory cascades activation, and programmed cell death of pulmonary endothelium, leading to acute lung injury. Our study aimed at determining whether erythropoietin (EPO) can ameliorate lung dysfunction following renal ischemia and reperfusion (IR) injury and explored the underlying mechanisms. METHODS In vivo, C57BL/6 mice received EPO (6000 U/kg) before right renal vascular pedicles clamping for 30 minutes, followed by 24 hours of reperfusion. The lung histopathologic changes and inflammatory cytokines expression were assessed. In vitro, cultured human umbilical vein endothelial cells were treated with EPO, and apoptosis rate, proliferation capacity, and phosphorylation status of the Janus kinase-signal transducer and activator of transcription 3 (Jak-STAT3) pathway were measured respectively in the presence or absence of lipopolysaccharide stimulation. RESULTS In vivo, EPO remarkably attenuated pulmonary interstitial and alveolar epithelial edema caused by renal IR injury. In vitro, the proliferation capacity of human umbilical vein endothelial cells was significantly increased under EPO stimulation, which correlated with changes in Jak-STAT3 signaling. CONCLUSION Our data indicated that EPO is able to ameliorate acute lung tissue damage induced by renal IR, and at least in part, via the Jak-STAT3 pathway.
Collapse
Affiliation(s)
- M Zhu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - L Wang
- Department of Emergency, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - K Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - M Zhu
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - S Liu
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - C Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J Wang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - L Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Z Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - G Xu
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - M Che
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
36
|
Xu M, Shi H, Liu D. Chrysin protects against renal ischemia reperfusion induced tubular cell apoptosis and inflammation in mice. Exp Ther Med 2019; 17:2256-2262. [PMID: 30867710 PMCID: PMC6395967 DOI: 10.3892/etm.2019.7189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Renal ischemia reperfusion (IR) is a major cause of acute kidney injury with no effective treatment. Chrysin is an anti-inflammatory, anti-oxidant and anti-cancer agent. However, the effect of chrysin on renal IR injury remains unknown. In this study, sham operation, IR and IR+chrysin group mice were treated with or without renal IR injury. For renal IR, bilateral renal pedicles were clamped for 30 min and then released for 48 h of reperfusion. Blood and kidney samples were collected for analysis. Results demonstrated that chrysin pretreatment remarkably decreased the levels of serum creatinine and blood urea nitrogen and attenuated morphological abnormalities in renal IR injury. Consistently, tubular cell apoptosis and inflammation were more attenuated in the chrysin pretreatment group compared with the IR group. Chrysin pretreatment decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl-2 in renal IR injury. Furthermore, chrysin administration decreased the mRNA and protein levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Furthermore, the IκBα/nuclear factor-κB signaling pathway was more suppressed in the chrysin pretreatment group compared with the IR group. In conclusion, chrysin protects against tubular cell apoptosis and inflammation in renal IR injury.
Collapse
Affiliation(s)
- Mingwei Xu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hongbo Shi
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Dongcao Liu
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
37
|
Liu J, Dong Z. Neutrophil extracellular traps in ischemic AKI: new way to kill. Kidney Int 2018; 93:303-305. [PMID: 29389395 DOI: 10.1016/j.kint.2017.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/28/2017] [Indexed: 01/21/2023]
Abstract
Neutrophil extracellular traps, originally discovered as a mechanism to combat microbial infection, have recently been implicated in tissue damage including acute kidney injury. Raup-Konsavage et al. now present further insights to demonstrate a critical role of neutrophil peptidyl arginine deiminase-4 in the formation of neutrophil extracellular trap, inflammation, and tissue damage in ischemic acute kidney infection. Targeting peptidyl arginine deiminase-4 and/or neutrophil extracellular trap may offer a new therapeutic strategy for acute kidney infection.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, USA.
| |
Collapse
|
38
|
Lee SA, Cozzi M, Bush EL, Rabb H. Distant Organ Dysfunction in Acute Kidney Injury: A Review. Am J Kidney Dis 2018; 72:846-856. [PMID: 29866457 DOI: 10.1053/j.ajkd.2018.03.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) is common in critically ill patients and is associated with increased morbidity and mortality. Dysfunction of other organs is an important cause of poor outcomes from AKI. Ample clinical and epidemiologic data show that AKI is associated with distant organ dysfunction in lung, heart, brain, and liver. Recent advancements in basic and clinical research have demonstrated physiologic and molecular mechanisms of distant organ interactions in AKI, including leukocyte activation and infiltration, generation of soluble factors such as inflammatory cytokines/chemokines, and endothelial injury. Oxidative stress and production of reactive oxygen species, as well as dysregulation of cell death in distant organs, are also important mechanism of AKI-induced distant organ dysfunction. This review updates recent clinical and experimental findings on organ crosstalk in AKI and highlights potential molecular mechanisms and therapeutic targets to improve clinical outcomes during AKI.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Yonsei University College of Medicine, Seoul, South Korea
| | - Martina Cozzi
- Department of Nephrology and Dialysis, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Errol L Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
39
|
Han SJ, Li H, Kim M, Shlomchik MJ, Lee HT. Kidney Proximal Tubular TLR9 Exacerbates Ischemic Acute Kidney Injury. THE JOURNAL OF IMMUNOLOGY 2018; 201:1073-1085. [PMID: 29898963 DOI: 10.4049/jimmunol.1800211] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
Abstract
The role for kidney TLR9 in ischemic acute kidney injury (AKI) remains unclear. In this study, we tested the hypothesis that renal proximal tubular TLR9 activation exacerbates ischemic AKI by promoting renal tubular epithelial apoptosis and inflammation. To test this hypothesis, we generated mice lacking TLR9 in renal proximal tubules (TLR9fl/fl PEPCK Cre mice). Contrasting previous studies in global TLR9 knockout mice, mice lacking renal proximal tubular TLR9 were protected against renal ischemia/reperfusion (IR) injury, with reduced renal tubular necrosis, inflammation (decreased proinflammatory cytokine synthesis and neutrophil infiltration), and apoptosis (decreased DNA fragmentation and caspase activation) when compared with wild-type (TLR9fl/fl) mice. Consistent with this, a selective TLR9 agonist oligonucleotide 1668 exacerbated renal IR injury in TLR9fl/fl mice but not in renal proximal tubular TLR9-null mice. Furthermore, in cultured human and mouse proximal tubule cells, TLR9-selective ligands induced NF-κB activation, proinflammatory cytokine mRNA synthesis, as well as caspase activation. We further confirm in the present study that global TLR9 deficiency had no impact on murine ischemic AKI. Taken together, our studies show that renal proximal tubular TLR9 activation exacerbates ischemic AKI by promoting renal tubular inflammation, apoptosis as well as necrosis, after IR via NF-κB and caspase activation. Our studies further suggest the complex nature of TLR9 activation, as renal tubular epithelial TLR9 promotes cell injury and death whereas TLR9 signaling in other cell types may promote cytoprotective effects.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| |
Collapse
|
40
|
Li H, Han SJ, Kim M, Cho A, Choi Y, D'Agati V, Lee HT. Divergent roles for kidney proximal tubule and granulocyte PAD4 in ischemic AKI. Am J Physiol Renal Physiol 2018; 314:F809-F819. [PMID: 29357426 PMCID: PMC6031910 DOI: 10.1152/ajprenal.00569.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that kidney peptidylarginine deiminase-4 (PAD4) plays a critical role in ischemic acute kidney injury (AKI) in mice by promoting renal tubular inflammation and neutrophil infiltration (Ham A, Rabadi M, Kim M, Brown KM, Ma Z, D'Agati V, Lee HT. Am J Physiol Renal Physiol 307: F1052-F1062, 2014). Although the role of PAD4 in granulocytes including neutrophils is well known, we surprisingly observed profound renal proximal tubular PAD4 induction after renal ischemia-reperfusion (I/R) injury. Here we tested the hypothesis that renal proximal tubular PAD4 rather than myeloid-cell lineage PAD4 plays a critical role in exacerbating ischemic AKI by utilizing mice lacking PAD4 in renal proximal tubules (PAD4ff PEPCK Cre mice) or in granulocytes (PAD4ff LysM Cre mice). Mice lacking renal proximal tubular PAD4 were significantly protected against ischemic AKI compared with wild-type (PAD4ff) mice. Surprisingly, mice lacking PAD4 in myeloid cells were also protected against renal I/R injury although this protection was less compared with renal proximal tubular PAD4-deficient mice. Renal proximal tubular PAD4-deficient mice had profoundly reduced renal tubular apoptosis, whereas myeloid-cell PAD4-deficient mice showed markedly reduced renal neutrophil infiltration. Taken together, our studies suggest that both renal proximal tubular PAD4 as well as myeloid-cell lineage PAD4 play a critical role in exacerbating ischemic AKI. Renal proximal tubular PAD4 appears to contribute to ischemic AKI by promoting renal tubular apoptosis, whereas myeloid-cell PAD4 is preferentially involved in promoting neutrophil infiltration to the kidney and inflammation after renal I/R.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Ahyeon Cho
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Yewoon Choi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
41
|
Choi YJ, Zhou D, Barbosa ACS, Niu Y, Guan X, Xu M, Ren S, Nolin TD, Liu Y, Xie W. Activation of Constitutive Androstane Receptor Ameliorates Renal Ischemia-Reperfusion-Induced Kidney and Liver Injury. Mol Pharmacol 2018; 93:239-250. [PMID: 29351922 PMCID: PMC5801556 DOI: 10.1124/mol.117.111146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is associate with high mortality. Despite evidence of AKI-induced distant organ injury, a relationship between AKI and liver injury has not been clearly established. The goal of this study is to investigate whether renal ischemia-reperfusion (IR) can affect liver pathophysiology. We showed that renal IR in mice induced fatty liver and compromised liver function through the downregulation of constitutive androstane receptor (CAR; -90.4%) and inhibition of hepatic very-low-density lipoprotein triglyceride (VLDL-TG) secretion (-28.4%). Treatment of mice with the CAR agonist 1,4-bis[2-(3,5 dichloropyridyloxy)] benzene (TCPOBOP) prevented the development of AKI-induced fatty liver and liver injury, which was associated with the attenuation of AKI-induced inhibition of VLDL-TG secretion. The hepatoprotective effect of TCPOBOP was abolished in CAR-/- mice. Interestingly, alleviation of fatty liver by TCPOBOP also improved the kidney function, whereas CAR ablation sensitized mice to AKI-induced kidney injury and lethality. The serum concentrations of interleukin-6 (IL-6) were elevated by 27-fold after renal IR, but were normalized in TCPOBOP-treated AKI mice, suggesting that the increased release of IL-6 from the kidney may have mediated the AKI responsive liver injury. Taken together, our results revealed an interesting kidney-liver organ cross-talk in response to AKI. Given the importance of CAR in the pathogenesis of renal IR-induced fatty liver and impaired kidney function, fatty liver can be considered as an important risk factor for kidney injury, and a timely management of hepatic steatosis by CAR activation may help to restore kidney function in patients with AKI or kidney transplant.
Collapse
Affiliation(s)
- You-Jin Choi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Dong Zhou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Anne Caroline S Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Xiudong Guan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Thomas D Nolin
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Youhua Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| |
Collapse
|
42
|
Biron BM, Chung CS, Chen Y, Wilson Z, Fallon EA, Reichner JS, Ayala A. PAD4 Deficiency Leads to Decreased Organ Dysfunction and Improved Survival in a Dual Insult Model of Hemorrhagic Shock and Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1817-1828. [PMID: 29374076 PMCID: PMC5821587 DOI: 10.4049/jimmunol.1700639] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022]
Abstract
Indirect acute respiratory distress syndrome (iARDS) is caused by a nonpulmonary inflammatory process resulting from insults such as nonpulmonary sepsis. Neutrophils are thought to play a significant role in mediating ARDS, with the development of iARDS being characterized by dysregulation and recruitment of activated neutrophils into the lung. Recently, a novel mechanism of microbial killing by neutrophils was identified through the formation of neutrophil extracellular traps (NETs). NETs are composed of large webs of decondensed chromatin released from activated neutrophils into the extracellular space; they are regulated by the enzyme peptidylarginine deiminase 4 (PAD4) through mediation of chromatin decondensation via citrullination of target histones. Components of NETs have been implicated in ARDS. However, it is unknown whether there is any pathological significance of NET formation in ARDS caused indirectly by nonpulmonary insult. We subjected PAD4-/- mice and wild-type mice to a "two-hit" model of hypovolemic shock (fixed-pressure hemorrhage [Hem]) followed by septic cecal ligation and puncture (CLP) insult (Hem/CLP). Mice were hemorrhaged and resuscitated; 24 h after Hem, mice were then subjected to CLP. Overall, PAD4 deletion led to an improved survival as compared with wild-type mice. PAD4-/- mice displayed a marked decrease in neutrophil influx into the lung, as well decreased presence of proinflammatory mediators. PAD4-/- mice were also able to maintain baseline kidney function after Hem/CLP. These data taken together suggest PAD4-mediated NET formation contributes to the mortality associated with shock/sepsis and may play a role in the pathobiology of end organ injury in response to combined hemorrhage plus sepsis.
Collapse
Affiliation(s)
- Bethany M Biron
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Yaping Chen
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Zachary Wilson
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Jonathan S Reichner
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI 02903
| |
Collapse
|
43
|
The Peptidylarginine Deiminase Inhibitor Cl-Amidine Suppresses Inducible Nitric Oxide Synthase Expression in Dendritic Cells. Int J Mol Sci 2017; 18:ijms18112258. [PMID: 29077055 PMCID: PMC5713228 DOI: 10.3390/ijms18112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
The conversion of peptidylarginine into peptidylcitrulline by calcium-dependent peptidylarginine deiminases (PADs) has been implicated in the pathogenesis of a number of diseases, identifying PADs as therapeutic targets for various diseases. The PAD inhibitor Cl-amidine ameliorates the disease course, severity, and clinical manifestation in multiple disease models, and it also modulates dendritic cell (DC) functions such as cytokine production, antigen presentation, and T cell proliferation. The beneficial effects of Cl-amidine make it an attractive compound for PAD-targeting therapeutic strategies in inflammatory diseases. Here, we found that Cl-amidine inhibited nitric oxide (NO) generation in a time- and dose-dependent manner in maturing DCs activated by lipopolysaccharide (LPS). This suppression of NO generation was independent of changes in NO synthase (NOS) enzyme activity levels but was instead dependent on changes in inducible NO synthase (iNOS) transcription and expression levels. Several upstream signaling pathways for iNOS expression, including the mitogen-activated protein kinase, nuclear factor-κB p65 (NF-κB p65), and hypoxia-inducible factor 1 pathways, were not affected by Cl-amidine. By contrast, the LPS-induced signal transducer and the activator of transcription (STAT) phosphorylation and activator protein-1 (AP-1) transcriptional activities (c-Fos, JunD, and phosphorylated c-Jun) were decreased in Cl-amidine-treated DCs. Inhibition of Janus kinase/STAT signaling dramatically suppressed iNOS expression and NO production, whereas AP-1 inhibition had no effect. These results indicate that Cl-amidine-inhibited STAT activation may suppress iNOS expression. Additionally, we found mildly reduced cyclooxygenase-2 expression and prostaglandin E2 production in Cl-amidine-treated DCs. Our findings indicate that Cl-amidine acts as a novel suppressor of iNOS expression, suggesting that Cl-amidine has the potential to ameliorate the effects of excessive iNOS/NO-linked immune responses.
Collapse
|
44
|
Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int 2017; 93:365-374. [PMID: 29061334 DOI: 10.1016/j.kint.2017.08.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion is a common cause of acute kidney injury (AKI). However, mechanisms underlying the sudden loss in kidney function and tissue injury remain to be fully elucidated. Here, we investigated the role of peptidyl arginine deiminase-4 (PAD4), which converts arginine to citrulline and plays a role in epigenetic regulation and inflammation, in renal ischemia/reperfusion injury. PAD4 expression was highly induced in infiltrating leukocytes 24 hours following renal ischemia and reperfusion. This induction was accompanied by citrullination of histone H3 and formation of neutrophil extracellular traps in kidneys of wild-type mice. By contrast, PAD4-deficient mice did not form neutrophil extracellular traps, expressed lower levels of pro-inflammatory cytokines and were partially protected from renal ischemia/reperfusion-induced AKI. Furthermore, PAD4-deficient mice recovered kidney function 48 hours after ischemia/reperfusion, whereas kidney function in the wild-type mice progressively worsened. Administration of DNase I, which degrades neutrophil extracellular traps or the PAD-specific inhibitor YW3-56 before ischemia, partially prevented renal ischemia/reperfusion-induced AKI. Notably, transfer of neutrophils from wild-type, but not from PAD4-deficient mice, was sufficient to restore renal neutrophil extracellular trap formation and impair kidney function following renal ischemia/reperfusion. Thus, neutrophil PAD4 plays a pivotal role in renal ischemia/reperfusion-induced AKI.
Collapse
Affiliation(s)
| | - Yanming Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Wei Wei Wang
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Denis Feliers
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hong Ruan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - W Brian Reeves
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
45
|
Rabadi M, Kim M, Li H, Han SJ, Choi Y, D'Agati V, Lee HT. ATP induces PAD4 in renal proximal tubule cells via P2X7 receptor activation to exacerbate ischemic AKI. Am J Physiol Renal Physiol 2017; 314:F293-F305. [PMID: 29021225 DOI: 10.1152/ajprenal.00364.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that renal tubular peptidylarginine deiminase-4 (PAD4) is induced after ischemia-reperfusion (IR) injury and this induction of PAD4 exacerbates ischemic acute kidney injury (AKI) by promoting renal tubular inflammation and neutrophil infiltration. However, the mechanisms of renal tubular PAD4 induction after IR remain unknown. Here, we tested the hypothesis that ATP, a proinflammatory danger-associated molecular pattern (DAMP) ligand released from necrotic cells after IR injury, induces renal tubular PAD4 and exacerbates ischemic AKI via P2 purinergic receptor activation. ATP as well as ATPγS (a nonmetabolizable ATP analog) induced PAD4 mRNA, protein, and activity in human and mouse renal proximal tubule cells. Supporting the hypothesis that ATP induces renal tubular PAD4 via P2X7 receptor activation, A804598 (a selective P2X7 receptor antagonist) blocked the ATP-mediated induction of renal tubular PAD4 whereas BzATP (a selective P2X7 receptor agonist) mimicked the effects of ATP by inducing renal tubular PAD4 expression and activity. Moreover, ATP-mediated calcium influx in renal proximal tubule cells was blocked by A804598 and was mimicked by BzATP. P2X7 activation by BzATP also induced PAD4 expression and activity in mouse kidney in vivo. Finally, supporting a critical role for PAD4 in P2X7-mediated exacerbation of renal injury, BzATP exacerbated ischemic AKI in PAD4 wild-type mice but not in PAD4-deficient mice. Taken together, our studies show that ATP induces renal tubular PAD4 via P2X7 receptor activation to exacerbate renal tubular inflammation and injury after IR.
Collapse
Affiliation(s)
- May Rabadi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Mihwa Kim
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Hongmei Li
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Sang Jun Han
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Yewoon Choi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University , New York, New York
| | - H Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University , New York, New York
| |
Collapse
|
46
|
Qin C, Xiao C, Su Y, Zheng H, Xu T, Lu J, Luo P, Zhang J. Tisp40 deficiency attenuates renal ischemia reperfusion injury induced apoptosis of tubular epithelial cells. Exp Cell Res 2017; 359:138-144. [PMID: 28778797 DOI: 10.1016/j.yexcr.2017.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
Renal ischemia reperfusion (IR) is a major cause of acute kidney injury (AKI) and no effective treatments have been established. Tisp40 is a transcription factor of the CREB/ATF family and involves in cell apoptosis, proliferation and differentiation, but its role in renal IR remains unknown. Here, we investigated the role of Tisp40 in renal IR injury. In vivo, Tisp40 knockout (KO) and wild-type (WT) mice were subjected to thirty minutes of bilateral renal ischemia and 48h reperfusion, the blood and kidneys were harvested for analysis. In vitro, Tisp40 overexpression and vector cells were subjected to hypoxia/reoxygenation (HR), the apoptosis rate and the expressions of related proteins were measured. Following IR, the expressions of Tisp40 protein, serum creatinine (sCr), blood urea nitrogen (BUN) and apoptosis of tubular cells were significantly increased in WT mice. However, Tisp40 deficiency significantly attenuated the increase of sCr, BUN and apoptosis of tubular cells. Following HR, apoptosis of tubular cells was increased in Tisp40 overexpression cells compared with vector cells. Mechanistically, Tisp40 promoted the expressions of C/EBP homologous protein (CHOP), Bax and Cleaved caspase3 and suppressed the expression of Bcl-2 in renal IR injury. In conclusion, Tisp40 aggravates tubular cells apoptosis in renal IR injury.
Collapse
Affiliation(s)
- Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengcheng Xiao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haizhou Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pengcheng Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
47
|
Sun B, Dwivedi N, Bechtel TJ, Paulsen JL, Muth A, Bawadekar M, Li G, Thompson PR, Shelef MA, Schiffer CA, Weerapana E, Ho IC. Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα. Sci Immunol 2017; 2:eaal3062. [PMID: 28783661 PMCID: PMC5718838 DOI: 10.1126/sciimmunol.aal3062] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/12/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022]
Abstract
Many citrullinated proteins are known autoantigens in rheumatoid arthritis, a disease mediated by inflammatory cytokines, such as tumor necrosis factor-α (TNFα). Citrullinated proteins are generated by converting peptidylarginine to peptidylcitrulline, a process catalyzed by the peptidylarginine deiminases (PADs), including PAD1 to PAD4 and PAD6. Several major risk factors for rheumatoid arthritis are associated with heightened citrullination. However, the physiological role of citrullination in immune cells is poorly understood. We report that suppression of PAD activity attenuates Toll-like receptor-induced expression of interleukin-1β (IL-1β) and TNFα by neutrophils in vivo and in vitro but not their global transcription activity. Mechanistically, PAD4 directly citrullinates nuclear factor κB (NF-κB) p65 and enhances the interaction of p65 with importin α3, which brings p65 into the nucleus. The citrullination-enhanced interaction of p65 with importin α3 and its nuclear translocation and transcriptional activity can be attributed to citrullination of four arginine residues located in the Rel homology domain of p65. Furthermore, a rheumatoid arthritis-prone variant of PAD4, carrying three missense mutations, is more efficient in interacting with p65 and enhancing NF-κB activity. Together, these data not only demonstrate a critical role of citrullination in an NF-κB-dependent expression of IL-1β and TNFα but also provide a molecular mechanism by which heightened citrullination propagates inflammation in rheumatoid arthritis. Accordingly, attenuating p65-mediated production of IL-1β and TNFα by blocking the citrullination of p65 has great therapeutic potential in rheumatoid arthritis.
Collapse
Affiliation(s)
- Bo Sun
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Nishant Dwivedi
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Janet L Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron Muth
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mandar Bawadekar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gang Li
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison and William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - I-Cheng Ho
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|