1
|
Hartman-Houstman HL, Ralph DL, Nelson JW, Palmer LG, Faulkner JE, Sullivan JC, Moronge DM, McDonough AA. Optimizing renal transporter immunodetection: consequences of freeze-thaw during sample preparation. Am J Physiol Renal Physiol 2024; 327:F655-F666. [PMID: 39205660 PMCID: PMC11483075 DOI: 10.1152/ajprenal.00210.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Renal transporters (cotransporters, channels, and claudins) mediate homeostasis of fluids and electrolytes and are targets of hormonal and therapeutic regulators. Assessing renal transporter abundance with antibody probes by immunoblotting is an essential tool for mechanistic studies. Although journals require authors to demonstrate antibody specificity, there are no consensus guidelines for kidney sample preparation leading to lab-to-lab variability in immunoblot results. In this study, we determined the impact of sample preparation, specifically freeze-thawed (Frozen) versus freshly processed (Fresh) kidneys (female and male rats and mice) on immunoblot signal detection of 15 renal transporters and the impact of protease inhibitors during homogenization. In female Sprague-Dawley rat kidneys homogenized with aprotinin, Na2EDTA, PMSF, and phosphatase inhibitors, immunodetection signals were ∼50% lower in Frozen versus Fresh samples for most transporters. Inclusion of additional inhibitors (Roche cOmplete Protease Inhibitor, "+") only partially increased transporter immunoblot signals to near Fresh levels. In male Sprague-Dawley rats, immunoblot signal density was lower in Frozen+ versus Fresh+ despite additional inhibitors. In C57BL/6 male mice, immunoblot signals from proximal tubule transporters were lower in Frozen versus Fresh by ∼25-50% and greater in Frozen+. In contrast, immunodetection signal was equivalent in female Frozen+ versus female Fresh+ for claudin 2, villin, AQP1, NKCC2, NCC, ENaCβ, ENaCɣ, claudin 7, AQP2, NKAα1, and NKAβ1. Thus, kidney sample preparation variables, including freeze-thaw and protease inhibition, have substantial transporter-specific effects on quantification of renal transporter abundance by immunoblot. These findings underscore the critical importance of assessing and reporting the impact of sample preparation protocols on transporter recovery to ensure robust rigor and reproducibility. NEW & NOTEWORTHY Freeze-thawing kidneys before homogenization is widely accepted in renal research. This study demonstrates that if kidneys are freeze-thawed just once before homogenization, immunoblot signals are reduced in a transporter-specific manner in rats and mice dependent on sex and that immunoblot signals can be partially recovered by adding additional protease inhibitors. These findings underscore the critical importance of assessing the impact of sample preparation, including freeze-thaw versus fresh, to ensure robust rigor and reproducibility.
Collapse
Affiliation(s)
- Hannah L Hartman-Houstman
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States
| | - Jessica E Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Desmond M Moronge
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
2
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
3
|
McDonough AA, Harris AN, Xiong LI, Layton AT. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 2024; 20:21-36. [PMID: 37684523 PMCID: PMC11090267 DOI: 10.1038/s41581-023-00757-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation - normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid-base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, USA
| | - Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Anita T Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Huynh NV, Rehage C, Hyndman KA. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am J Physiol Renal Physiol 2023; 325:F717-F732. [PMID: 37767569 DOI: 10.1152/ajprenal.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.
Collapse
Affiliation(s)
- Nha Van Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Israelsen IME, Kamp-Jensen C, Westgate CSJ, Styrishave B, Jensen RH, Eftekhari S. Cycle-dependent sex differences in expression of membrane proteins involved in cerebrospinal fluid secretion at rat choroid plexus. BMC Neurosci 2023; 24:60. [PMID: 37946101 PMCID: PMC10633912 DOI: 10.1186/s12868-023-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Female sex is a known risk factor of brain disorders with raised intracranial pressure (ICP) and sex hormones have been suggested to alter cerebrospinal fluid (CSF) dynamics, thus impairing ICP regulation in CSF disorders such as idiopathic intracranial hypertension (IIH). The choroid plexus (CP) is the tissue producing CSF and it has been hypothesized that altered hormonal composition could affect the activity of transporters involved in CSF secretion, thus affecting ICP. Therefore, we aimed to investigate if expression of various transporters involved in CSF secretion at CP were different between males and females and between females in different estrous cycle states. Steroid levels in serum was also investigated. METHODS Female and male rats were used to determine sex-differences in the genes encoding for the transporters Aqp1 and 4, NKCC1, NBCe2, NCBE; carbonic anhydrase enzymes II and III (CA), subunits of the Na+/K+-ATPase including Atp1a1, Atp1b1 and Fxyd1 at CP. The estrous cycle stage metestrus (MET) and estrous (ES) were determined before euthanasia. Serum and CP were collected and subjected to RT-qPCR analysis and western blots. Serum was used to measure steroid levels using liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Significant differences in gene expression and steroid levels between males and ES females were found, while no differences were found between male and MET females. During ES, expression of Aqp1 was lower (p < 0.01) and NKCC1 was higher in females compared to males. CAII was lower while CAIII was higher in ES females (p < 0.0001). Gene expression of Atp1a1 was lower in ES compared to male (p = 0.0008). Several of these choroidal genes were also significantly different in MET compared to females in ES. Differences in gene expression during the estrus cycle were correlated to serum level of steroid hormones. Protein expression of AQP1 (p = 0.008) and CAII (p = 0.035) was reduced in ES females compared to males. CONCLUSIONS This study demonstrates for the first time that expression at CP is sex-dependent and markedly affected by the estrous cycle in female rats. Further, expression was related to hormone levels in serum. This opens a completely new avenue for steroid regulation of the expression of CSF transporters and the close link to the understanding of CSF disorders such as IIH.
Collapse
Affiliation(s)
- Ida Marchen Egerod Israelsen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Christina Kamp-Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet-Glostrup, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
6
|
Gillard BT, Amor N, Iraizoz FA, Pauža AG, Campbell C, Greenwood MP, Alagaili AN, Murphy D. Mobilisation of jerboa kidney gene networks during dehydration and opportunistic rehydration. iScience 2023; 26:107574. [PMID: 37664605 PMCID: PMC10470305 DOI: 10.1016/j.isci.2023.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Desert animals have evolved systems that enable them to thrive under dry conditions. Focusing on the kidney, we have investigated the transcriptomic adaptations that enable a desert rodent, the Lesser Egyptian Jerboa (Jaculus jaculus), to withstand water deprivation and opportunistic rehydration. Analysis of the whole kidney transcriptome showed many differentially expressed genes in the Jerboa kidney, 6.4% of genes following dehydration and an even greater number (36.2%) following rehydration compared to control. Genes correlated with the rehydration condition included many ribosomal protein coding genes suggesting a concerted effort to accelerate protein synthesis when water is made available. We identify an increase in TGF-beta signaling antagonists in dehydration (e.g., GREM2). We also describe expression of multiple aquaporin and solute carrier transporters mapped to specific nephron segments. The desert adapted renal transcriptome presented here is a valuable resource to expand our understanding of osmoregulation beyond that derived from model organisms.
Collapse
Affiliation(s)
- Benjamin T. Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Nabil Amor
- LR18ES05, Laboratory of Biodiversity, Parasitology and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Fernando Alvira Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Audrys G. Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Colin Campbell
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, Bristol, England
| | - Michael P. Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | | | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| |
Collapse
|
7
|
Chen L, Chou CL, Yang CR, Knepper MA. Multiomics Analyses Reveal Sex Differences in Mouse Renal Proximal Subsegments. J Am Soc Nephrol 2023; 34:829-845. [PMID: 36758122 PMCID: PMC10125651 DOI: 10.1681/asn.0000000000000089] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Sex-dependent differences in kidney function are recognized but the underlying molecular mechanisms are largely unexplored. Advances in genomics and proteomic technologies now allow extensive characterization of differences between the same cell types of males and females. Multiomics integrating RNA-seq, ATAC-seq, and proteomics data to investigate differences in gene expression, chromatin accessibility, and protein expression in proximal tubules of male and female mice identified many sex-biased genes and proteins associated with kidney functions, including metabolic and transport processes. Sex differences may also arise from variations of the interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to advance understanding of sex differences in cells of the proximal tubule. BACKGROUND Sex differences have been increasingly recognized as important in kidney physiology and pathophysiology, but limited resources are available for comprehensive interrogation of sex differences. METHODS RNA-seq and ATAC-seq of microdissected mouse proximal tubules and protein mass spectrometry of homogenized perfused mouse kidneys reveal differences in proximal tubule cells of males and females. RESULTS The transcriptomic data indicated that the major differences in the proximal tubules between the sexes were in the S2/S3 segments, and most of the sex-biased transcripts mapped to autosomes rather than to the sex chromosomes. Many of the transcripts exhibiting sex-biased expression are involved in monocarboxylic acid metabolic processes, organic anion transport, and organic acid transport. The ATAC-seq method on microdissected tubules captured chromatin accessibility. Many of the more than 7000 differentially accessible DNA regions identified were in distal regions. Motif analyses revealed a lack of direct involvement of estrogen receptors or the androgen receptor (absence of canonical hormone response elements), suggesting an indirect regulatory role of sex hormones. Instead, analyses identified several transcription factors (TFs) ( Tead1 , Nfia/b , and Pou3f3 ) whose interplay with proximal tubule-specific TFs ( e.g. , Hnf1b , Hnf4a ) may contribute to sex differences. Finally, the whole-kidney proteome was correlated with the transcriptome, and many sex-biased proteins ( e.g. , Cyp2e1, Acsm2/3) were identified. CONCLUSIONS Sex-dependent cis-regulatory elements interact with TFs in ways that lead to sex-biased gene expression in proximal tubule cells. These data are provided as a user-friendly web page at https://esbl.nhlbi.nih.gov/MRECA/PT/ .
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
8
|
Kozuch AJ, Petukhov PA, Fagyas M, Popova IA, Lindeblad MO, Bobkov AP, Kamalov AA, Toth A, Dudek SM, Danilov SM. Urinary ACE Phenotyping as a Research and Diagnostic Tool: Identification of Sex-Dependent ACE Immunoreactivity. Biomedicines 2023; 11:953. [PMID: 36979933 PMCID: PMC10045976 DOI: 10.3390/biomedicines11030953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage. OBJECTIVE AND METHODOLOGY We applied our novel approach-ACE phenotyping-to characterize urinary ACE in volunteer subjects. ACE phenotyping includes (1) determination of ACE activity using two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of the two substrates (ZPHL/HHL ratio); (3) quantification of ACE immunoreactive protein levels; and (4) fine mapping of local ACE conformation with mAbs to ACE. PRINCIPAL FINDINGS In normal volunteers, urinary ACE activity was 140-fold less than in corresponding plasma/serum samples and did not differ between males and females. However, urinary ACE immunoreactivity (normalized binding of 25 mAbs to different epitopes) was strongly sex-dependent for the several mAbs tested, an observation likely explained by differences in tissue ACE glycosylation/sialylation between males and females. Urinary ACE phenotyping also allowed the identification of ACE outliers. In addition, daily variability of urinary ACE has potential utility as a feedback marker for dieting individuals pursuing weight loss. CONCLUSIONS/SIGNIFICANCE Urinary ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques.
Collapse
Affiliation(s)
- Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood St, Chicago, IL 60612, USA
| | - Miklos Fagyas
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Nagyerdei krt. 94, 4032 Debrecen, Hungary
| | - Isolda A. Popova
- Toxicology Research Laboratory, University of Illinois at Chicago, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Matthew O. Lindeblad
- Toxicology Research Laboratory, University of Illinois at Chicago, 840 S. Wood Ave., Chicago, IL 60612, USA
| | | | | | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Nagyerdei krt. 94, 4032 Debrecen, Hungary
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
- Medical Center, Moscow University, Moscow 119435, Russia
| |
Collapse
|
9
|
Perna A, Ruggiero B, Podestà MA, Perico L, Orisio S, Debiec H, Remuzzi G, Ruggenenti P. Sexual dimorphic response to rituximab treatment: A longitudinal observational study in a large cohort of patients with primary membranous nephropathy and persistent nephrotic syndrome. Front Pharmacol 2022; 13:958136. [PMID: 36120314 PMCID: PMC9479107 DOI: 10.3389/fphar.2022.958136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Rituximab is one of the first-line therapies for patients with membranous nephropathy (MN) at high risk of progression towards kidney failure. We investigated whether the response to Rituximab was affected by sex and anti-PLA2R antibody levels in 204 consecutive patients (148 males and 56 females) with biopsy-proven MN who were referred to the Nephrology Unit of the Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII from March 2001 to October 2016 and managed conservatively for at least 6 months. The primary outcome was a combined endpoint of complete (proteinuria <0.3 g/24 h) or partial (proteinuria <3.0 g/24 h and >50% reduction vs. baseline) remission. Patients gave written informed consent to Rituximab treatment. The study was internally funded. No pharmaceutical company was involved. Anti-PLA2R antibodies were detectable in 125 patients (61.3%). At multivariable analyses, female gender (p = 0.0198) and lower serum creatinine levels (p = 0.0108) emerged as independent predictors of better outcome (p = 0.0198). The predictive value of proteinuria (p = 0.054) and anti-PLA2R titer (p = 0.0766) was borderline significant. Over a median (IQR) of 24.8 (12.0-36.0) months, 40 females (71.4%) progressed to the combined endpoint compared with 73 males (49.3%). Anti-PLA2R titers at baseline [127.6 (35.7-310.8) vs. 110.1 (39.9-226.7) RU/ml] and after Rituximab treatment were similar between the sexes. However, the event rate was significantly higher in females than in males [HR (95%): 2.12 (1.44-3.12), p = 0.0001]. Forty-five of the 62 patients (72.3%) with anti-PLA2R titer below the median progressed to the combined endpoint versus 35 of the 63 (55.6%) with higher titer [HR (95%): 1.97 (1.26-3.07), p < 0.0029]. The highest probability of progressing to the combined endpoint was observed in females with anti-PLA2R antibody titer below the median (86.7%), followed by females with anti-PLA2R antibody titer above the median (83.3%), males with titer below the median (68.1%), and males with titer above the median (44.4%). This trend was statistically significant (p = 0.0023). Similar findings were observed for complete remission (proteinuria <0.3 g/24 h) and after analysis adjustments for baseline serum creatinine. Thus, despite similar immunological features, females were more resilient to renal injury following Rituximab therapy. These findings will hopefully open new avenues to identify the molecular pathways underlying sex-related nephroprotective effects.
Collapse
Affiliation(s)
- Annalisa Perna
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Barbara Ruggiero
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel Alfredo Podestà
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Department of Health Sciences, Università Degli Studi di Milano, Milano, Italy
| | - Luca Perico
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Silvia Orisio
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Hanna Debiec
- Sorbonne Université and Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, Paris, France
| | - Giuseppe Remuzzi
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Piero Ruggenenti
- Department of Renal Medicine, Centro di Ricerche Cliniche Aldo e Cale Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
- Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
10
|
Breljak D, Micek V, Gerić M, Gajski G, Oguić SK, Rašić D, Karaica D, Madunić IV, Ljubojević M, Orct T, Jurasović J, Jovanović IN, Peraica M, Nanić L, Rubelj I, Sabolić I. Long-term effects of melatonin and resveratrol on aging rats: A multi-biomarker approach. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503443. [PMID: 35483776 DOI: 10.1016/j.mrgentox.2022.503443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Aging-related impaired body structure and functions may be, at least partially, caused by elevated oxidative stress. Melatonin (MEL) and resveratrol (RSV) may act as antioxidant and anti-aging compounds, but these actions in experimental animals and humans are controversial. Herein, a rat model of aging was used to study the long-term sex-related effects of MEL and RSV treatment on body mass and blood/plasma parameters of DNA damage, oxidative status (glutathione and malondialdehyde levels), and concentrations of sex hormones. Starting from the age of 3mo, for the next 9mo or 21mo male and female Wistar rats (n = 4-7 per group) were given water to drink (controls) or 0.1 % ethanol in water (vehicle), or MEL or RSV (each 10 mg/L vehicle). DNA damage in whole blood cells was tested by comet assay, whereas in plasma, glutathione, malondialdehyde, and sex hormones were determined by established methods. Using statistical analysis of data by ANOVA/Scheffe post hoc, we observed a similar sex- and aging-dependent rise of body mass in both sexes and drop of plasma testosterone in control and vehicle-treated male rats, whose pattern remained unaffected by MEL and RSV treatment. Compared with controls, all other parameters remained largely unchanged in aging and differently treated male and female rats. We concluded that the sex- and aging-related pattern of growth and various blood parameters in rats were not affected by the long-term treatment with MEL and RSV at the estimated daily doses (300-400 μg/kg b.m.) that exceed usual moderate consumption in humans.
Collapse
Affiliation(s)
- Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| | - Vedran Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Saša Kralik Oguić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Kišpatićeva 12, 10000, Zagreb, Croatia
| | - Dubravka Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Ivana Novak Jovanović
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Maja Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| |
Collapse
|
11
|
Piani F, Melena I, Tommerdahl KL, Nokoff N, Nelson RG, Pavkov ME, van Raalte DH, Cherney DZ, Johnson RJ, Nadeau KJ, Bjornstad P. Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 2021; 35:107841. [PMID: 33423908 PMCID: PMC8007279 DOI: 10.1016/j.jdiacomp.2020.107841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Sexual dimorphism may play a key role in the pathogenesis of diabetic kidney disease (DKD) and explain differences observed in disease phenotypes, responses to interventions, and disease progression between men and women with diabetes. Therefore, omitting the consideration of sex as a biological factor may result in delayed diagnoses and suboptimal therapies. This review will summarize the effects of sexual dimorphism on putative metabolic and molecular mechanisms underlying DKD, and the potential implications of these differences on therapeutic interventions. To successfully implement precision medicine, we require a better understanding of sexual dimorphism in the pathophysiologic progression of DKD. Such insights can unveil sex-specific therapeutic targets that have the potential to maximize efficacy while minimizing adverse events.
Collapse
Affiliation(s)
- Federica Piani
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kalie L Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Meda E Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Richard J Johnson
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen J Nadeau
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
12
|
Kharaba ZJ, Buabeid MA, Ibrahim NA, Jirjees FJ, Obaidi HJA, Kaddaha A, Khajehkarimoddini L, Alfoteih Y. Testosterone therapy in hypogonadal patients and the associated risks of cardiovascular events. Biomed Pharmacother 2020; 129:110423. [PMID: 32570122 DOI: 10.1016/j.biopha.2020.110423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
Since the male secondary sex characters, libido and fertility are attributed to their major androgen hormone testosterone, the sub-optimum levels of testosterone in young adults may cause infertility and irregularities in their sexual behaviour. Such deficiency is often secondary to maladies involving testes, pituitary or hypothalamus that could be treated with an administration of exogenous testosterone. In the last few decades, the number of testosterone prescriptions has markedly increased to treat sub-optimal serum levels even though its administration in such conditions is not yet approved. On account of its associated cardiovascular hazards, the food and drug authority in the United States has issued safety alerts on testosterone replacement therapy (TRT). Owing to a great degree of conflict among their findings, the published clinical trials seem struggling in presenting a decisive opinion on the matter. Hence, the clinicians remain uncertain about the possible cardiovascular adversities while prescribing TRT in hypogonadal men. The uncertainty escalates even further while prescribing such therapy in older men with a previous history of cardiovascular ailments. In the current review, we analysed the pre-clinical and clinical studies to evaluate the physiological impact of testosterone on cardiovascular and related parameters. We have enlisted studies on the association of cardiovascular health and endogenous testosterone levels with a comprehensive analysis of epidemiological studies, clinical trials, and meta-analyses on the cardiovascular risk of TRT. The review is aimed to assist clinicians in making smart decisions regarding TRT in their patients.
Collapse
Affiliation(s)
- Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Manal Ali Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Nihal A Ibrahim
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | | | | | | | | | - Yassen Alfoteih
- City University College of Ajman, Ajman, 18484, United Arab Emirates.
| |
Collapse
|
13
|
Sesti F, Pofi R, Minnetti M, Tenuta M, Gianfrilli D, Isidori AM. Late-onset hypogonadism: Reductio ad absurdum of the cardiovascular risk-benefit of testosterone replacement therapy. Andrology 2020; 8:1614-1627. [PMID: 32737921 DOI: 10.1111/andr.12876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low testosterone (T) level is considered a marker of poor cardiovascular health. Ten years ago, the Testosterone in Older Men with Mobility Limitations (TOM) trial was discontinued due to a higher number of adverse events in men receiving T compared with placebo. Since then, several studies have investigated the risks of T replacement therapy (TRT) in late-onset hypogonadism (LOH). OBJECTIVE To review the mechanism by which TRT could damage the cardiovascular system. MATERIALS AND METHODS Comprehensive literature search of recent clinical and experimental studies. RESULTS The mechanisms of T-mediated coronary vasodilation were reviewed with emphasis on calcium-activated and ATP-sensitive potassium ion channels. We showed how T regulates endothelial nitric oxide synthase (eNOS) and phosphoinositide 3-kinase/protein kinase B/eNOS signaling pathways in vessel walls and its direct effects on cardiomyocytes via β1-adrenergic and ryanodine receptors and provided data on myocardial infarction and heart failure. Vascular smooth muscle senescence could be explained by the modulation of growth factors, matrix metalloproteinase-2, and angiotensin II by T. Furthermore, leukocyte trafficking, facilitated by changes in TNF-α, could explain some of the effects of T on atheromatous plaques. Conflicting data on prothrombotic risk linked to platelet aggregation inhibition via NO-triggered arachidonate synthesis or increased aggregability due to enhanced thromboxane A in human platelets provide evidence regarding the hypotheses on plaque maturation and rupture risk. The effects of T on cardiac electrophysiology and oxygen delivery were also reviewed. DISCUSSION The effects of TRT on the cardiovascular system are complex. Although molecular studies suggest a potential benefit, several clinical observations reveal neutral or occasionally detrimental effects, mostly due to confounding factors. CONCLUSIONS Attempts to demonstrate that TRT damages the cardiovascular system via systematic analysis of the putative mechanisms led to the contradiction of the initial hypothesis. Current evidence indicates that TRT is safe once other comorbidities are addressed.
Collapse
Affiliation(s)
- Franz Sesti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Minnetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marta Tenuta
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
14
|
Kharaba ZJ, Buabeid MA, Alfoteih YA. Effectiveness of testosterone therapy in hypogonadal patients and its controversial adverse impact on the cardiovascular system. Crit Rev Toxicol 2020; 50:491-512. [PMID: 32689855 DOI: 10.1080/10408444.2020.1789944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Testosterone is the major male hormone produced by testicles which are directly associated with man's appearance and secondary sexual developments. Androgen deficiency starts when the male hormonal level falls from its normal range though, in youngsters, the deficiency occurs due to disruption of the normal functioning of pituitary, hypothalamus glands, and testes. Thus, testosterone replacement therapy was already known for the treatment of androgen deficiency with lesser risks of producing cardiovascular problems. Since from previous years, the treatment threshold in the form of testosterone replacement therapy has effectively increased to that extent that it was prescribed for those conditions which it was considered as inappropriate. However, there are some research studies and clinical trials available that proposed the higher risk of inducing cardiovascular disease with the use of testosterone replacement therapy. Thus under the light of these results, the FDA has published the report of the increased risk of cardiovascular disease with the increased use of testosterone replacement therapy. Nevertheless, there is not a single trial available or designed that could evaluate the risk of cardiovascular events with the use of testosterone replacement therapy. As a result, the use of testosterone still questioned the cardiovascular safety of this replacement therapy. Thus, this literature outlines the distribution pattern of disease by investigating the data and link between serum testosterone level and the cardiovascular disease, also the prescription data of testosterone replacement therapy patients and their tendency of inducing cardiovascular disease, meta-analysis and the trials regarding testosterone replacement therapy and its connection with the risks of causing cardiovascular disease and lastly, the possible effects of testosterone replacement therapy on the cardiovascular system. This study aims to evaluate the available evidence regarding the use of testosterone replacement therapy when choosing it as a treatment plan for their patients.
Collapse
Affiliation(s)
- Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Manal Ali Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates
| | | |
Collapse
|
15
|
Abstract
Testosterone is the main male sex hormone and is essential for the maintenance of male secondary sexual characteristics and fertility. Androgen deficiency in young men owing to organic disease of the hypothalamus, pituitary gland or testes has been treated with testosterone replacement for decades without reports of increased cardiovascular events. In the past decade, the number of testosterone prescriptions issued for middle-aged or older men with either age-related or obesity-related decline in serum testosterone levels has increased exponentially even though these conditions are not approved indications for testosterone therapy. Some retrospective studies and randomized trials have suggested that testosterone replacement therapy increases the risk of cardiovascular disease, which has led the FDA to release a warning statement about the potential cardiovascular risks of testosterone replacement therapy. However, no trials of testosterone replacement therapy published to date were designed or adequately powered to assess cardiovascular events; therefore, the cardiovascular safety of this therapy remains unclear. In this Review, we provide an overview of epidemiological data on the association between serum levels of endogenous testosterone and cardiovascular disease, prescription database studies on the risk of cardiovascular disease in men receiving testosterone therapy, randomized trials and meta-analyses evaluating testosterone replacement therapy and its association with cardiovascular events and mechanistic studies on the effects of testosterone on the cardiovascular system. Our aim is to help clinicians to make informed decisions when considering testosterone replacement therapy in their patients.
Collapse
|
16
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
17
|
Sex and the kidneys: current understanding and research opportunities. Nat Rev Nephrol 2019; 15:776-783. [PMID: 31586165 DOI: 10.1038/s41581-019-0208-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
Concerns regarding sex differences are increasingly pertinent in scientific and societal arenas. Although biological sex and socio-cultural gender are increasingly recognized as important modulators of renal function under physiological and pathophysiological conditions, gaps remain in our understanding of the mechanisms underlying sex differences in renal pathophysiology, disease development, progression and management. In this Perspectives article, we discuss specific opportunities for future research aimed at addressing these knowledge gaps. Such opportunities include the development of standardized core data elements and outcomes related to sex for use in clinical studies to establish a connection between sex hormones and renal disease development or progression, development of a knowledge portal to promote fundamental understanding of physiological differences between male and female kidneys in animal models and in humans, and the creation of new or the development of existing resources and datasets to make them more readily available for interrogation of sex differences. These ideas are intended to stimulate thought and interest among the renal research community as they consider sex as a biological variable in future research projects.
Collapse
|
18
|
Nair AV, Yanhong W, Paunescu TG, Bouley R, Brown D. Sex-dependent differences in water homeostasis in wild-type and V-ATPase B1-subunit deficient mice. PLoS One 2019; 14:e0219940. [PMID: 31386675 PMCID: PMC6684071 DOI: 10.1371/journal.pone.0219940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Men tend to dehydrate more than women after prolonged exercise, possibly due to lower water intake and higher perspiration rate. Women are prone to exercise-associated hyponatremia, primarily attributed to the higher water consumption causing hypervolemia. Since aquaporin-2 (AQP2) water channels in the kidney collecting duct (CD) principal cells (PCs) are involved in maintaining water balance, we investigated their role in sex-dependent water homeostasis in wild-type (WT) C57BL/6 mice. Because CD intercalated cells (ICs) may also be involved in water balance, we also assessed the urine concentrating ability of V-ATPase B1 subunit-deficient (Atp6v1b1-/-) mice. Upon 12-hour water deprivation, urine osmolality increased by 59% in WT female mice and by only 28% in males. This difference was abolished in Atp6v1b1-/- mice, in which dehydration induced a ~30% increase in urine osmolarity in both sexes. AQP2 levels were highest in WT females; female Atp6v1b1-/- mice had substantially lower AQP2 expression than WT females, comparable to the low AQP2 levels seen in both Atp6v1b1-/- and WT males. After dehydration, AQP2 relocates towards the PC apical pole, especially in the inner stripe and inner medulla, and to a greater extent in WT females than in WT males. This apparent sex-dependent concentrating advantage was absent in Atp6v1b1-/- females, whose reduced AQP2 apical relocation was similar to WT males. Accordingly, female mice concentrate urine better than males upon dehydration due to increased AQP2 expression and mobilization. Moreover, our data support the involvement of ICs in water homeostasis, at least partly mediated by V-ATPase, in a sex-dependent manner.
Collapse
Affiliation(s)
- Anil V. Nair
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Wei Yanhong
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Teodor G. Paunescu
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Richard Bouley
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
19
|
Vicedo-Cabrera AM, Goldfarb DS, Kopp RE, Song L, Tasian GE. Sex differences in the temperature dependence of kidney stone presentations: a population-based aggregated case-crossover study. Urolithiasis 2019; 48:37-46. [PMID: 30900001 DOI: 10.1007/s00240-019-01129-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
Abstract
Previous studies assumed a uniform relationship between heat and kidney stone presentations. Determining whether sex and other characteristics modify the temperature dependence of kidney stone presentations has implications for explaining differences in nephrolithiasis prevalence and improving projections of the effect of climate change on nephrolithiasis. We performed an aggregated case-crossover study among 132,597 children and adults who presented with nephrolithiasis to 68 emergency departments throughout South Carolina from 1997 to 2015. We used quasi-Poisson regression with distributed lag non-linear models to estimate sex differences in the cumulative exposure and lagged response between maximum daily wet-bulb temperatures and emergent kidney stone presentations, aggregated at the ZIP-code level. We also explored interactions by age, race, payer, and climate. Compared to 10 °C, daily wet-bulb temperatures at the 99th percentile were associated with a greater increased relative risk (RR) of kidney stone presentations over 10 days for males (RR 1.73; 95% CI 1.56, 1.91) than for females (RR 1.15; 95% CI 1.01, 1.32; interaction P < 0.001). The shape of the lagged response was similar for males and females, with the greatest risk estimated for the 2 days following high temperatures. There were weak differences by age, race, and climatic zone, and no differences by payer status. The estimated risk of presenting emergently with kidney stones within 10 days of high daily wet-bulb temperatures was substantially greater among men than women, and similar between patients with public and private insurance. These findings suggest that the higher risk among males may be due to sexually dimorphic physiologic responses rather than greater exposure to ambient temperatures.
Collapse
Affiliation(s)
- Ana M Vicedo-Cabrera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, England, WC1E 7HT, UK
| | - David S Goldfarb
- Division of Nephrology, New York University School of Medicine, New York, NY, 10016, USA
| | - Robert E Kopp
- Department of Earth and Planetary Sciences, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lihai Song
- Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gregory E Tasian
- Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Surgery, Division of Urology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Surgery, Division of Urology, The Children's Hospital of Philadelphia, Wood Center, 3rd Floor 34th Street and Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, Castelo-Branco RC, Pastor-Soler N, Arranz CT, Yu ASL, McDonough AA. Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis. J Am Soc Nephrol 2017; 28:3504-3517. [PMID: 28774999 PMCID: PMC5698077 DOI: 10.1681/asn.2017030295] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Compared with males, females have lower BP before age 60, blunted hypertensive response to angiotensin II, and a leftward shift in pressure natriuresis. This study tested the concept that this female advantage associates with a distinct sexual dimorphic pattern of transporters along the nephron. We applied quantitative immunoblotting to generate profiles of transporters, channels, claudins, and selected regulators in both sexes and assessed the physiologic consequences of the differences. In rats, females excreted a saline load more rapidly than males did. Compared with the proximal tubule of males, the proximal tubule of females had greater phosphorylation of Na+/H+ exchanger isoform 3 (NHE3), distribution of NHE3 at the base of the microvilli, and less abundant expression of Na+/Pi cotransporter 2, claudin-2, and aquaporin 1. These changes associated with less bicarbonate reabsorption and higher lithium clearance in females. The distal nephrons of females had a higher abundance of total and phosphorylated Na+/Cl- cotransporter (NCC), claudin-7, and cleaved forms of epithelial Na+ channel (ENaC) α and γ subunits, which associated with a lower baseline plasma K+ concentration. A K+-rich meal increased the urinary K+ concentration and decreased the level of renal phosphorylated NCC in females. Notably, we observed similar abundance profiles in female versus male C57BL/6 mice. These results define sexual dimorphic phenotypes along the nephron and suggest that lower proximal reabsorption in female rats expedites excretion of a saline load and enhances NCC and ENaC abundance and activation, which may facilitate K+ secretion and set plasma K+ at a lower level.
Collapse
Affiliation(s)
| | | | - Joshua Curry
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Lei Pei
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - An Tran
- Department of Integrative Anatomical Sciences and
| | - Regiane C Castelo-Branco
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil; and
| | - Nuria Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Cristina T Arranz
- University of Buenos Aires, National Council of Science and Technology, Buenos Aires, Argentina
| | - Alan S L Yu
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | |
Collapse
|
21
|
Madunić IV, Breljak D, Karaica D, Koepsell H, Sabolić I. Expression profiling and immunolocalization of Na +-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats. Pflugers Arch 2017; 469:1545-1565. [PMID: 28842746 PMCID: PMC5691098 DOI: 10.1007/s00424-017-2056-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 12/23/2022]
Abstract
The expression and localization of sodium-D-glucose cotransporter SGLT1 (SLC5A1), which is involved in small intestinal glucose absorption and renal glucose reabsorption, is of high biomedical relevance because SGLT1 inhibitors are currently tested for antidiabetic therapy. In human and rat organs, detailed expression profiling of SGLT1/Sglt1 mRNA and immunolocalization of the transporter protein has been performed. Using polyspecific antibodies and preabsorption with antigenic peptide as specificity control, in several organs, different immunolocalizations of SGLT1/Sglt1 between human and rat were obtained. Because the preabsorption control does not exclude cross-reactivity with similar epitopes, some localizations remained ambiguous. In the present study, we performed an immunocytochemical localization of Sglt1 in various organs of mice. Specificities of the immunoreactions were evaluated using antibody preabsorption with the Sglt1 peptide and the respective organs of Sglt1 knockout mice. Because staining in some locations was abolished after antibody preabsorption but remained in the knockout mice, missing staining in knockout mice was used as specificity criterion. The immunolocalization in mouse was identical or similar to rat in many organs, including small intestine, liver, and kidney. However, the male-dominant renal Sglt1 protein expression in mice differed from the female-dominant expression in rats, and localization in lung, heart, and brain observed in rats was not detected in mice. In mice, several novel locations of Sglt1, e.g., in eyes, tongue epithelial cells, pancreatic ducts, prostate, and periurethral glands were detected. Using end-point and quantitative RT-PCR in various organs, different Sglt1 expression in mice and rats was confirmed.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Botfield HF, Uldall MS, Westgate CSJ, Mitchell JL, Hagen SM, Gonzalez AM, Hodson DJ, Jensen RH, Sinclair AJ. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus. Sci Transl Med 2017; 9:eaan0972. [PMID: 28835515 DOI: 10.1126/scitranslmed.aan0972] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Current therapies for reducing raised intracranial pressure (ICP) under conditions such as idiopathic intracranial hypertension or hydrocephalus have limited efficacy and tolerability. Thus, there is a pressing need to identify alternative drugs. Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat diabetes and promote weight loss but have also been shown to affect fluid homeostasis in the kidney. We investigated whether exendin-4, a GLP-1R agonist, is able to modulate cerebrospinal fluid (CSF) secretion at the choroid plexus and subsequently reduce ICP in rats. We used tissue sections and cell cultures to demonstrate expression of GLP-1R in the choroid plexus and its activation by exendin-4, an effect blocked by the GLP-1R antagonist exendin 9-39. Acute treatment with exendin-4 reduced Na+- and K+-dependent adenosine triphosphatase activity, a key regulator of CSF secretion, in cell cultures. Finally, we demonstrated that administration of exendin-4 to female rats with raised ICP (hydrocephalic) resulted in a GLP-1R-mediated reduction in ICP. These findings suggest that GLP-1R agonists can reduce ICP in rodents. Repurposing existing GLP-1R agonist drugs may be a useful therapeutic strategy for treating raised ICP.
Collapse
Affiliation(s)
- Hannah F Botfield
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Maria S Uldall
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Connar S J Westgate
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - James L Mitchell
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Snorre M Hagen
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Ana Maria Gonzalez
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Rigmor H Jensen
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
23
|
Diaz-Gonzalez De Ferris ME, Alvarez-Elías AC, Ferris MT, Medeiros M. Female Adolescents with Chronic or End-Stage Kidney Disease and Strategies for their Care. Semin Nephrol 2017; 37:320-326. [PMID: 28711070 DOI: 10.1016/j.semnephrol.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The prevalence of chronic or end-stage kidney disease in pediatric girls is lower than in boys, however, girls have unique morbidities that can have great effect on their quality of life. For female adolescents, creatinine excretion peaks at approximately 14 years of age and is significantly less than males, owing to lower muscle mass. Females have higher nitric oxide activity, and estrogens may contribute to lower blood pressure. Females excrete less growth hormone during the prepubertal and pubertal years. Females between the ages of 8 and 10 years show increased levels of parathyroid hormone and vitamin D, however, female adolescents with chronic kidney disease have less estrogen and loss of the luteinizing hormone pulsatile pattern. These biological, hormonal, and physical changes affect the psychosocial aspects of female adolescents with chronic kidney disease/end-stage kidney disease, and they must learn to manage their health to achieve good outcomes. Patients and their parents must learn disease management through a customized health care transition preparation in both the pediatric- and adult-focused settings. Clinical strategies are suggested for the care of these special patients.
Collapse
Affiliation(s)
- Maria E Diaz-Gonzalez De Ferris
- Department of Pediatrics, The University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico.
| | - Ana Catalina Alvarez-Elías
- Department of Pediatric Nephrology, Nephrology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, DF, Mexico; Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico
| | - Michael Ted Ferris
- Simione Consultants, Hamden, CT, USA; Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico
| | - Mara Medeiros
- Department of Pediatric Nephrology, Nephrology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, DF, Mexico; Nephrology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, DF, Mexico; Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico
| |
Collapse
|
24
|
Loh SY, Giribabu N, Salleh N. Effects of gonadectomy and testosterone treatment on aquaporin expression in the kidney of normotensive and hypertensive rats. Exp Biol Med (Maywood) 2017; 242:1376-1386. [PMID: 28399644 DOI: 10.1177/1535370217703360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that testosterone-induced increase in blood pressure was due to changes in aquaporin (AQP) expression in kidneys. In this study, expression level of kidney AQPs was investigated under testosterone influence. Adult normotensive Wistar Kyoto (WKY) and hypertensive SHR male and female rats underwent gonadectomy. For female rats, testosterone was given for six weeks duration, two weeks following ovariectomy via subcutaneous silastic implant. Mean arterial pressure (MAP) was measured in all the rats after eight weeks via carotid artery cannulation and the rats were then sacrificed and kidneys were harvested for analyses of AQP-1, 2, 3, 4, 6, and 7 mRNA and protein expressions by quantitative real-time PCR and Western blotting, respectively. Distribution of AQP subunits' protein in kidneys was observed by immunofluorescence. In male WKY rats, MAP, AQP-1, 2, 4, and 7 protein; and mRNA expression decreased however AQP-3 protein and mRNA expression increased following orchidectomy. The vice versa effects were observed in testosterone-treated ovariectomized female WKY rats. However, no changes in AQP-6 expression were observed. Meanwhile, in adult male SHR rats, MAP and expression level of all AQP subunits decreased following orchidectomy. The opposite effects were seen in ovariectomized female SHR rats following testosterone treatment. Immunofluorescence study showed AQP-1 and AQP-7 were distributed in the proximal convoluted tubules (PCT) while AQP-2, AQP-4, and AQP-6 were distributed in the collecting ducts (CDs). AQP-3 was distributed in the PCT and CD. In conclusion, changes in AQP subunit expression in kidneys could explain changes in blood pressure under testosterone influence. Impact statement This study provides fundamental understanding on the mechanisms underlying testosterone-induced increase in blood pressure which involve regulation of aquaporin channel subunits in the kidneys. A better understanding of this issue can help to explain the reason for higher blood pressure in males as compared to females and may explain the reason for higher blood pressure in females after menopause than females before menopause, the former most probably related to the changes in female androgen.
Collapse
Affiliation(s)
- Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
25
|
Kouyoumdzian NM, Mikusic NR, Cao G, Choi MR, Penna SD, Fernández BE, Toblli JE, Rosón MI. Adverse effects of tempol on hidrosaline balance in rats with acute sodium overload. Biotech Histochem 2017; 91:510-521. [PMID: 27849390 DOI: 10.1080/10520295.2016.1249029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We studied the effects of tempol, an oxygen radical scavenger, on hydrosaline balance in rats with acute sodium overload. Male rats with free access to water were injected with isotonic (control group) or hypertonic saline solution (0.80 mol/l NaCl) either alone (Na group) or with tempol (Na-T group). Hydrosaline balance was determined during a 90 min experimental period. Protein expressions of aquaporin 1 (AQP1), aquaporin 2 (AQP2), angiotensin II (Ang II) and endothelial nitric oxide synthase (eNOS) were measured in renal tissue. Water intake, creatinine clearance, diuresis and natriuresis increased in the Na group. Under conditions of sodium overload, tempol increased plasma sodium and protein levels and increased diuresis, natriuresis and sodium excretion. Tempol also decreased water intake without affecting creatinine clearance. AQP1 and eNOS were increased and Ang II decreased in the renal cortex of the Na group, whereas AQP2 was increased in the renal medulla. Nonglycosylated AQP1 and eNOS were increased further in the renal cortex of the Na-T group, whereas AQP2 was decreased in the renal medulla and was localized mainly in the cell membrane. Moreover, p47-phox immunostaining was increased in the hypothalamus of Na group, and this increase was prevented by tempol. Our findings suggest that tempol causes hypernatremia after acute sodium overload by inhibiting the thirst mechanism and facilitating diuresis, despite increasing renal eNOS expression and natriuresis.
Collapse
Affiliation(s)
- N M Kouyoumdzian
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - Nl Rukavina Mikusic
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - G Cao
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - M R Choi
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - Sl Della Penna
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - B E Fernández
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - J E Toblli
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| | - M I Rosón
- a Cardiological Research Institute (ININCA), Scientific and Technological Research National Council (CONICET), University of Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
26
|
Influence of sex on aquaporin1-4 and vasopressin V2 receptor expression in the pig kidney during development. Pediatr Res 2016; 80:452-9. [PMID: 27089501 DOI: 10.1038/pr.2016.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND The ability of the immature kidney to concentrate urine is lower than in adults. The aquaporin (AQP) family and the vasopressin V2 receptor (V2R) play a critical role in the urinary concentrating capacity. Here we investigated a possible sex difference in AQP1, AQP2, AQP3, and AQP4 as well as V2R expression in the fetal pig kidney at different gestation stages. METHODS Pig fetuses were divided into three groups according to gestation age of 60, 80, and 100 d. Quantitative PCR and immunohistochemistry were used to determine the regulation of AQP1, AQP2, AQP3, and AQP4 as well as V2R in the fetal pig kidneys. RESULTS Renal AQP1, AQP2 and AQP3, and V2R expression was increased with gestation age in both sexes, whereas AQP4 expression was unchanged over time. We observed neither sex differences in the AQPs nor V2R expression in the fetal pig kidneys. CONCLUSION AQP1, AQP2, and AQP3, and V2R expression increased with gestation age in the fetal kidney, suggesting that this induction might contribute to the maturation of urinary concentrating capacity. However, no sex differences were observed indicating that sex might not play a role for the maturation of the urinary concentrating activity during kidney development in fetal pig.
Collapse
|
27
|
Cheema MU, Irsik DL, Wang Y, Miller-Little W, Hyndman KA, Marks ES, Frøkiær J, Boesen EI, Norregaard R. Estradiol regulates AQP2 expression in the collecting duct: a novel inhibitory role for estrogen receptor α. Am J Physiol Renal Physiol 2015; 309:F305-17. [PMID: 26062878 DOI: 10.1152/ajprenal.00685.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/30/2015] [Indexed: 11/22/2022] Open
Abstract
While there is evidence that sex hormones influence multiple systems involved in salt and water homeostasis, the question of whether sex hormones regulate aquaporin-2 (AQP2) and thus water handling by the collecting duct has been largely ignored. Accordingly, the present study investigated AQP2 expression, localization and renal water handling in intact and ovariectomized (OVX) female rats, with and without estradiol or progesterone replacement. OVX resulted in a significant increase in urine osmolality and increase in p256-AQP2 in the renal cortex at 7 days post-OVX, as well as induced body weight changes. Relative to OVX alone, estradiol repletion produced a significant increase in urine output, normalized urinary osmolality and reduced both total AQP2 (protein and mRNA) and p256-AQP2 expression, whereas progesterone repletion had little effect. Direct effects of estradiol on AQP2 mRNA and protein levels were further tested in vitro using the mpkCCD principal cell line. Estradiol treatment of mpkCCD cells reduced AQP2 at both the mRNA and protein level in the absence of deamino-8-d-AVP (dDAVP) and significantly blunted the dDAVP-induced increase in AQP2 at the protein level only. We determined that mpkCCD and native mouse collecting ducts express both estrogen receptor (ER)α and ERβ and that female mice lacking ERα displayed significant increases in AQP2 protein compared with wild-type littermates, implicating ERα in mediating the inhibitory effect of estradiol on AQP2 expression. These findings suggest that changes in estradiol levels, such as during menopause or following reproductive surgeries, may contribute to dysregulation of water homeostasis in women.
Collapse
Affiliation(s)
| | - Debra L Irsik
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Yan Wang
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Kelly A Hyndman
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eileen S Marks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Rikke Norregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|