1
|
Driendl S, Stadler S, Arzt M, Zeman F, Heid IM, Baumert M. Nocturnal hypoxemic burden and micro- and macrovascular disease in patients with type 2 diabetes. Cardiovasc Diabetol 2024; 23:195. [PMID: 38844945 PMCID: PMC11157751 DOI: 10.1186/s12933-024-02289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Micro- and macrovascular diseases are common in patients with type 2 diabetes mellitus (T2D) and may be partly caused by nocturnal hypoxemia. The study aimed to characterize the composition of nocturnal hypoxemic burden and to assess its association with micro- and macrovascular disease in patients with T2D. METHODS This cross-sectional analysis includes overnight oximetry from 1247 patients with T2D enrolled in the DIACORE (DIAbetes COhoRtE) study. Night-time spent below a peripheral oxygen saturation of 90% (T90) as well as T90 associated with non-specific drifts in oxygen saturation (T90non - specific), T90 associated with acute oxygen desaturation (T90desaturation) and desaturation depths were assessed. Binary logistic regression analyses adjusted for known risk factors (age, sex, smoking status, waist-hip ratio, duration of T2D, HbA1c, pulse pressure, low-density lipoprotein, use of statins, and use of renin-angiotensin-aldosterone system inhibitors) were used to assess the associations of such parameters of hypoxemic burden with chronic kidney disease (CKD) as a manifestation of microvascular disease and a composite of cardiovascular diseases (CVD) reflecting macrovascular disease. RESULTS Patients with long T90 were significantly more often affected by CKD and CVD than patients with a lower hypoxemic burden (CKD 38% vs. 28%, p < 0.001; CVD 30% vs. 21%, p < 0.001). Continuous T90desaturation and desaturation depth were associated with CKD (adjusted OR 1.01 per unit, 95% CI [1.00; 1.01], p = 0.008 and OR 1.30, 95% CI [1.06; 1.61], p = 0.013, respectively) independently of other known risk factors for CKD. For CVD there was a thresholdeffect, and only severly and very severly increased T90non-specific was associated with CVD ([Q3;Q4] versus [Q1;Q2], adjusted OR 1.51, 95% CI [1.12; 2.05], p = 0.008) independently of other known risk factors for CVD. CONCLUSION While hypoxemic burden due to oxygen desaturations and the magnitude of desaturation depth were significantly associated with CKD, only severe hypoxemic burden due to non-specific drifts was associated with CVD. Specific types of hypoxemic burden may be related to micro- and macrovascular disease.
Collapse
Affiliation(s)
- Sarah Driendl
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Stefan Stadler
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Florian Zeman
- Centre of Clinical Studies, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Mathias Baumert
- Discipline of Biomedical Engineering, School of Electrical and Mechanical Engineering, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
2
|
Diego EM, Fernández Bravo M, Kammar Garcia A, Guerrero Gutiérrez MA, Cendejas Rios E, Escorza Molina CA, Meza Comparan HD, Mancilla-Galindo J, Noriega Salas L, Bernaldez Gómez G, Díaz JSS. Role of Renal Venous Oxygen Pressure for Renal Function Monitoring After Related Living-Donor Kidney Transplantation: Cohort Study. Transplant Proc 2024; 56:23-30. [PMID: 38246804 DOI: 10.1016/j.transproceed.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Monitoring of renal function after kidney transplantation (KT) is performed by measuring serum creatinine (SCr), urine volumes (UV), and glomerular filtration rate (GFR). Other methods based on oxygen metabolism, such as the renal venous oxygen pressure (PrvO2), may be useful. The aim of this study was to explore the correlation between PrvO2 and SCr, UV, and GFR 5 days after KT (SCr5, UV5, and GFR5, respectively). METHODS We conducted a prospective cohort study in adults scheduled for living donor KT. A venous blood sample was taken from the renal vein after declamping the renal artery, and blood gas determinations were made. Correlation analyses between PrvO2 and SCr5, UV5, and GFR5 were done by calculating Spearman's correlation coefficient with generalized linear models (GLM). A Spearman's correlation analysis was performed between the percentage decrease in SCr (%ΔSCr) and PrvO2. A GLM was also performed to determine the association of PrvO2 with slow graft function (SGF). RESULTS The study included 42 patients, of whom 67% were men. The median age was 31 years (IQR, 27-43.5). PrvO2 was negatively correlated with SCr5 (ρ = -0.53, P = .003), and positively correlated with GFR5 (ρ = 0.49, P = .001) and %ΔSCr (ρ = 0.47, P = .002). A higher PrvO2 was associated with an increase in GFR in univariable (β = 1.24, 95% CI, 0.56-1.93, P = .001) and multivariable (β = 1.24, 95% CI, 0.53-1.94, P = .001) analyses. No association was found between PrvO2 and SGF. CONCLUSION PrvO2 could be used to monitor renal function in the first 5 days after related living-donor KT, given its good correlation with SCr and GFR.
Collapse
Affiliation(s)
- Escarramán Martínez Diego
- Department of Anesthesia, Centro Medico Nacional Hospital de Especialidades "La Raza," IMSS, Mexico City, Mexico.
| | - Monserrat Fernández Bravo
- Department of Anesthesia, Centro Medico Nacional Hospital de Especialidades "La Raza," IMSS, Mexico City, Mexico
| | - Ashuin Kammar Garcia
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | - Emilio Cendejas Rios
- Department of Anesthesia, Unidad Medica de Especialidad No. 25 IMSS, Monterrey, Nuevo León, Mexico
| | | | - Héctor David Meza Comparan
- Department of Neurocritical Care Surgery, University of Florida Health, Gainesville, Florida, United States of America
| | - Javier Mancilla-Galindo
- Postgraduate Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Noriega Salas
- Department of Transplantation, Centro Medico Nacional Hospital de Especialidades "La Raza," IMSS, Ciudad de México, México
| | - Germán Bernaldez Gómez
- Department of Transplantation, Centro Medico Nacional Hospital de Especialidades "La Raza," IMSS, Ciudad de México, México
| | | |
Collapse
|
3
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Kious KW, Savage KA, Twohey SCE, Highum AF, Philipose A, Díaz HS, Del Rio R, Lang JA, Clayton SC, Marcus NJ. Chronic intermittent hypoxia promotes glomerular hyperfiltration and potentiates hypoxia-evoked decreases in renal perfusion and PO 2. Front Physiol 2023; 14:1235289. [PMID: 37485067 PMCID: PMC10358516 DOI: 10.3389/fphys.2023.1235289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Sleep apnea (SA) is highly prevalent in patients with chronic kidney disease and may contribute to the development and/or progression of this condition. Previous studies suggest that dysregulation of renal hemodynamics and oxygen flux may play a key role in this process. The present study sought to determine how chronic intermittent hypoxia (CIH) associated with SA affects regulation of renal artery blood flow (RBF), renal microcirculatory perfusion (RP), glomerular filtration rate (GFR), and cortical and medullary tissue PO2 as well as expression of genes that could contribute to renal injury. We hypothesized that normoxic RBF and tissue PO2 would be reduced after CIH, but that GFR would be increased relative to baseline, and that RBF, RP, and tissue PO2 would be decreased to a greater extent in CIH vs. sham during exposure to intermittent asphyxia (IA, FiO2 0.10/FiCO2 0.03). Additionally, we hypothesized that gene programs promoting oxidative stress and fibrosis would be activated by CIH in renal tissue. Methods: All physiological variables were measured at baseline (FiO2 0.21) and during exposure to 10 episodes of IA (excluding GFR). Results: GFR was higher in CIH-conditioned vs. sham (p < 0.05), whereas normoxic RBF and renal tissue PO2 were significantly lower in CIH vs. sham (p < 0.05). Reductions in RBF, RP, and renal tissue PO2 during IA occurred in both groups but to a greater extent in CIH (p < 0.05). Pro-oxidative and pro-fibrotic gene programs were activated in renal tissue from CIH but not sham. Conclusion: CIH adversely affects renal hemodynamic regulation and oxygen flux during both normoxia and IA and results in changes in renal tissue gene expression.
Collapse
Affiliation(s)
- Kiefer W. Kious
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Kalie A. Savage
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Stephanie C. E. Twohey
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
- Department of Biology, Simpson College, Indianola, IA, United States
| | - Aubrey F. Highum
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Andrew Philipose
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Hugo S. Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - James A. Lang
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Sarah C. Clayton
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University Medicine and Health Sciences, Des Moines, IA, United States
| |
Collapse
|
5
|
Zhang CJ, Li H, Xiong YZ, Chang Y, Yang F, Ma XL, Wang XT, Shimosawa T, Ji ES, Xu QY. Chronic intermittent hypoxia induces renal fibrosis through MR activation. Exp Gerontol 2022; 163:111780. [DOI: 10.1016/j.exger.2022.111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
|
6
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
7
|
AlMarabeh S, Lucking EF, O'Halloran KD, Abdulla MH. Intrarenal pelvic bradykinin-induced sympathoexcitatory reno-renal reflex is attenuated in rats exposed to chronic intermittent hypoxia. J Hypertens 2022; 40:46-64. [PMID: 34433765 DOI: 10.1097/hjh.0000000000002972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In this study, we hypothesized that excitatory reno-renal reflex control of sympathetic outflow is enhanced in rats exposed to chronic intermittent hypoxia (CIH) with established hypertension. METHODS Under anaesthesia, renal sensory nerve endings in the renal pelvic wall were chemically activated using bradykinin (150, 400 and 700 μmol/l) and capsaicin (1.3 μmol/l), and cardiovascular parameters and renal sympathetic nerve activity (RSNA) were measured. RESULTS CIH-exposed rats were hypertensive with elevated basal heart rate and increased basal urine flow compared with sham. The intrarenal pelvic infusion of bradykinin was associated with contralateral increase in the RSNA and heart rate, without concomitant changes in blood pressure. This was associated with a drop in the glomerular filtration rate, which was significant during a 5 min period after termination of the infusion but without significant changes in urine flow and absolute sodium excretion. In response to intrarenal pelvic infusion of 700 μmol/l bradykinin, the increases in RSNA and heart rate were blunted in CIH-exposed rats compared with sham rats. Conversely, the intrarenal pelvic infusion of capsaicin evoked an equivalent sympathoexcitatory effect in CIH-exposed and sham rats. The blockade of bradykinin type 1 receptors (BK1R) suppressed the bradykinin-induced increase in RSNA by ∼33%, with a greater suppression obtained when bradykinin type 2 receptors (BK2R) and BK1R were contemporaneously blocked (∼66%). CONCLUSION Our findings reveal that the bradykinin-dependent excitatory reno-renal reflex does not contribute to CIH-induced sympathetic hyperactivity and hypertension. Rather, there is evidence that the excitatory reno-renal reflex is suppressed in CIH-exposed rats, which might relate to a downregulation of BK2R.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
8
|
Correia MJ, Pimpão AB, Lopes-Coelho F, Sequeira CO, Coelho NR, Gonçalves-Dias C, Barouki R, Coumoul X, Serpa J, Morello J, Monteiro EC, Pereira SA. Aryl Hydrocarbon Receptor and Cysteine Redox Dynamics Underlie (Mal)adaptive Mechanisms to Chronic Intermittent Hypoxia in Kidney Cortex. Antioxidants (Basel) 2021; 10:antiox10091484. [PMID: 34573115 PMCID: PMC8469308 DOI: 10.3390/antiox10091484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
We hypothesized that an interplay between aryl hydrocarbon receptor (AhR) and cysteine-related thiolome at the kidney cortex underlies the mechanisms of (mal)adaptation to chronic intermittent hypoxia (CIH), promoting arterial hypertension (HTN). Using a rat model of CIH-HTN, we investigated the impact of short-term (1 and 7 days), mid-term (14 and 21 days, pre-HTN), and long-term intermittent hypoxia (IH) (up to 60 days, established HTN) on CYP1A1 protein level (a sensitive hallmark of AhR activation) and cysteine-related thiol pools. We found that acute and chronic IH had opposite effects on CYP1A1 and the thiolome. While short-term IH decreased CYP1A1 and increased protein-S-thiolation, long-term IH increased CYP1A1 and free oxidized cysteine. In addition, an in vitro administration of cystine, but not cysteine, to human endothelial cells increased Cyp1a1 expression, supporting cystine as a putative AhR activator. This study supports CYP1A1 as a biomarker of obstructive sleep apnea (OSA) severity and oxidized pools of cysteine as risk indicator of OSA-HTN. This work contributes to a better understanding of the mechanisms underlying the phenotype of OSA-HTN, mimicked by this model, which is in line with precision medicine challenges in OSA.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Filipa Lopes-Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Nuno R. Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Clara Gonçalves-Dias
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Robert Barouki
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S 1124, 3TS, Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (R.B.); (X.C.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (F.L.-C.); (C.O.S.); (N.R.C.); (C.G.-D.); (J.S.); (J.M.); (E.C.M.)
- Correspondence:
| |
Collapse
|
9
|
AlMarabeh S, O'Neill J, Cavers J, Lucking EF, O'Halloran KD, Abdulla MH. Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney. Am J Physiol Renal Physiol 2021; 320:F1-F16. [PMID: 33166181 DOI: 10.1152/ajprenal.00377.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jeremy Cavers
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
O'Connor KM, Lucking EF, Bastiaanssen TFS, Peterson VL, Crispie F, Cotter PD, Clarke G, Cryan JF, O'Halloran KD. Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine 2020; 59:102968. [PMID: 32861200 PMCID: PMC7475129 DOI: 10.1016/j.ebiom.2020.102968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Evidence is accruing to suggest that microbiota-gut-brain signalling plays a regulatory role in cardiorespiratory physiology. Chronic intermittent hypoxia (CIH), modelling human sleep apnoea, affects gut microbiota composition and elicits cardiorespiratory morbidity. We investigated if treatment with prebiotics ameliorates cardiorespiratory dysfunction in CIH-exposed rats. METHODS Adult male rats were exposed to CIH (96 cycles/day, 6.0% O2 at nadir) for 14 consecutive days with and without prebiotic supplementation (fructo- and galacto-oligosaccharides) beginning two weeks prior to gas exposures. FINDINGS CIH increased apnoea index and caused hypertension. CIH exposure had modest effects on the gut microbiota, decreasing the relative abundance of Lactobacilli species, but had no effect on microbial functional characteristics. Faecal short-chain fatty acid (SCFA) concentrations, plasma and brainstem pro-inflammatory cytokine concentrations and brainstem neurochemistry were unaffected by exposure to CIH. Prebiotic administration modulated gut microbiota composition and diversity, altering gut-metabolic (GMMs) and gut-brain (GBMs) modules and increased faecal acetic and propionic acid concentrations, but did not prevent adverse CIH-induced cardiorespiratory phenotypes. INTERPRETATION CIH-induced cardiorespiratory dysfunction is not dependant upon changes in microbial functional characteristics and decreased faecal SCFA concentrations. Prebiotic-related modulation of microbial function and resultant increases in faecal SCFAs were not sufficient to prevent CIH-induced apnoea and hypertension in our model. Our results do not exclude the potential for microbiota-gut-brain axis involvement in OSA-related cardiorespiratory morbidity, but they demonstrate that in a relatively mild model of CIH, sufficient to evoke classic cardiorespiratory dysfunction, such changes are not obligatory for the development of morbidity, but may become relevant in the elaboration and maintenance of cardiorespiratory morbidity with progressive disease. FUNDING Department of Physiology and APC Microbiome Ireland, University College Cork, Ireland. APC Microbiome Ireland is funded by Science Foundation Ireland, through the Government's National Development Plan.
Collapse
Affiliation(s)
- Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Palubiski LM, O'Halloran KD, O'Neill J. Renal Physiological Adaptation to High Altitude: A Systematic Review. Front Physiol 2020; 11:756. [PMID: 32765289 PMCID: PMC7378794 DOI: 10.3389/fphys.2020.00756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Under normal physiological conditions, renal tissue oxygen is tightly regulated. At high altitude, a physiological challenge is imposed by the decrease in atmospheric oxygen. At the level of the kidney, the physiological adaptation to high altitude is poorly understood, which might relate to different integrated responses to hypoxia over different time domains of exposure. Thus, this systematic review sought to examine the renal physiological adaptation to high altitude in the context of the magnitude and duration of exposure to high altitude in the healthy kidney model. Methods: To conduct the review, three electronic databases were examined: OVID, PubMed, and Scopus. Search terms included: Altitude, renal, and kidney. The broad, but comprehensive search, retrieved 1,057 articles published between 1997 and April 2020. Fourteen studies were included in the review. Results: The inconsistent effect of high altitude on renal hemodynamic parameters (glomerular filtration rate, renal blood flow, and renal plasma flow), electrolyte balance, and renal tissue oxygen is difficult to interpret; however, the data suggest that the nature and extent of renal physiological adaptation at high altitude appears to be related to the magnitude and duration of the exposure. Conclusion: It is clear that renal physiological adaptation to high altitude is a complex process that is not yet fully understood. Further research is needed to better understand the renal physiological adaptation to hypoxia and how renal oxygen homeostasis and metabolism is defended during exposure to high altitude and affected as a long-term consequence of renal adaptation at high altitude.
Collapse
Affiliation(s)
- Lisa M Palubiski
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Abstract
Abstract
Purpose of Review
There are some uncertainties about the interactions between obstructive sleep apnea (OSA) and chronic kidney disease (CKD). We critically reviewed recent studies on this topic with a focus on experimental and clinical evidence of bidirectional influences between OSA and CKD, as well as the effects of treatment of either disease.
Recent Findings
Experimental intermittent hypoxia endangers the kidneys, possibly through activation of inflammatory pathways and increased blood pressure. In humans, severe OSA can independently decrease kidney function. Treatment of OSA by CPAP tends to blunt kidney function decline over time, although its effect may vary. OSA may increase cardiovascular complications and mortality in patients with end-stage renal disease (ESRD), while it seems of little harm after renal transplantation. Excessive fluid removal may explain some of the improvements in OSA severity in ESRD and after transplantation.
Summary
Severe OSA and CKD do interact negatively, mainly through hypoxia and fluid retention. The moderate mutually interactive benefits that treatment of each disease exerts on the other one warrant further studies to improve patient management.
Collapse
|
13
|
Abdulla MH, O'Halloran KD. Brainstem adrenomedullin facilitates intermittent hypoxia‐induced hypertension: A sympathetic story of a selfish brain. Exp Physiol 2019; 104:1589-1590. [DOI: 10.1113/ep088026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammed H. Abdulla
- Department of Physiology School of Medicine College of Medicine and Health University College Cork Cork Ireland
| | - Ken D. O'Halloran
- Department of Physiology School of Medicine College of Medicine and Health University College Cork Cork Ireland
| |
Collapse
|
14
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|