1
|
Verzola D, Rumeo N, Alberti S, Loiacono F, La Maestra S, Passalacqua M, Artini C, Russo E, Verrina E, Angeletti A, Matarese S, Mancianti N, Cravedi P, Gentile M, Viazzi F, Esposito P, La Porta E. Coexposure to microplastic and Bisphenol A exhacerbates damage to human kidney proximal tubular cells. Heliyon 2024; 10:e39426. [PMID: 39498083 PMCID: PMC11532844 DOI: 10.1016/j.heliyon.2024.e39426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Microplastics (MPs) accumulate in tissues, including kidney tissue, while Bisphenol A (BPA) is a plasticizer of particular concern. At present, the combined effects of MPs and BPA are unexplored in human renal cells. Therefore, we exposed a proximal tubular cell line (PTECs) to polyethylene (PE)-MPs and BPA, both separately and in combination. When co-exposed, cells showed a significantly reduced cell viability (MTT test) and a pronounced pro-oxidant (MDA levels, NRF2 and NOX4 expression by Western blot) and pro-inflammatory response (IL1β, CCL/CCR2 and CCL/CCR5 mRNAs by RT-PCR), compared to those treated with a single compound. In addition, heat shock protein (HSP90), a chaperone involved in multiple cellular functions, was reduced (by Western Blot and immunocytochemistry), while aryl hydrocarbon receptor (AHR) expression, a transcription factor which binds environmental ligands, was increased (RT-PCR and immunofluorescence). Our research can contribute to the study of the nephrotoxic effects of pollutants and MPs and shed new light on the combined effects of BPA and PE-MPs.
Collapse
Affiliation(s)
- Daniela Verzola
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Noemi Rumeo
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Alberti
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
| | - Fabrizio Loiacono
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Cristina Artini
- DCCI, Department of Chemistry and Industrial Chemistry, University of Genoa, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy, National Research Council, CNR-ICMATE, Genoa, Italy
| | - Elisa Russo
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Verrina
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Matarese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Nicoletta Mancianti
- Department of Emergency-Urgency and Transplantation, Nephrology, Dialysis and Transplantation Unit, University Hospital of Siena, Siena, Italy
| | - Paolo Cravedi
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Micaela Gentile
- Division of Nephrology, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Francesca Viazzi
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Edoardo La Porta
- UOC Nephrology IRCCS Istituto Giannina Gaslini, Genoa, Italy
- UOSD Dialysis IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
2
|
Tesch G, Ma F, Ozols E, Nikolic-Paterson D. Intervention treatment reducing cellular senescence inhibits tubulointerstitial fibrosis in diabetic mice following acute kidney injury. Clin Sci (Lond) 2024; 138:309-326. [PMID: 38391050 PMCID: PMC10914710 DOI: 10.1042/cs20231698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Senescence of kidney tubules leads to tubulointerstitial fibrosis (TIF). Proximal tubular epithelial cells undergo stress-induced senescence during diabetes and episodes of acute kidney injury (AKI), and combining these injuries promotes the progression of diabetic kidney disease (DKD). Since TIF is crucial to progression of DKD, we examined the therapeutic potential of targeting senescence with a senolytic drug (HSP90 inhibitor) and/or a senostatic drug (ASK1 inhibitor) in a model of TIF in which AKI is superimposed on diabetes. After 8 weeks of streptozotocin-induced diabetes, mice underwent bilateral clamping of renal pedicles to induce mild AKI, followed by 28 days of reperfusion. Groups of mice (n=10-12) received either vehicle, HSP90 inhibitor (alvespimycin), ASK1 inhibitor (GS-444217), or both treatments. Vehicle-treated mice displayed tubular injury at day 3 and extensive tubular cell senescence at day 10, which remained unresolved at day 28. Markers of senescence (Cdkn1a and Cdkn2a), inflammation (Cd68, Tnf, and Ccl2), and TIF (Col1a1, Col4a3, α-Sma/Acta2, and Tgfb1) were elevated at day 28, coinciding with renal function impairment. Treatment with alvespimycin alone reduced kidney senescence and levels of Col1a1, Acta2, Tgfb1, and Cd68; however, further treatment with GS-444217 also reduced Col4a3, Tnf, Ccl2, and renal function impairment. Senolytic therapy can inhibit TIF during DKD, but its effectiveness can be improved by follow-up treatment with a senostatic inhibitor, which has important implications for treating progressive DKD.
Collapse
Affiliation(s)
- Gregory H. Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Frank Y. Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - Elyce Ozols
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
- Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Yıldırım Ö, Tatar E. The Roles of Heat Shock Protein-60 and 70 and Inflammation in Obesity-Related Kidney Disease. Cureus 2022; 14:e28675. [PMID: 36062294 PMCID: PMC9436442 DOI: 10.7759/cureus.28675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction The exact mechanisms of obesity-related kidney disease (ORKD) are not fully known. Heat shock proteins (HSPs) may play a role in ORKD mechanisms because of their role in cell apoptosis, cytoprotection, and inflammatory processes. We aimed to determine the role of circulating serum HSP-60 and HSP-70 levels as a biomarker for ORKD. Materials and methods This study included 40 ORKD patients, 40 obese age-matched and sex-matched controls with similar body mass index (BMI), and 40 healthy controls. Their serum biochemical and hemogram parameters as well as HSP-60 and HSP-70 levels were evaluated and compared. Their neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein levels were assessed to define inflammation. Results The patients had significantly higher HSP-60 levels than the obese and healthy controls (537.58 ± 170.35, 430.80 ± 110.61, and 371.85 ± 76.34, respectively; p<0.00). The results revealed that the 24-hour urinary protein levels had a positive correlation (r= 0.544), whereas the glomerular filtration rate had a negative correlation (r = 0.38) with the serum HSP-60 level. According to the regression analysis performed on the HSP-60 and 24-hour urinary protein excretion levels, an increase in the HSP-60 level significantly increased the 24-hour urinary protein excretion rate (r=0.15; p<0.005). The HSP-60 levels were correlated with inflammatory markers Conclusion The serum HSP-60 levels increased in patients with ORKD. This increase was correlated with 24-hour urinary protein excretion. Increased circulating levels of HSP-60 may play a role in the initiation and/or progression of renal damage and inflammation. HSP-60 is a potential biomarker for ORKD. However, additional information and studies are required to further elucidate this finding.
Collapse
|
4
|
A novel small molecule Hsp90 inhibitor, C-316-1, attenuates acute kidney injury by suppressing RIPK1-mediated inflammation and necroptosis. Int Immunopharmacol 2022; 108:108849. [PMID: 35588657 DOI: 10.1016/j.intimp.2022.108849] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is marked by a fast deterioration of the kidney function that may be caused by a variety of factors. Recently, although our group found that PPBICA alleviated programmed cell death in AKI, poor water solubility limited its bioavailability. In this research, we screened a series of derivatives and found that C-316-1 had the best suppressive effect on preventing necroptosis and inflammation in cisplatin- and ischemia/reperfusion-induced AKI in vitro and in vivo with lower toxicity and better water solubility. Mass spectrometry results showed that C-316-1 bound to heat shock protein 90 (Hsp90), which was further confirmed by molecular docking and surface plasmon resonance. Additionally, the Hsp90 expression was upregulated in the blood and tissues of AKI patients. We discovered that C-316-1 decreased the RIPK1 protein level without affecting its mRNA expression. The proteasome inhibitor, MG132 restored the level of RIPK1 reduced by C-316-1, suggesting that C-316-1 limits necroptosis by promoting the degradation of RIPK1 rather than by reducing its production. Immunoprecipitation further showed that pretreatment with C-316-1 disrupted the Hsp90-Cdc37 protein-protein Interactions (PPIs). Thereby, C-316-1 inhibited the Hsp90-Cdc37 complex formation and led to a significant decrease in RIPK1, which in turn reduced necroptosis. Moreover, C-316-1 treatment did not protect against kidney injury in vivo and in vitro when Hsp90 was knocked down and R46, E47, and S50 in Cdc37 binding site of Hsp90 might form an important active pocket with C-316-1. These findings suggest that C-316-1 is a potential therapeutic agent against RIPK1-Mediated Necroptosis in AKI.
Collapse
|
5
|
Porter AW, Nguyen DN, Clayton DR, Ruiz WG, Mutchler SM, Ray EC, Marciszyn AL, Nkashama LJ, Subramanya AR, Gingras S, Kleyman TR, Apodaca G, Hendershot LM, Brodsky JL, Buck TM. The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice. JCI Insight 2022; 7:e151869. [PMID: 35104250 PMCID: PMC8983141 DOI: 10.1172/jci.insight.151869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/28/2022] [Indexed: 01/26/2023] Open
Abstract
Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 - and, more generally, molecular chaperones in kidney physiology - we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.
Collapse
Affiliation(s)
- Aidan W. Porter
- Department of Biological Sciences
- Department of Pediatrics, Nephrology Division
| | | | | | - Wily G. Ruiz
- Department of Medicine, Renal-Electrolyte Division
| | | | - Evan C. Ray
- Department of Medicine, Renal-Electrolyte Division
| | | | | | | | | | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division
- Department of Cell Biology, and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
6
|
Multiple Abiotic Stresses Applied Simultaneously Elicit Distinct Responses in Two Contrasting Rice Cultivars. Int J Mol Sci 2022; 23:ijms23031739. [PMID: 35163659 PMCID: PMC8836074 DOI: 10.3390/ijms23031739] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Rice crops are often subject to multiple abiotic stresses simultaneously in both natural and cultivated environments, resulting in yield reductions beyond those expected from single stress. We report physiological changes after a 4 day exposure to combined drought, salt and extreme temperature treatments, following a 2 day salinity pre-treatment in two rice genotypes—Nipponbare (a paddy rice) and IAC1131 (an upland landrace). Stomata closed after two days of combined stresses, causing intercellular CO2 concentrations and assimilation rates to diminish rapidly. Abscisic acid (ABA) levels increased at least five-fold but did not differ significantly between the genotypes. Tandem Mass Tag isotopic labelling quantitative proteomics revealed 6215 reproducibly identified proteins in mature leaves across the two genotypes and three time points (0, 2 and 4 days of stress). Of these, 987 were differentially expressed due to stress (cf. control plants), including 41 proteins that changed significantly in abundance in all stressed plants. Heat shock proteins, late embryogenesis abundant proteins and photosynthesis-related proteins were consistently responsive to stress in both Nipponbare and IAC1131. Remarkably, even after 2 days of stress there were almost six times fewer proteins differentially expressed in IAC1131 than Nipponbare. This contrast in the translational response to multiple stresses is consistent with the known tolerance of IAC1131 to dryland conditions.
Collapse
|
7
|
Yuruk Yildirim ZN, Usta Akgul S, Alpay H, Aksu B, Savran Oguz F, Kiyak A, Akinci N, Yavuz S, Ozcelik G, Gedikbasi A, Gokce I, Ozkayin N, Yildiz N, Pehlivanoglu C, Goknar N, Saygili S, Tulpar S, Kucuk N, Bilge I, Tasdemir M, Agbas A, Dirican A, Emre S, Nayir A, Yilmaz A. PROGRESS STUDY: Progression of chronic kidney disease in children and heat shock proteins. Cell Stress Chaperones 2021; 26:973-987. [PMID: 34671941 PMCID: PMC8578260 DOI: 10.1007/s12192-021-01239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
Various molecular and cellular processes are involved in renal fibrosis, such as oxidative stress, inflammation, endothelial cell injury, and apoptosis. Heat shock proteins (HSPs) are implicated in the progression of chronic kidney disease (CKD). Our aim was to evaluate changes in urine and serum HSP levels over time and their relationships with the clinical parameters of CKD in children. In total, 117 children with CKD and 56 healthy children were examined. The CKD group was followed up prospectively for 24 months. Serum and urine HSP27, HSP40, HSP47, HSP60, HSP70, HSP72, and HSP90 levels and serum anti-HSP60 and anti-HSP70 levels were measured by ELISA at baseline, 12 months, and 24 months. The urine levels of all HSPs and the serum levels of HSP40, HSP47, HSP60, HSP70, anti-HSP60, and anti-HSP70 were higher at baseline in the CKD group than in the control group. Over the months, serum HSP47 and HSP60 levels steadily decreased, whereas HSP90 and anti-HSP60 levels steadily increased. Urine HSP levels were elevated in children with CKD; however, with the exception of HSP90, they decreased over time. In conclusion, our study demonstrates that CKD progression is a complicated process that involves HSPs, but they do not predict CKD progression. The protective role of HSPs against CKD may weaken over time, and HSP90 may have a detrimental effect on the disease course.
Collapse
Affiliation(s)
| | - Sebahat Usta Akgul
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, 34390 Istanbul, Turkey
| | - Harika Alpay
- Division of Pediatric Nephrology, Medical Faculty, Marmara University, Istanbul, Turkey
| | - Bagdagul Aksu
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34390 Istanbul, Turkey
- Institute of Child Health, Istanbul University, Istanbul, Turkey
| | - Fatma Savran Oguz
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, 34390 Istanbul, Turkey
| | - Aysel Kiyak
- Division of Pediatric Nephrology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Nurver Akinci
- Division of Pediatric Nephrology, Sisli Etfal Education and Research Hospital, Istanbul, Turkey
| | - Sevgi Yavuz
- Division of Pediatric Nephrology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Gul Ozcelik
- Division of Pediatric Nephrology, Sisli Etfal Education and Research Hospital, Istanbul, Turkey
| | - Asuman Gedikbasi
- Institute of Child Health, Istanbul University, Istanbul, Turkey
- Division of Pediatric Nutrition and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ibrahim Gokce
- Division of Pediatric Nephrology, Medical Faculty, Marmara University, Istanbul, Turkey
| | - Nese Ozkayin
- Division of Pediatric Nephrology, School of Medicine, Trakya University, Edirne, Turkey
| | - Nurdan Yildiz
- Division of Pediatric Nephrology, Medical Faculty, Marmara University, Istanbul, Turkey
| | - Cemile Pehlivanoglu
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34390 Istanbul, Turkey
| | - Nilufer Goknar
- Division of Pediatric Nephrology, Bagcilar Education and Research Hospital, Istanbul, Turkey
| | - Seha Saygili
- Division of Pediatric Nephrology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sebahat Tulpar
- Division of Pediatric Nephrology, Bakirkoy Sadi Konuk Education and Research Hospital, Istanbul, Turkey
| | - Nuran Kucuk
- Division of Pediatric Nephrology, Kartal Education and Research Hospital, Istanbul, Turkey
| | - Ilmay Bilge
- Division of Pediatric Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Mehmet Tasdemir
- Division of Pediatric Nephrology, School of Medicine, Koc University, Istanbul, Turkey
| | - Ayse Agbas
- Division of Pediatric Nephrology, Haseki Education and Research Hospital, Istanbul, Turkey
| | - Ahmet Dirican
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, 34390 Capa, Istanbul, Turkey
| | - Sevinc Emre
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34390 Istanbul, Turkey
| | - Ahmet Nayir
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34390 Istanbul, Turkey
| | - Alev Yilmaz
- Division of Pediatric Nephrology, Istanbul Faculty of Medicine, Istanbul University, Capa, 34390 Istanbul, Turkey
| |
Collapse
|
8
|
Yang H, Shang X, Zhong G, Hong L, Li Z, Zhuang W, Cheng J. Berberine protects human and rat cardiomyocytes from hypoxia/reoxygenation-triggered apoptosis. Am J Transl Res 2021; 13:659-671. [PMID: 33594316 PMCID: PMC7868847 DOI: pmid/33594316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/07/2020] [Indexed: 02/05/2023]
Abstract
Berberine (BBR) confers potential cardioprotective effects. However, the relevant mechanisms underlying its regulation of cardiomyocyte survival following hypoxia/reoxygenation (H/R) treatment remain unknown. The present study investigated whether BBR could protect H/R by suppressing apoptosis and explored how TGF-β/Smad4 signaling pathway influenced H/R in vitro. Two cardiomyocyte cell lines-AC16 and H9c2- were treated with H/R and BBR. The survival and apoptosis of these two cell lines were assessed using the MTT and BrdU assays and western blotting (WB) and flow cytometry. Mitochondrial reactive oxygen species (ROS) and caspase (Cas)-3, Cas-8, and Cas-9 activation were evaluated using enzyme-linked immunosorbent assay as well as WB. Compared to the control group, H/R resulted in notable cell apoptosis, whereas BBR treatment evidently counteracted the process. BBR also markedly suppressed H/R-triggered excessive mitochondrial ROS generation and inhibited Smad4 expression. Overexpressing Smad4 in BBR-treated H/R-exposed cardiomyocytes reversed the effect of BBR treatment on apoptosis. Therefore, BBR protects H/R-treated cardiomyocytes from apoptosis by inhibiting the TGF-β/Smad4 signaling pathway.
Collapse
Affiliation(s)
- Haiyan Yang
- The First Affiliated Hospital of Shantou University Medical College & Laboratory of Molecular Cardiology & Laboratory of Molecular ImagingShantou 515041, China
| | - Xu Shang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong KongShantou 515041, China
| | - Guoqing Zhong
- Shantou University Medical CollegeShantou 515041, China
| | - Liangli Hong
- The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Zhi Li
- The Second Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Wanling Zhuang
- The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, China
| | - Jidong Cheng
- School Medical, Xiamen UniversityShantou 515041, China
| |
Collapse
|
9
|
Modarresi A, Nafar M, Sahraei Z, Salamzadeh J, Ziaie S. Early Graft Function in Deceased Donor Renal Recipients: Role of N-Acetylcysteine. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:57-67. [PMID: 32922469 PMCID: PMC7462497 DOI: 10.22037/ijpr.2019.15546.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Reduced graft function (RGF) in donor renal transplant recipients is caused by oxidative damage due to extensive ischemia-reperfusion (I/R) injury during transplantation. Neutrophil gelatinase-associated lipocalin (NGAL) is a promising biomarker to detect tubular injury early after renal transplantation. N-acetylcysteine (NAC) is a potent antioxidant that can reduce I/R injury by improving oxidative damage. The aim of the present study is to assess the efficacy of NAC in improving graft function and reducing renal tubular injury in deceased donor renal transplant recipients. A double-blind, randomized clinical trial was conducted on 50 deceased donor renal transplant recipients. The patients were randomized into two groups, receiving either 600 mg NAC twice daily, or placebo (days 0 to 5). Results were assessed based on the rate of RGF, levels of plasma NGAL (p-NGAL) and the estimated glomerular filtration rate (eGFR). The rate of RGF was significantly lower in the patients receiving NAC vs. placebo (21.4% vs. 50%). The measurement of p-NGAL levels showed that the patients in the NAC group had significantly greater reduction of p-NGAL by both days 1 and 5 post-transplantation than those in the placebo group. A near steady-state eGFR level was reached by week 1 in the NAC group, however, the improvement of eGFR was significantly slower in the placebo group and a near steady-state was only achieved by week 4. NAC has promising potential in reducing tubular injury and improving graft function, evidenced by significant reduction in the rate of RGF and levels of p-NGAL.
Collapse
Affiliation(s)
- Atieh Modarresi
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sahraei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamshid Salamzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Ziaie
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Geng R, Jia Y, Chi M, Wang Z, Liu H, Wang W. RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:8-16. [PMID: 30267738 DOI: 10.1016/j.dci.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
RNase1 is an enzyme important in host defense in vertebrates where it degrades the RNA of bacteria and viruses. We evaluated the effect of RNase1 on the resistance to Aeromonas hydrophila infection in Megalobrama amblycephala. The fish were randomly divided into four groups: a blank group (none-treated M. amblycephala), a control group (injected PBS), a challenge group (A. hydrophila-injected) and a treatment group (pre-treated with RNase1 24 h before the A. hydrophila injection), and we collected five tissues of each group. Then we recorded changes in the levels of glutathione (GSH), oxidized glutathione (GSSG), hepatic catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and lysozyme; and the relative mRNA expression of catalase (CAT), selenium-dependent glutathione peroxidase (GPx), Cu/Superoxide dismutase (Cu/Zn-SOD), glutamate-cysteine ligase (GCLC), glutathione reductase (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) for four groups. The expression of six genes was highest in liver and blood of the blank group. It was significantly higher in the gut of the treatment group (compared to control and challenge groups) 12 h after the infection. The treatment group exhibited a significant increase in GSH, SOD and CAT activity, and a decrease in GSSG, MDA and lysozyme content (compared to the control and challenge groups) 6 and 12 h after infection. These results suggest that supplementation with RNase1 protein can enhance resistance against A. hydrophila infections in M. amblycephala.
Collapse
Affiliation(s)
- Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Meili Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Zhiqiang Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Chebotareva N, Bobkova I, Lysenko L, Neprinzeva N, Vinogradov A, Moiseev S. Heat shock protein 70 and anti-heat shock protein 70 antibodies in patients with chronic glomerulonephritis. Cell Stress Chaperones 2018; 23:1229-1235. [PMID: 30062391 PMCID: PMC6237676 DOI: 10.1007/s12192-018-0928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
We evaluated the heat shock system 70 (HSP70) in patients with chronic glomerulonephritis (CGN). Seventy-six patients with CGN patients were included in our study. Ten patients with mild proteinuria (median 0.48 [0.16-0.78] g/24 h) and ten healthy subjects served as positive and negative controls, respectively. Urinary levels of HSP70, interleukin-10, and serum levels of anti-HSP70 were measured by ELISA. The immunohistochemical peroxidase method was used to study the expression of HSP70 and Foxp3+ in kidney biopsies. TregFoxP3+ cells in the interstitium were determined morphometrically. Median urinary HSP70 levels in patients with nephrotic syndrome (NS) [6.57 (4.49-8.33) pg/mg] and subnephrotic range proteinuria [5.7 (4.12-6.9) pg/mg] were higher (p < 0.05) than in positive [3.7 (2.5-4.82) pg/mg] and negative [3.78 (2.89-4.84) pg/mg] controls. HSP70 expression index in tubular cells positively correlated with urinary HSP70 (Rs = 0.948, р < 0.05) and proteinuria (Rs = 0.362, p < 0.05). The number of TregFoxp3+ cells in the kidney interstitium and interleukin-10 excretion were lower in patients with NS. Anti-HSP70 antibody serum levels in patients with NS [21.1 (17.47-29.72) pg/ml] and subnephrotic range proteinuria [24.9 (18.86-30.92) pg/ml] were significantly higher than in positive [17.8 (12.95-23.03) pg/ml] and negative [18.9 (13.5-23.9) pg/ml] controls. In patients with CGN, increasing proteinuria was associated with higher HSP70 renal tissue and urinary levels. However, activation of HSP70 in patients with nephrotic syndrome did not lead to an increase in tissue levels of TregFoxp3+ cells or to the release of IL-10.
Collapse
Affiliation(s)
- Natalia Chebotareva
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435.
| | - Irina Bobkova
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Lidia Lysenko
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Natalia Neprinzeva
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Anatoly Vinogradov
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| | - Sergey Moiseev
- Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Rossolimo 11/5, Moscow, Russia, 119435
| |
Collapse
|
13
|
The Optimal PEG for Kidney Preservation: A Preclinical Porcine Study. Int J Mol Sci 2018; 19:ijms19020454. [PMID: 29401654 PMCID: PMC5855676 DOI: 10.3390/ijms19020454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/26/2017] [Accepted: 01/29/2018] [Indexed: 01/12/2023] Open
Abstract
University of Wisconsin (UW) solution is not optimal for preservation of marginal organs. Polyethylene glycol (PEG) could improve protection. Similarly formulated solutions containing either 15 or 20 g/L PEG 20 kDa or 5, 15 and 30 g/L PEG 35 kDa were tested in vitro on kidney endothelial cells, ex vivo on preserved kidneys, and in vivo in a pig kidney autograft model. In vitro, all PEGs provided superior preservation than UW in terms of cell survival, adenosine triphosphate (ATP) production, and activation of survival pathways. Ex vivo, tissue injury was lower with PEG 20 kDa compared to UW or PEG 35 kDa. In vivo, function recovery was identical between UW and PEG 35 kDa groups, while PEG 20 kDa displayed swifter recovery. At three months, PEG 35 kDa 15 and 30 g/L animals had worse outcomes than UW, while 5 g/L PEG 35 kDa was similar. PEG 20 kDa was superior to both UW and PEG 35 kDa in terms of function and fibrosis development, with low activation of damage pathways. PEG 20 kDa at 15 g/L was superior to 20 g/L. While in vitro models did not discriminate between PEGs, in large animal models of transplantation we showed that PEG 20 kDa offers a higher level of protection than UW and that longer chains such as PEG 35 kDa must be used at low doses, such as found in Institut George Lopez (IGL1, 1g/L).
Collapse
|
14
|
Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones 2017; 22:319-343. [PMID: 28409327 PMCID: PMC5425374 DOI: 10.1007/s12192-017-0790-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock proteins (HSPs) mediate a diverse range of cellular functions, prominently including folding and regulatory processes of cellular repair. A major property of these remarkable proteins, dependent on intracellular or extracellular location, is their capacity for immunoregulation that optimizes immune activity while avoiding hyperactivated inflammation. In this review, recent investigations are described, which examine roles of HSPs in protection of kidney tissue from various traumatic influences and demonstrate their potential for clinical management of nephritic disease. The HSP70 class is particularly attractive in this respect due to its multiple protective effects. The review also summarizes current understanding of HSP bioactivity in the pathophysiology of various kidney diseases, including acute kidney injury, diabetic nephropathy, chronic glomerulonephritis, and lupus nephritis-along with other promising strategies for their remediation, such as DNA vaccination.
Collapse
Affiliation(s)
- Natalia Chebotareva
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992.
| | - Irina Bobkova
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| | - Evgeniy Shilov
- I.M. Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., Moscow, Russia, 119992
| |
Collapse
|
15
|
Jia Z, Dong A, Che H, Zhang Y. 17-DMAG Protects Against Hypoxia-/Reoxygenation-Induced Cell Injury in HT22 Cells Through Akt/Nrf2/HO-1 Pathway. DNA Cell Biol 2017; 36:95-102. [PMID: 27982695 DOI: 10.1089/dna.2016.3445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zhuopeng Jia
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Arui Dong
- Department of Neurosurgery, Shaanxi Second Provincial People's Hospital, Xi'an, China
| | - Hongmin Che
- Department of Neurosurgery, The First Affiliated hospital of Xi'an Medical University, Xi'an, China
| | - Yu Zhang
- Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, China
| |
Collapse
|
16
|
|
17
|
Gu Y, Chen J, Wang T, Zhou C, Liu Z, Ma L. Hsp70 inducer, 17-allylamino-demethoxygeldanamycin, provides neuroprotection via anti-inflammatory effects in a rat model of traumatic brain injury. Exp Ther Med 2016; 12:3767-3772. [PMID: 28101166 DOI: 10.3892/etm.2016.3821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Traumatic brain injury (TBI) is the predominant cause of mortality in young adults and children living in China. TBI induces inflammatory responses; in addition, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 are important pro-inflammatory cytokines. Considering the observation that Hsp-70 overexpression can exert neuroprotection, identifying a drug that is able to induce the upregulation of Hsp70 has the potential to be a promising therapy for the treatment of neurological diseases. Thus, the present study assessed the clinical effectiveness of an anticancer drug and Hsp70 activator, 17-allylamino-demethoxygeldanamycin (17-AAG), to evaluate its potential as a treatment for patients with TBI. The aim of present study was to determine the neuroprotective effects of 17-AAG following trauma and to investigate the underlying mechanisms of action. To establish rat models, rats were subjected to a controlled cortical impact injury and randomly divided into vehicle or 17-AAG groups. In the 17-AAG group, rats were administered with an intraperitoneal injection of 17-AAG (80 mg/kg) immediately following the establishment of TBI. The motor function was measured using Neurologic Severity Score, and neuronal death was evaluated using immunofluorescence. The expression levels of GLT-1, Bcl-2 and Hsp-70 were detected by western blot analysis and the expression levels of inflammatory cytokines were quantified using ELISA. The present study determined that 17-AAG significantly reduced brain edema and motor neurological deficits (P<0.05), in addition to increasing neuronal survival. The aforementioned findings are associated with a downregulation of the expression levels of pro-inflammatory cytokines TNF-α, IL-1β and IL-6. Conversely, no significant changes of glutamate transporter-1 expression were observed. The present results suggest that 17-AAG treatment may provide a neuroprotective effect by reducing inflammation following TBI.
Collapse
Affiliation(s)
- Youquan Gu
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Chen
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Tianhong Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chaoning Zhou
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhaodong Liu
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lanhua Ma
- Department of Neurology, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
18
|
Wang YL, Shen HH, Cheng PY, Chu YJ, Hwang HR, Lam KK, Lee YM. 17-DMAG, an HSP90 Inhibitor, Ameliorates Multiple Organ Dysfunction Syndrome via Induction of HSP70 in Endotoxemic Rats. PLoS One 2016; 11:e0155583. [PMID: 27224288 PMCID: PMC4880344 DOI: 10.1371/journal.pone.0155583] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/02/2016] [Indexed: 01/14/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder, accompanied with elevated oxidative stress, leading to multiple organ dysfunction syndrome (MODS), and disseminated intravascular coagulation. 17-Dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG), a heat shock protein (HSP) 90 inhibitor, has been reported to possess anti-inflammatory effects. In this study, the beneficial effects of 17-DMAG on lipopolysaccharide (LPS) induced MODS and DIC was evaluated in anesthetized rats. 17-DMAG (5 mg/kg, i.p.) was significantly increased survival rate, and prevented hypotension in LPS (30 mg/kg i.v. infused for 4 h) induced endotoxemia. The elevated levels of alanine aminotransferase (ALT), creatine phosphokinase (CPK), lactate dehydrogenase, creatinine, nitric oxide (NO) metabolites, IL-6, and TNF-α in LPS-exposed rat plasma were significantly reduced by 17-DMAG. Moreover, 17-DMAG suppressed LPS-induced superoxide anion production and caspase 3 activation in heart tissues. LPS induced the prolongation of prothrombin time, and a pronounced decrease in platelet count, which were improved by 17-DMAG. 17-DMAG markedly induced HSP70 and heme oxygenase (HO)-1, and suppressed inducible nitric oxide synthase (iNOS) and phosphorylated NF-κB p65 protein expression in organs 6 h after LPS initiation. Pretreatment with high dose of quercetin (300 mg/kg, i.p.), as an HSP70 inhibitor, reversed the beneficial effects of 17-DMAG on survival rate, plasma levels of ALT, CPK, creatinine, IL-6, and NO metabolites, iNOS induction, and caspase-3 activation in LPS-treated rats. In conclusion, 17-DMAG possesses the anti-inflammatory and antioxidant effects that were proved through LPS-induced acute inflammation, which is associated with induction of HSP70 and HO-1, leading to prevent MODS in sepsis.
Collapse
Affiliation(s)
- Yi-Li Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Hsueh Shen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Ju Chu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Hwong-Ru Hwang
- Division of Cardiology, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kwok-Keung Lam
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Catholic Mercy Hospital, Hsinchu, Taiwan
- * E-mail: (YML); (KKL)
| | - Yen-Mei Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (YML); (KKL)
| |
Collapse
|
19
|
Mazzei L, Docherty NG, Manucha W. Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 2015; 20:893-906. [PMID: 26228633 PMCID: PMC4595437 DOI: 10.1007/s12192-015-0622-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Urinary heat shock protein 70 (Hsp70) is rapidly increased in patients with clinical acute kidney injury, indicating that it constitutes a component of the endogenous stress response to renal injury. Moreover, experimental models have demonstrated that Hsp70 activation is associated with the cytoprotective actions of several drugs following obstruction, including nitric oxide (NO) donors, geranylgeranylacetone, vitamin D, and rosuvastatin. Discrete and synergistic effects of the biological activities of Hsp70 may explain its cytoprotective role in obstructive nephropathy. Basic studies point to a combination of effects including inhibition of apoptosis and inflammation, repair of damaged proteins, prevention of unfolded protein aggregation, targeting of damaged protein for degradation, and cytoskeletal stabilization as primary effectors of Hsp70 action. This review summarizes our understanding of how the biological actions of Hsp70 may affect renal cytoprotection in the context of obstructive injury. The potential of Hsp70 to be of central importance to the mechanism of action of various drugs that modify the genesis of experimental obstructive nephropathy is considered.
Collapse
Affiliation(s)
- Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.
| | - Neil G Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| |
Collapse
|
20
|
Lazaro I, Oguiza A, Recio C, Mallavia B, Madrigal-Matute J, Blanco J, Egido J, Martin-Ventura JL, Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-κB and STAT Signaling Pathways in Diabetic Mice. Diabetes 2015; 64:3600-13. [PMID: 26116697 DOI: 10.2337/db14-1926] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/20/2015] [Indexed: 11/13/2022]
Abstract
Heat shock proteins (HSPs) are induced by cellular stress and function as molecular chaperones that regulate protein folding. Diabetes impairs the function/expression of many HSPs, including HSP70 and HSP90, key regulators of pathological mechanisms involved in diabetes complications. Therefore, we investigated whether pharmacological HSP90 inhibition ameliorates diabetes-associated renal damage and atheroprogression in a mouse model of combined hyperglycemia and hyperlipidemia (streptozotocin-induced diabetic apolipoprotein E-deficient mouse). Treatment of diabetic mice with 17-dimethylaminoethylamino-17-demethoxygeldanamycin (DMAG, 2 and 4 mg/kg, 10 weeks) improved renal function, as evidenced by dose-dependent decreases in albuminuria, renal lesions (mesangial expansion, leukocyte infiltration, and fibrosis), and expression of proinflammatory and profibrotic genes. Furthermore, DMAG significantly reduced atherosclerotic lesions and induced a more stable plaque phenotype, characterized by lower content of lipids, leukocytes, and inflammatory markers, and increased collagen and smooth muscle cell content. Mechanistically, the renoprotective and antiatherosclerotic effects of DMAG are mediated by the induction of protective HSP70 along with inactivation of nuclear factor-κB (NF-κB) and signal transducers and activators of transcription (STAT) and target gene expression, both in diabetic mice and in cultured cells under hyperglycemic and proinflammatory conditions. In conclusion, HSP90 inhibition by DMAG restrains the progression of renal and vascular damage in experimental diabetes, with potential implications for the prevention of diabetes complications.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Beñat Mallavia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Julio Madrigal-Matute
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY
| | - Julia Blanco
- Department of Pathology, Hospital Clinico San Carlos, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Jose-Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|
21
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
22
|
O'Neill S, Humphries D, Tse G, Marson LP, Dhaliwal K, Hughes J, Ross JA, Wigmore SJ, Harrison EM. Heat shock protein 90 inhibition abrogates TLR4-mediated NF-κB activity and reduces renal ischemia-reperfusion injury. Sci Rep 2015; 5:12958. [PMID: 26248657 PMCID: PMC4528191 DOI: 10.1038/srep12958] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/06/2015] [Indexed: 12/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury. Toll-like receptor 4 (TLR4) mediates sterile inflammation following renal IRI. Heat shock protein 90 (Hsp90) inhibition is a potential strategy to reduce IRI, and AT13387 is a novel Hsp90 inhibitor with low toxicity. This study assessed if pre-treatment with AT13387 could reduce renal IRI and established if the mechanism of protection involved a reduction in inflammatory signalling. Mice were pre-treated with AT13387 prior to renal IRI. 24 h later, renal function was determined by serum creatinine, kidney damage by tubular necrosis score, renal TLR4 expression by PCR and inflammation by cytokine array. In vitro, human embryonic kidney cells were co-transfected to express TLR4 and a secreted alkaline phosphatase NF-κB reporter. Cells were pre-treated with AT13387 and exposed to endotoxin-free hyaluronan to stimulate sterile TLR4-specific NF-κB inflammatory activation. Following renal IRI, AT13387 significantly reduced serum creatinine, tubular necrosis, TLR4 expression and NF-κB-dependent chemokines. In vitro, AT13387-treatment resulted in breakdown of IκB kinase, which abolished TLR4-mediated NF-κB activation by hyaluronan. AT13387 is a new agent with translational potential that reduces renal IRI. The mechanism of protection may involve breakdown of IκB kinase and repression of TLR4-mediated NF-κB inflammatory activity.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Duncan Humphries
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - George Tse
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Lorna P Marson
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Kevin Dhaliwal
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - James A Ross
- MRC Centre for Regenerative Medicine, University of Edinburgh, Royal Infirmary of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SA
| | - Stephen J Wigmore
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| | - Ewen M Harrison
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4SA
| |
Collapse
|
23
|
Sun X, Crawford R, Liu C, Luo T, Hu B. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis 2015; 82:123-131. [PMID: 26070787 DOI: 10.1016/j.nbd.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular stress response after hypoxia-Ischemia (HI) may be substantially different between immature and mature brains. To study this phenomenon, postnatal day 7 (P7) and P26 rats were subjected to HI followed by different periods of recovery. Nuclear accumulation of heat-shock transcription factor-1 (HSF1) and expression of molecular chaperone proteins and mRNAs were analyzed by in situ hybridization, Western blotting and confocal microscopy. Nuclear accumulation of HSF1 protein and induction of hsp70 mRNA occurred dramatically in P26 neurons, but minimally in P7 neurons and moderately in microglial cells after HI. Consistently, the level of HSF1 was significantly higher in P26 brain samples, compared with that in P7 brain. Translation of hsp70 mRNA into proteins in P26 mature neurons was seen at 4h and peaked at 24h, when some neurons had already died after HI. Induction of ER glucose-regulated protein-78 (grp78) and mitochondrial hsp60 mRNAs and proteins was moderate and occurred also only in P26 mature brain after HI. These results suggest that the cellular stress response after HI is development-dependent, being pronounced in mature but virtually negligible in neonatal neurons. Therefore, the effectiveness of therapeutic strategies targeting the stress pathway against HI may be significantly different between immature and mature brains. The delayed induction of molecular chaperones in mature brain may be somewhat late for protecting HI neurons from acute HI injury.
Collapse
Affiliation(s)
- Xin Sun
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA; Department of Neurology, The First Teaching Hospital, Jilin University, China
| | - Robert Crawford
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Chunli Liu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Tianfei Luo
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Bingren Hu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA.
| |
Collapse
|
24
|
Ma L, Li Z, Liu Z, Li M, Sui D, Liu Y, Shao W, Wang B, Liu P, Li G. 17AAG improves histological and functional outcomes in a rat CCI model through autophagy activation and apoptosis attenuation. Neurosci Lett 2015; 599:1-6. [PMID: 25957556 DOI: 10.1016/j.neulet.2015.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/18/2015] [Accepted: 05/02/2015] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) is caused by both primary and secondary injury mechanisms, all of which cause neuronal cell death and functional deficits. Both apoptosis and autophagy participated in neuronal cell death and functional loss induced following TBI. Preclinical findings implicate that 17-allylamino-demethoxygeldanamycin (17-AAG), an anticancer drug in clinical, present neuroprotection actions in multiple neurological disorders, but whether 17-AAG is capable of modulating neuronal autophagy has never been addressed. The present study was designed to determine the hypothesis that17-AAG treatment could confer neuroprotection in a rat model of TBI. We also used an autophagy inhibitor 3-methyladenine (3-MA) as well as an autophagy inducer rapamycin (RAPA) to test its underlining mechanisms. Our results showed that post-TBI administration of 17-AAG could attenuate brain edema, decrease neuronal death, as well as improve the recovery of motor function. Afterwards, in our model, 17-AAG treatment protected against TBI-induced apoptosis activation as well as enhanced neuronal autophagy. The present study provides novel clues in understanding the mechanisms of which 17-AAG exerts its neuroprotective activity on neurological disorders.
Collapse
Affiliation(s)
- Lixin Ma
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China; Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Zefu Li
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Zhihui Liu
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Meng Li
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Dehua Sui
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Yongliang Liu
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Wei Shao
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Bo Wang
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Pengfei Liu
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
25
|
Orban JC, Quintard H, Cassuto E, Jambou P, Samat-Long C, Ichai C. Effect of N-acetylcysteine pretreatment of deceased organ donors on renal allograft function: a randomized controlled trial. Transplantation 2015; 99:746-53. [PMID: 25250647 PMCID: PMC4376274 DOI: 10.1097/tp.0000000000000395] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 07/08/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antioxidant donor pretreatment is one of the pharmacologic strategy proposed to prevent renal ischemia-reperfusion injuries and delayed graft function (DGF). The aim of the study was to investigate whether a donor pretreatment with N-acetylcysteine (NAC) reduces the incidence of DGF in adult human kidney transplant recipients. METHODS In this randomized, open-label, monocenter trial, 160 deceased heart-beating donors were allowed to perform 236 renal transplantations from September 2005 to December 2010. Donors were randomized to receive, in a single-blind controlled fashion, 600 mg of intravenous NAC 1 hr before and 2 hr after cerebral angiography performed to confirm brain death. Primary endpoint was DGF defined by the need for at least one dialysis session within the first week or a serum creatinine level greater than 200 μmol/L at day 7 after kidney transplantation. RESULTS The incidence of DGF was similar between donors pretreated with or without NAC (39/118; 33% vs. 30/118; 25.4%; P = 0.19). Requirement for at least one dialysis session was not different between the NAC and No NAC groups (17/118; 14.4% vs. 14/118; 11.8%, P = 0.56). The two groups had comparable serum creatinine levels, estimated glomerular filtration rates, and daily urine output at days 1, 7, 15, and 30 after kidney transplantation as well as at hospital discharge. No difference in recipient mortality nor in 1-year kidney graft survival was observed. CONCLUSION Donor pretreatment with NAC does not improve delayed graft function after kidney transplantation.
Collapse
Affiliation(s)
- Jean-Christophe Orban
- Medico-Surgical Intensive Care Unit, Saint-Roch University Hospital, University of Medicine, Nice, France
| | - Hervé Quintard
- Medico-Surgical Intensive Care Unit, Saint-Roch University Hospital, University of Medicine, Nice, France
| | - Elisabeth Cassuto
- Nephrology and renal transplantation Unit, Archet University hospital of Nice, Nice, France
| | - Patrick Jambou
- Coordination of Procurement and Transplantation Unit, Cimiez University hospital of Nice, Nice, France
| | - Corine Samat-Long
- Medico-Surgical Intensive Care Unit, Saint-Roch University Hospital, University of Medicine, Nice, France
| | - Carole Ichai
- Medico-Surgical Intensive Care Unit, Saint-Roch University Hospital, University of Medicine, Nice, France
| |
Collapse
|
26
|
Levine MH, Wang Z, Bhatti TR, Wang Y, Aufhauser DD, McNeal S, Liu Y, Cheraghlou S, Han R, Wang L, Hancock WW. Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation. Am J Transplant 2015; 15:965-73. [PMID: 25708614 PMCID: PMC5493154 DOI: 10.1111/ajt.13106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of renal dysfunction and renal failure. Histone/protein deacetylases (HDACs) regulate gene accessibility and higher order protein structures and may alter cellular responses to a variety of stresses. We investigated whether use of pan- and class-specific HDAC inhibitors (HDACi) could improve IRI tolerance in the kidney. Using a model of unilateral renal IRI, we investigated early renal function after IRI, and calculated fibrosis after IRI using an automated scoring system. We found that pan-HDAC inhibition using trichostatin (TSA) yielded significant renal functional benefit at 24-96 hours (p < 0.001). Treated mice developed significantly less fibrosis at 30 days (p < 0.0004). Class I HDAC inhibition with MS-275 yielded similar effects. Protection from fibrosis formation was also noted in a cold ischemia transplant model (p < 0.008) with a trend toward improved cold ischemic survival in TSA-treated mice. These effects were not accompanied by induction of typical ischemic tolerance pathways or by priming of heat shock protein expression. In fact, heat shock protein 70 deletion or overexpression did not alter renal ischemia tolerance. Micro-RNA 21, known to be enhanced in vitro in renal tubular cells that survive stress, was enhanced by treatment with HDACi, pointing to possible mechanism.
Collapse
Affiliation(s)
- M. H. Levine
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA,Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Z. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - T. R. Bhatti
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Y. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - D. D. Aufhauser
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - S. McNeal
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - Y. Liu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - S. Cheraghlou
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - R. Han
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - L. Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - W. W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
27
|
Kacimi R, Yenari MA. Pharmacologic heat shock protein 70 induction confers cytoprotection against inflammation in gliovascular cells. Glia 2015; 63:1200-12. [PMID: 25802219 DOI: 10.1002/glia.22811] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 12/18/2022]
Abstract
The inhibition of the 90-kDa heat shock protein (HSP90) leads to upregulation of the 70-kDa-inducible HSP70. HSP70 has been previously shown to be neuroprotective and anti-inflammatory. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents in cancer, presumably owing to their ability to upregulate HSP70. However, the effects of HSP90 inhibition in brain inflammation are still unclear. We investigate the effect of a panel of HSP90 inhibitors on endotoxin-activated microglia and eventual protection from brain-derived endothelial cells. Prior studies have shown that GA protects brain cells from oxidative stress. We show here that when astrocytes or microglial BV2 cells were pretreated with GA or other HSP90 inhibitors, endotoxin-induced cell death was reduced in cocultures of BV2 microglia and brain-derived endothelial cells (bEND.3). Endotoxin-stimulated BV2 cells led to increased nitric oxide (NO) and inducible nitric oxide synthase which was prevented by treatment with all HSP90 inhibitors. HSP90 inhibitors also prevented lipopolysaccharide (LPS)-induced BV2 cell death. We also found that HSP90 inhibition blocked nuclear translocation of nuclear factor kappa B and attenuated IκBα degradation, and inhibited LPS-activated JAK-STAT phosphorylation. We show that pharmacologic inhibition of HSP90 with subsequent HSP70 induction protects cells that comprise the cerebral vasculature against cell death owing to proinflammatory stimuli. This approach may have therapeutic potential in neurological conditions with an inflammatory component.
Collapse
Affiliation(s)
- Rachid Kacimi
- Department of Neurology, University of California, San Francisco & San Francisco Veterans Affairs Medical Center, San Francisco
| | | |
Collapse
|
28
|
Jia JJ, Li JH, Jiang L, Lin BY, Wang L, Su R, Zhou L, Zheng SS. Liver protection strategies in liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:34-42. [PMID: 25655288 DOI: 10.1016/s1499-3872(15)60332-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver transplantation is the therapy of choice for patients with end-stage liver diseases. However, the gap between the low availability of organs and high demand is continuously increasing. Innovative strategies for organ protection are necessary to expand donor pool and to achieve better outcomes for liver transplantation. The present review analyzed and compared various strategies of liver protection. DATA SOURCES Databases such as PubMed, Embase and Ovid were searched for the literature related to donor liver protection strategies using following key words: "ischemia reperfusion injury", "graft preservation", "liver transplantation", "machine perfusion" and "conditioning". Of the 146 studies identified, only those with cutting edge strategies were analyzed. RESULTS A variety of therapeutic approaches were proposed to alleviate graft ischemia/reperfusion injury, which included static cold storage, machine perfusion (hypothermic, normothermic and subnormothermic), manual conditioning (pre, post and remote), and pharmacological conditioning. Evidences from animal experiments and clinical trials suggested that all these strategies could potentially protect liver graft; however, their clinical applications are limited partially due to their own disadvantages. CONCLUSIONS There are a plenty of methods suggested to decrease the degree of donor liver transplantation-related injury. However, none of these approaches is perfect in clinical practice. More translational researches (molecular and clinical studies) are needed to improve the techniques in liver graft protection.
Collapse
Affiliation(s)
- Jun-Jun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Milisav I, Ribarič S, Šuput D. Targeting stress responses for regenerative medicine. Methods Mol Biol 2015; 1292:235-43. [PMID: 25804760 DOI: 10.1007/978-1-4939-2522-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Some internal and external stimuli elicit stress responses on the cellular level and at the level of the organism. When the stimulus is brief and its intensity mild to moderate, it triggers adaptation changes that improve the cell's or organism's survival. This adaptation is achieved through a variety of cellular mechanisms such as induction of repair mechanisms, improved removal of damaged macromolecules, upregulation of endogenous antioxidant defenses, and prevention of apoptosis triggering by moderate stressors. The key intracellular signaling pathways involved in stress adaptation are the mTORC1 and SIRT1. Manipulating these stress adaptation signaling pathways with a variety of agents, improves the cellular adaptation to stress, prolongs cell survival, and improves the transplantation outcome in animal models and in clinical trials. The challenge for the future is to fine-tune the numerous experimental techniques to suit the needs of transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Irina Milisav
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia,
| | | | | |
Collapse
|
30
|
Liu Y, Yu Y, Chu H, Bing D, Wang S, Zhou L, Chen J, Chen Q, Pan C, Sun Y, Cui Y. 17-DMAG induces Hsp70 and protects the auditory hair cells from kanamycin ototoxicity in vitro. Neurosci Lett 2014; 588:72-7. [PMID: 25556684 DOI: 10.1016/j.neulet.2014.12.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/28/2014] [Accepted: 12/30/2014] [Indexed: 01/17/2023]
Abstract
Heat shock protein 70 (Hsp70) has been known to be able to play a protective role in the cochlea. The aim of this study was to investigate whether geldanamycin hydrosoluble derivative 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) has the ability to induce Hsp70 up-regulation to protect hair cells from kanamycin-induced ototoxicity in vitro. The organ of Corti (OC) explants were isolated from mice at postnatal day 3-5. Then, the explants were exposed to kanamycin with or without pre-incubation with 17-DMAG. The expression of Hsp70 was assessed by reverse transcription-quantitative polymerase chain reaction, ELISA, and immunofluorescent staining. The surviving hair cells were examined by phalloidin labeling and were counted. We found that Hsp70 expression in the explants after pre-incubation with 17-DMAG was significantly increased at both mRNA and protein levels. Immunofluorescent staining showed that Hsp70 was mainly located in the auditory hair cells. Compared with kanamycin group, the loss of hair cells was inhibited significantly in 17-DMAG+kanamycin group. Our study demonstrated that 17-DMAG induces Hsp70 in the hair cells, and has a significant protective effect against kanamycin ototoxicity in vitro. 17-DMAG has the possibility to be a safe and effective anti-ototoxic drug.
Collapse
Affiliation(s)
- Yun Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yang Yu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China.
| | - Hanqi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Shaoli Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Liangqiang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Qingguo Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Chunchen Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yanbo Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| | - Yonghua Cui
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, PR China
| |
Collapse
|
31
|
O'Neill S, Hughes J. Heat-shock protein-70 and regulatory T cell-mediated protection from ischemic injury. Kidney Int 2014; 85:5-7. [PMID: 24380899 DOI: 10.1038/ki.2013.304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heat preconditioning induces heat-shock protein-70 upregulation and protects from renal ischemia/reperfusion injury. Kim et al. report that heat-shock protein-70 and regulatory T cells play a key role in protective heat preconditioning. This work reinforces the utility of inducing heat-shock protein-70 expression by pharmacological agents as a novel therapy for the prevention and treatment of ischemic kidney injury.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Jeremy Hughes
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
32
|
Chen W, Peng W, Huang J, Yu X, Tan K, Chen Y, Lin X, Chen D, Dai Y. Microarray analysis of long non-coding RNA expression in human acute rejection biopsy samples following renal transplantation. Mol Med Rep 2014; 10:2210-6. [PMID: 25198465 DOI: 10.3892/mmr.2014.2420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/10/2014] [Indexed: 11/05/2022] Open
Abstract
Rejection is still a major obstacle in long-term allograft survival of renal transplant recipients. Long non‑coding RNAs (lncRNAs) are an important class of pervasive RNAs involved in a variety of biological functions, and which are often found to be differentially expressed between healthy and pathological conditions. The aim of this study was to compare the expression profiles of lncRNAs between samples from acute rejection following kidney transplantation and control samples. Three patients were enrolled, diagnosed by renal biopsy with acute rejection upon kidney transplantation. We used lncRNA microarrays to study the lncRNA expression profiles in the kidney biopsies of these patients and in kidneys from healthy donors. Reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray results. In addition, potential functions of the identified lncRNAs were further explored by searching the UCSC, RNAdb, RefSeq and NRED databases. Five candidate lncRNAs displaying differential expression in acute rejection samples were validated by RT-qPCR. The results were in agreement with the microarray data. Among the identified lncRNAs, certain have been previously identified in relevant conditions, thereby supporting previous evidence, but certain may constitute novel biomarker candidates. This is the first report to date using lncRNA microarrays to identify unique expression signatures of acute rejection in transplant biopsies. Our data indicate that lncRNAs are potentially involved in the pathogenesis of acute rejection. Our results may have important implications in the identification of diagnostic biomarkers, as well as in the understanding and treatment of acute rejection following renal transplantation.
Collapse
Affiliation(s)
- Wenbiao Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wujian Peng
- Third People's Hospital of Shenzhen, Guangdong Medical College, Shenzhen, Guangdong 518112, P.R. China
| | - Jianrong Huang
- Third People's Hospital of Shenzhen, Guangdong Medical College, Shenzhen, Guangdong 518112, P.R. China
| | - Xiangqi Yu
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Kuibi Tan
- Ningbo Second Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Yuyu Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Deheng Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
33
|
Abstract
Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence suggests that TLRs, NLRs and the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome have important roles in kidney diseases through regulation of inflammatory and tissue-repair responses to infection and injury. In this Review, we discuss the pathological mechanisms that are related to TLRs, NLRs and NLRP3 in various kidney diseases. In general, these receptors are protective in the host defence against urinary tract infection, but can sustain and self-perpetuate tissue damage in sterile inflammatory and immune-mediated kidney diseases. TLRs, NLRs and NLRP3, therefore, have become promising drug targets to enable specific modulation of kidney inflammation and suppression of immunopathology in kidney disease.
Collapse
|
34
|
Kaucsár T, Bodor C, Godó M, Szalay C, Révész C, Németh Z, Mózes M, Szénási G, Rosivall L, Sőti C, Hamar P. LPS-induced delayed preconditioning is mediated by Hsp90 and involves the heat shock response in mouse kidney. PLoS One 2014; 9:e92004. [PMID: 24646925 PMCID: PMC3960147 DOI: 10.1371/journal.pone.0092004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/15/2014] [Indexed: 11/18/2022] Open
Abstract
Introduction We and others demonstrated previously that preconditioning with endotoxin (LPS) protected from a subsequent lethal LPS challenge or from renal ischemia-reperfusion injury (IRI). LPS is effective in evoking the heat shock response, an ancient and essential cellular defense mechanism, which plays a role in resistance to, and recovery from diseases. Here, by using the pharmacological Hsp90 inhibitor novobiocin (NB), we investigated the role of Hsp90 and the heat shock response in LPS-induced delayed renal preconditioning. Methods Male C57BL/6 mice were treated with preconditioning (P: 2 mg/kg, ip.) and subsequent lethal (L: 10 mg/kg, ip.) doses of LPS alone or in combination with NB (100 mg/kg, ip.). Controls received saline (C) or NB. Results Preconditioning LPS conferred protection from a subsequent lethal LPS treatment. Importantly, the protective effect of LPS preconditioning was completely abolished by a concomitant treatment with NB. LPS induced a marked heat shock protein increase as demonstrated by Western blots of Hsp70 and Hsp90. NB alone also stimulated Hsp70 and Hsp90 mRNA but not protein expression. However, Hsp70 and Hsp90 protein induction in LPS-treated mice was abolished by a concomitant NB treatment, demonstrating a NB-induced impairment of the heat shock response to LPS preconditioning. Conclusion LPS-induced heat shock protein induction and tolerance to a subsequent lethal LPS treatment was prevented by the Hsp90 inhibitor, novobiocin. Our findings demonstrate a critical role of Hsp90 in LPS signaling, and a potential involvement of the heat shock response in LPS-induced preconditioning.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Csaba Bodor
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Mária Godó
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Csaba Szalay
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Csaba Révész
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Zalán Németh
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Miklós Mózes
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
- Hungarian Academy of Sciences-Semmelweis University, Nephrology Research Group, Budapest, Hungary
| | - Csaba Sőti
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
- * E-mail: (CS); (PH)
| | - Péter Hamar
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
- * E-mail: (CS); (PH)
| |
Collapse
|
35
|
Zhong GQ, Tu RH, Zeng ZY, Li QJ, He Y, Li S, He Y, Xiao F. Novel functional role of heat shock protein 90 in protein kinase C-mediated ischemic postconditioning. J Surg Res 2014; 189:198-206. [PMID: 24742623 DOI: 10.1016/j.jss.2014.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous studies have shown that heat shock protein 90 (HSP90) plays a vital role in ischemic preconditioning. The present study was designed to explore whether HSP90 might be responsible for cardioprotection in ischemic postconditioning (PostC). MATERIALS AND METHODS Rat hearts underwent 30 min of regional ischemia and 2 h of reperfusion in situ, and PostC was effected with three cycles of 30-s reperfusion and 30-s coronary artery occlusion at the end of ischemia. Ninety rats were randomized into five groups: sham; ischemia-reperfusion (I/R); PostC; 1 mg/kg HSP90 inhibitor geldanamycin (GA) plus PostC (PostC + GA1); and 5 mg/kg GA plus PostC (PostC + GA5). The GA was administered 10 min before reperfusion. RESULTS Compared with the I/R group, the PostC group exhibited lower infarct size (46.7 ± 3.0% versus 27.4 ± 4.0%, respectively), release of lactate dehydrogenase and creatine kinase-MB (2252.6 ± 350.8 versus 1713.7 ± 202.4 IU/L, 2804.3 ± 315.7 versus 1846.2 ± 238.0 IU/L, respectively), cardiomyocyte apoptosis (48.4 ± 5.6% versus 27.6 ± 3.8%, respectively), and mitochondrial damage. These beneficial effects were accompanied by an increase in mitochondrial Bcl-2 levels and a decrease in Bax levels. In addition, mitochondrial protein kinase Cepsilon (PKCepsilon) was relatively low in the I/R group but significantly higher in the PostC group, whereas cytosolic PKCepsilon was relatively high in the I/R group but significantly lower in the PostC group, suggesting the translocation of PKCepsilon from cytosol to mitochondria during PostC. However, blocking HSP90 function with GA inhibited the protection of PostC and PKCepsilon mitochondrial translocation. CONCLUSIONS HSP90 is critical in PostC-induced cardioprotection, and its activity might be linked to mitochondrial targeting of PKCepsilon, the activation of which results in upregulation of its target gene, Bcl-2, and the inhibition of proapoptotic Bax in mitochondria.
Collapse
Affiliation(s)
- Guo-Qiang Zhong
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China; Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China.
| | - Rong-Hui Tu
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Zhi-Yu Zeng
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Qing-Jie Li
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Yan He
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Shuo Li
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Yan He
- Department of Geriatric Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| | - Fei Xiao
- Department of Cardiology, First Affiliated Hospital, Guang Xi Medical University, Nanning, China
| |
Collapse
|
36
|
Barrera-Chimal J, Pérez-Villalva R, Ortega JA, Uribe N, Gamba G, Cortés-González C, Bobadilla NA. Intra-renal transfection of heat shock protein 90 alpha or beta (Hsp90α or Hsp90β) protects against ischemia/reperfusion injury. Nephrol Dial Transplant 2013; 29:301-12. [PMID: 24166465 DOI: 10.1093/ndt/gft415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We previously reported that radicicol (Hsp90 inhibitor) induced a reduction in the renal blood flow and glomerular filtration rate, in part due to a reduction in urinary NO2/NO3 excretion, suggesting that Hsp90 regulates renal vascular tone in physiological conditions. However, there is a lack of information concerning Hsp90α or Hsp90β role on eNOS activity and their association with acute kidney injury (AKI) characterized by an inadequate NO production. This study evaluated the effects of Hsp90α or Hsp90β intra-renal transfection under ischemia/reperfusion (IR) injury. METHODS Uninephrectomized (Nx) rats were intra-renally transfected through injections with Hsp90α or Hsp90β cloned into pcDNA3.1(+) or empty vector (EV) at 48 h before inducing IR, as indicated in the following groups: (i) Nx+sham, (ii) Nx+IR, (iii) Nx+IR+EV, (iv) Nx+IR+Hsp90α and (v) Nx+IR+Hsp90β. After 24 h, physiological, histopathological, biochemical and molecular studies were performed. RESULTS IR-induced renal dysfunction, structural injury, tubular proliferation, the elevation of urinary Hsp72 and the reduction of urinary NO2/NO3 excretion. These alterations were associated with reduced eNOS-Hsp90 coupling and changes in the eNOS phosphorylation state mediated through a reduction in PKCα and increased Rho kinase expression. In contrast, intra-renal transfection of Hsp90α or Hsp90β prevented IR injury that was associated with the restoration of eNOS-Hsp90 coupling, eNOS activating phosphorylation and PKCα and Rho kinase levels. CONCLUSIONS Here we showed that eNOS-Hsp90 uncoupling plays a critical role in promoting NO reduction during IR. This effect was effectively reversed through Hsp90α or Hsp90β intra-renal transfection, suggesting their implication in regulating NO/eNOS pathway and the renal vascular tone.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
37
|
Lu X, Nurmemet D, Bolduc DL, Elliott TB, Kiang JG. Radioprotective effects of oral 17-dimethylaminoethylamino-17-demethoxygeldanamycin in mice: bone marrow and small intestine. Cell Biosci 2013; 3:36. [PMID: 24499553 PMCID: PMC3852109 DOI: 10.1186/2045-3701-3-36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/01/2013] [Indexed: 01/05/2023] Open
Abstract
Background Our previous research demonstrated that one subcutaneous injection of 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) 24 hours (h) before irradiation (8.75 Gy) increased mouse survival by 75%. However, the protective mechanism of 17-DMAG is currently unknown. The present study aimed to investigate whether oral administration of 17-DMAG was also radioprotective and the potential role it may play in radioprotection. Results A single dose of orally pre-administered (24, 48, or 72 h) 17-DMAG (10 mg/kg) increased irradiated mouse survival, reduced body weight loss, improved water consumption, and decreased facial dropsy, whereas orally post-administered 17-DMAG failed. Additional oral doses of pre-treatment did not improve 30-day survival. The protective effect of multiple pre-administrations (2−3 times) of 17-DMAG at 10 mg/kg was equal to the outcome of a single pre-treatment. In 17-DMAG-pretreated mice, attenuation of bone marrow aplasia in femurs 30 days after irradiation with recovered expressions of cluster of differentiation 34, 44 (CD34, CD44), and survivin in bone marrow cells were observed. 17-DMAG also elevated serum granulocyte-colony stimulating factor (G-CSF), decreased serum fms-related tyrosine kinase 3 ligand, and reduced white blood cell depletion. 17-DMAG ameliorated small intestinal histological damage, promoted recovery of villus heights and intestinal crypts including stem cells, where increased leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) was found 30 days after irradiation. Conclusions 17-DMAG is a potential radioprotectant for bone marrow and small intestine that results in survival improvement.
Collapse
Affiliation(s)
- Xinyue Lu
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603, USA.
| | | | | | | | | |
Collapse
|
38
|
Perera RH, Patel R, Wu H, Gangolli M, Traughber B, Oleinick N, Exner AA. Preclinical evaluation of radiosensitizing activity of Pluronic block copolymers. Int J Radiat Biol 2013; 89:801-12. [PMID: 23631609 DOI: 10.3109/09553002.2013.800246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Pluronic block copolymers are non-ionic surfactants with demonstrated sensitizing activity in chemotherapy and hyperthermia in various tumor cell lines. In the current study we investigated the potential activity of Pluronic as a radiosensitizing agent. MATERIALS AND METHODS As a possible mechanism, the effect of Pluronic on Hsp70 and Hsp90 was examined. Gli36 human glioma cells were treated with radiation alone as well as with a combination treatment of Pluronic and radiation. RESULTS Clonogenic cell survival assays show that Pluronic has an elevated effect on radiosensitization (50% high, p < 0.01), even with radiation doses as low as 2 Gy. The Hsp90 level was reduced 24 h after the combined treatment in both in vitro and in vivo. Similarly, Hsp70 levels were also decreased 24 h post treatment. When Gli36 cells were exposed to Pluronic before and during irradiation, DNA DSB: double-strand breaks repair was reduced, and elevated apoptosis was also seen in tumor xenografts. CONCLUSION Data suggest the potential use of L10 as a radiosensitizer. While the mechanism of sensitization requires additional investigation, the presented results indicate that the effect may be due, in part, to a decrease in Hsp90 and 70 levels and increased DNA damage.
Collapse
Affiliation(s)
- Reshani H Perera
- Department of Radiology, Case Western Reserve University , Cleveland, Ohio , USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J Transl Med 2013; 11:24. [PMID: 23360542 PMCID: PMC3599611 DOI: 10.1186/1479-5876-11-24] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/25/2013] [Indexed: 02/03/2023] Open
Abstract
Background Ischemia/reperfusion injury plays a crucial role in renal transplantation, and represents a significant risk factor for acute renal failure and delayed graft function. The pathophysiological contribution of endoplasmic reticulum and mitochondria stress to ischemia/reperfusion injury has also been highlighted. Berberine (BBR) has been showed to attenuate ischemia/reperfusion injury by inhibiting oxidative stress. The study was carried out to investigate whether the pretreatment of BBR could reduce hypoxia/reoxygenation (H/R)-induced injury by inhibiting mitochondria stress and endoplasmic reticulum stress pathways. Methods The cultured human renal proximal tubular cell line HK-2 cells were exposed to 24 h hypoxia (5% CO2, 1% O2, 94% N2) followed by 3 h reoxygenation (5% CO2, 21% O2, 74% N2). And BBR was added to the culture medium 2h prior to the treatment. Then the cell viability, oxidative stress level, morphological change of apoptosis and apoptotic rate were determined. In addition, Western blot analysis was performed to identify the expression of apoptotic pathway parameters, including Bcl-2, Bax and cytochrome C involved in mitochondrial-dependent pathway and ER stress hallmarks such as glucose-regulated protein 78 and CCAAT/enhancer binding protein homologous protein. Results H/R produced dramatic injuries in HK-2 cells. The cell viability and the oxidative stress level in group H/R was significantly decreased. The classical morphological change of apoptosis was found, while the apoptotic rate and the expression of proteins involved in mitochondrial stress and endoplasmic reticulum stress pathways increased (p<0.05). Administration of BBR significantly inhibited these H/R induced changes (p<0.05). Conclusion This study revealed that BBR pretreatment serves a protective role against H/R induced apoptosis of human renal proximal tubular cells, and the mechanism is related to suppression of mitochondrial stress and endoplasmic reticulum stress pathways.
Collapse
|
40
|
Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 2012; 13:10771-10806. [PMID: 23109822 PMCID: PMC3472714 DOI: 10.3390/ijms130910771] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022] Open
Abstract
Organisms and their cells are constantly exposed to environmental fluctuations. Among them are stressors, which can induce macromolecular damage that exceeds a set threshold, independent of the underlying cause. Stress responses are mechanisms used by organisms to adapt to and overcome stress stimuli. Different stressors or different intensities of stress trigger different cellular responses, namely induce cell repair mechanisms, induce cell responses that result in temporary adaptation to some stressors, induce autophagy or trigger cell death. Studies have reported life-prolonging effects of a wide variety of so-called stressors, such as oxidants, heat shock, some phytochemicals, ischemia, exercise and dietary energy restriction, hypergravity, etc. These stress responses, which result in enhanced defense and repair and even cross-resistance against multiple stressors, may have clinical use and will be discussed, while the emphasis will be on the effects/cross-effects of oxidants.
Collapse
|
41
|
Abstract
Cellular stress response is a reaction to changes or fluctuations of extracellular conditions that damage the structure and function of macromolecules. Different stressors trigger different cellular responses, namely induce cell repair mechanisms, induce cell responses that result in temporary adaptation to some stressors, induce autophagy or trigger cell death. Inability to repair the damage or exposure to prolonged stress may contribute to aging. Persistent cell stress often enhances susceptibility to cancer and aging associated diseases. Cells and tissues are increasingly being used for transplantations and other novel therapeutic methods in which the quality and well being of cells is of paramount importance for the treatment to succeed. Therefore, discovering the mechanisms of cellular stress responses and the ability to detect and ameliorate them is important in prevention of development of disorders developed by persistent stress and for the success of transplantation and other cell related methods of regenerative medicine.
Collapse
Affiliation(s)
- Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
42
|
O'Neill S, Ross JA, Wigmore SJ, Harrison EM. The role of heat shock protein 90 in modulating ischemia-reperfusion injury in the kidney. Expert Opin Investig Drugs 2012; 21:1535-48. [PMID: 22876854 DOI: 10.1517/13543784.2012.713939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Kidney transplantation is the gold standard treatment for end-stage renal disease. Ischemia-reperfusion injury (IRI) is an unavoidable consequence of the transplantation procedure and is responsible for delayed graft function and poorer long-term outcomes. AREAS COVERED Pharmacological induction of heat shock protein (Hsp) expression is an emerging pre-conditioning strategy aimed at reducing IRI following renal transplantation. Hsp90 inhibition up-regulates protective Hsps (especially Hsp70) and potentially down-regulates NF-κB by disruption of the IκB kinase (IKK) complex. However, the clinical application of Hsp90 inhibitors is currently limited by their toxicity profile and the exact mechanism of protection conferred is unknown. Toll-like receptor 4 (TLR4) is a further regulator of NF-κB and recent studies suggest TLR4 plays a dominant role in mediating kidney damage following IRI. The full interaction of Hsps with TLRs is yet to be delineated and whether TLR4 signalling can be targeted by Hsp90 inhibition in IRI remains uncertain. EXPERT OPINION Pharmacological pre-conditioning by Hsp90 inhibition involves direct treatment to the kidney donor and/or organ, which aims to reduce injury prior to the onset of ischemia. The major challenges going forward are to establish the exact mechanism of protection offered by these drugs and the investgiation of less toxic analogues that could be safely translated into human studies.
Collapse
Affiliation(s)
- Stephen O'Neill
- MRC Centre for Inflammation Research, Tissue Injury and Repair Group, University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | | | | | | |
Collapse
|
43
|
Reversing the resistance phenotype of the Biomphalaria glabrata snail host Schistosoma mansoni infection by temperature modulation. PLoS Pathog 2012; 8:e1002677. [PMID: 22577362 PMCID: PMC3343117 DOI: 10.1371/journal.ppat.1002677] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/18/2012] [Indexed: 12/01/2022] Open
Abstract
Biomphalaria glabrata snails that display either resistant or susceptible phenotypes to the parasitic trematode, Schistosoma mansoni provide an invaluable resource towards elucidating the molecular basis of the snail-host/schistosome relationship. Previously, we showed that induction of stress genes either after heat-shock or parasite infection was a major feature distinguishing juvenile susceptible snails from their resistant counterparts. In order to examine this apparent association between heat stress and snail susceptibility, we investigated the effect of temperature modulation in the resistant snail stock, BS-90. Here, we show that, incubated for up to 4 hrs at 32°C prior to infection, these resistant snails became susceptible to infection, i.e. shedding cercariae at 5 weeks post exposure (PE) while unstressed resistant snails, as expected, remained resistant. This suggests that susceptibility to infection by this resistant snail phenotype is temperature-sensitive (ts). Additionally, resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin (GA) after heat stress, were no longer susceptible to infection, retaining their resistant phenotype. Consistently, susceptible snail phenotypes treated with 100 mM GA before parasite exposure also remained uninfected. These results provide direct evidence for the induction of stress genes (heat shock proteins; Hsp 70, Hsp 90 and the reverse transcriptase [RT] domain of the nimbus non-LTR retrotransposon) in B. glabrata susceptibility to S. mansoni infection and characterize the resistant BS-90 snails as a temperature-sensitive phenotype. This study of reversing snail susceptibility phenotypes to S. mansoni provides an opportunity to directly track molecular pathway(s) that underlie the B. glabrata snail's ability to either sustain or destroy the S. mansoni parasite. Biomphalaria glabrata snails that are either resistant or susceptible to the parasite, Schistosoma mansoni, have been an invaluable resource in studies aimed at understanding the molecular basis of the snail/schistosome interaction. Schistosomes cause the chronic debilitating disease schistosomiasis. Thus, it is hoped that dissecting pathways that underlie the snail/schistosome relationship might translate into alternative control strategies that will include blocking transmission of the parasite at the snail-stage of its development. Induction of stress genes is a feature distinguishing early exposed juvenile susceptible NMRI snails from resistant BS-90 snail stocks. To further analyze this apparent involvement of stress induction and snail susceptibility, here we applied heat stress to the resistant BS-90 snail, enhancing induction of stress genes (Hsp 70, Hsp 90 and RT) prior to infection. Results showed these resistant snails became susceptible, indicating resistance as being a temperature sensitive phenotype in these snails. Stressed resistant snails treated with the Hsp 90 specific inhibitor, geldanamycin, prior to exposure, were, however, shown to maintain their refractory phenotype. Interestingly, inhibitor treated susceptible snails also became non-susceptible. Collectively, these data point to stress induction as an important early step in the ability of S. mansoni to infect juvenile B. glabrata snails.
Collapse
|
44
|
Yu Y, Liu M, Zhang L, Cao Q, Zhang P, Jiang H, Zou Y, Ge J. Heat shock transcription factor 1 inhibits H₂O₂-induced cardiomyocyte death through suppression of high-mobility group box 1. Mol Cell Biochem 2012; 364:263-9. [PMID: 22246807 DOI: 10.1007/s11010-012-1226-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/04/2012] [Indexed: 01/28/2023]
Abstract
Heat shock transcription factor 1 (HSF1), which has been identified as an endogenous cardioprotective factor, possesses considerable anti-inflammatory effects and the ability against oxidative stress. However, the mechanisms have not been fully characterized yet. In this study, we investigated the effects of HSF1-regulated HMGB1 on cardiomyocyte death. Cultured cardiomyocytes were transfected with empty vector or HSF1 plasmid before the exposure to H(2)O(2). Cell death was assessed by cell staining. Additionally, the levels of intracellular and extracellular HMGB1 as well as its subcellular location were detected, and the expression of heat shock proteins (HSP27 and HSP90) in the cardiomyocytes was also determined. Not only did H(2)O(2) significantly increase cell death, but also elevated the levels of intracellular and extracellular HMGB1 and induced its translocation, whereas, as expected, HSF1 overexpression effectively attenuated cell death. Furthermore, HSF1 inhibited the intracellular expression of HMGB1 at early stage of oxidative stress and subsequently, HSF1 did negatively regulate the extracellular levels and the translocation of HMGB1 at late stage. Besides, the expression of HSP27 and HSP90 was significantly increased. These results suggested HSF1-attenuated cardiomyocyte death via reducing intracellular and extracellular levels of HMGB1 as well as preventing its translocation, which was partially associated with HSP27 and HSP90 up-regulated by HSF1 overexpression.
Collapse
Affiliation(s)
- Ying Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Leopoldino AM, Squarize CH, Garcia CB, Almeida LO, Pestana CR, Polizello ACM, Uyemura SA, Tajara EH, Gutkind JS, Curti C. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling. Mol Cell Biochem 2011; 363:65-74. [PMID: 22143534 DOI: 10.1007/s11010-011-1158-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023]
Abstract
SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 μM tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.
Collapse
Affiliation(s)
- Andréia M Leopoldino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fukumoto R, Kiang JG. Geldanamycin analog 17-DMAG limits apoptosis in human peripheral blood cells by inhibition of p53 activation and its interaction with heat-shock protein 90 kDa after exposure to ionizing radiation. Radiat Res 2011; 176:333-45. [PMID: 21663398 DOI: 10.1667/rr2534.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.
Collapse
Affiliation(s)
- Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
47
|
Rosin DL, Okusa MD. Dangers within: DAMP responses to damage and cell death in kidney disease. J Am Soc Nephrol 2011; 22:416-25. [PMID: 21335516 DOI: 10.1681/asn.2010040430] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The response to exogenous pathogens leads to activation of innate immunity through the release of pathogen-associated molecular patterns (PAMPs) and their binding to pattern recognition receptors. A classic example is septic shock where Toll receptor 4 recognizes PAMPs. Although well accepted, this concept does not explain the activation of innate immunity and inflammation occurs with transplantation, autoimmunity, or trauma. Increasingly recognized is that endogenous molecules released by dying cells (damage-associated molecular patterns; DAMPs) activate cellular receptors leading to downstream inflammation. Thus endogenous danger signals and exogenous PAMPs elicit similar responses through seemingly similar mechanisms. Also emerging is our understanding that normal repair processes benefit from dampening the immune response to these endogenous danger molecules. Here we focus on the role of DAMPs and their putative receptors in the pathogenesis of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Diane L Rosin
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
48
|
Sonoda H, Prachasilchai W, Kondo H, Yokota-Ikeda N, Oshikawa S, Ito K, Ikeda M. The protective effect of radicicol against renal ischemia--reperfusion injury in mice. J Pharmacol Sci 2010; 112:242-6. [PMID: 20093793 DOI: 10.1254/jphs.09259sc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Overexpression of heat shock protein 70 kDa (HSP70) is known to confer cellular protection against ischemia-reperfusion (I/R) injury. Radicicol, a HSP90 inhibitor, has been reported to induce the expression of HSP70 protein. Here we studied whether radicicol attenuated renal I/R injury in vivo. Treatment of mice with radicicol ameliorated renal I/R injury and increased renal HSP70 mRNA and protein. Administration of radicicol with quercetin, an inhibitor of HSP70 induction, eliminated the renoprotective effect of radicicol. Our results suggest that the up-regulation of renal HSP70 protein by radicicol leads to a novel drug therapy against renal I/R injury.
Collapse
Affiliation(s)
- Hiroko Sonoda
- Department of Veterinary Pharmacology, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Neznanov N, Gorbachev AV, Neznanova L, Komarov AP, Gurova KV, Gasparian AV, Banerjee AK, Almasan A, Fairchild RL, Gudkov AV. Anti-malaria drug blocks proteotoxic stress response: anti-cancer implications. Cell Cycle 2009; 8:3960-70. [PMID: 19901558 DOI: 10.4161/cc.8.23.10179] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of physical conditions and chemical agents induce accumulation of misfolded proteins creating proteotoxic stress. This leads to activation of adaptive pro-survival pathway, known as heat shock response (HSR), resulting in expression of additional chaperones. Several cancer treatment approaches, such as proteasome inhibitor Bortezomib and hsp90 inhibitor geldanamycin, involve activation of proteotoxic stress. Low efficacy of these therapies is likely due to the protective effects of HSR induced in treated cells, making this pathway an attractive target for pharmacological suppression. We found that the anti-malaria drugs quinacrine (QC) and emetine prevented HSR in cancer cells, as judged by induction of hsp70 expression. As opposed to emetine, which inhibited general translation, QC did not affect protein synthesis, but rather suppressed inducible HSF1-dependent transcription of the hsp70 gene in a relatively selective manner. The treatment of tumor cells in vitro with a combination of non-toxic concentrations of QC and proteotoxic stress inducers resulted in rapid induction of apoptosis. The effect was similar if QC was substituted by siRNA against hsp70, suggesting that the HSR inhibitory activity of QC was responsible for cell sensitization to proteotoxic stress inducers. QC was also found to enhance the antitumor efficacy of proteotoxic stress inducers in vivo: combinatorial treatment with 17-DMAG + QC resulted in suppression of tumor growth in two mouse syngeneic models. These results reveal that QC is an inhibitor of HSF1-mediated HSR. As such, this compound has significant clinical potential as an adjuvant in therapeutic strategies aimed at exploiting the cytotoxic potential of proteotoxic stress.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kansanen E, Jyrkkänen HK, Volger OL, Leinonen H, Kivelä AM, Häkkinen SK, Woodcock SR, Schopfer FJ, Horrevoets AJ, Ylä-Herttuala S, Freeman BA, Levonen AL. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 2009; 284:33233-41. [PMID: 19808663 PMCID: PMC2785166 DOI: 10.1074/jbc.m109.064873] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/02/2009] [Indexed: 01/23/2023] Open
Abstract
Electrophilic fatty acid derivatives, including nitrolinoleic acid and nitro-oleic acid (OA-NO(2)), can mediate anti-inflammatory and pro-survival signaling reactions. The transcription factor Nrf2, activated by electrophilic fatty acids, suppresses redox-sensitive pro-inflammatory gene expression and protects against vascular endothelial oxidative injury. It was therefore postulated that activation of Nrf2 by OA-NO(2) accounts in part for its anti-inflammatory actions, motivating the characterization of Nrf2-dependent and -independent effects of OA-NO(2) on gene expression using genome-wide transcriptional profiling. Control and Nrf2-small interfering RNA-transfected human endothelial cells were treated with vehicle, oleic acid, or OA-NO(2), and differential gene expression profiles were determined. Although OA-NO(2) significantly induced the expression of Nrf2-dependent genes, including heme oxygenase-1 and glutamate-cysteine ligase modifier subunit, the majority of OA-NO(2)-regulated genes were regulated by Nrf2-independent pathways. Moreover, gene set enrichment analysis revealed that the heat shock response is the major pathway activated by OA-NO(2), with robust induction of a number of heat shock genes regulated by the heat shock transcription factor. Inasmuch as the heat shock response mediates anti-inflammatory and cytoprotective actions, this mechanism is proposed to contribute to the protective cell signaling functions of nitro-fatty acids and other electrophilic fatty acid derivatives.
Collapse
Affiliation(s)
- Emilia Kansanen
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Oscar L. Volger
- the Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, The Netherlands, and
| | - Hanna Leinonen
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Annukka M. Kivelä
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Sanna-Kaisa Häkkinen
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Steven R. Woodcock
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Francisco J. Schopfer
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Anton J. Horrevoets
- the Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 BT Amsterdam, The Netherlands, and
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| | - Bruce A. Freeman
- the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Anna-Liisa Levonen
- From the Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, FIN-70211 Kuopio, Finland
| |
Collapse
|